Abstract
We investigate geometric aspects of double field theory (DFT) and its formulation as a doubled membrane sigma-model. Starting from the standard Courant algebroid over the phase space of an open membrane, we determine a splitting and a projection to a subbundle that sends the Courant algebroid operations to the corresponding operations in DFT. This describes precisely how the geometric structure of DFT lies in between two Courant algebroids and is reconciled with generalized geometry. We construct the membrane sigma-model that corresponds to DFT, and demonstrate how the standard T-duality orbit of geometric and non-geometric flux backgrounds is captured by its action functional in a unified way. This also clarifies the appearence of noncommutative and nonassociative deformations of geometry in non-geometric closed string theory. Gauge invariance of the DFT membrane sigma-model is compatible with the flux formulation of DFT and its strong constraint, whose geometric origin is explained. Our approach leads to a new generalization of a Courant algebroid, that we call a DFT algebroid and relate to other known generalizations, such as pre-Courant algebroids and symplectic nearly Lie 2-algebroids. We also describe the construction of a gauge-invariant doubled membrane sigma-model that does not require imposing the strong constraint.
References
M.R. Douglas and C.M. Hull, D-branes and the noncommutative torus, JHEP 02 (1998) 008 [hep-th/9711165] [INSPIRE].
C.-S. Chu and P.-M. Ho, Noncommutative open string and D-brane, Nucl. Phys. B 550 (1999) 151 [hep-th/9812219] [INSPIRE].
N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [INSPIRE].
M.R. Douglas and N.A. Nekrasov, Noncommutative field theory, Rev. Mod. Phys. 73 (2001) 977 [hep-th/0106048] [INSPIRE].
R.J. Szabo, Quantum field theory on noncommutative spaces, Phys. Rept. 378 (2003) 207 [hep-th/0109162] [INSPIRE].
R. Blumenhagen and E. Plauschinn, Nonassociative Gravity in String Theory?, J. Phys. A 44 (2011) 015401 [arXiv:1010.1263] [INSPIRE].
D. Lüst, T-duality and closed string non-commutative (doubled) geometry, JHEP 12 (2010) 084 [arXiv:1010.1361] [INSPIRE].
R. Blumenhagen, A. Deser, D. Lüst, E. Plauschinn and F. Rennecke, Non-geometric Fluxes, Asymmetric Strings and Nonassociative Geometry, J. Phys. A 44 (2011) 385401 [arXiv:1106.0316] [INSPIRE].
D. Mylonas, P. Schupp and R.J. Szabo, Membrane Sigma-models and Quantization of Non-Geometric Flux Backgrounds, JHEP 09 (2012) 012 [arXiv:1207.0926] [INSPIRE].
E. Plauschinn, Non-geometric fluxes and non-associative geometry, PoS(CORFU2011)061 [arXiv:1203.6203] [INSPIRE].
D. Lüst, Twisted Poisson Structures and Non-commutative/non-associative Closed String Geometry, PoS(CORFU2011)086 [arXiv:1205.0100] [INSPIRE].
D. Mylonas, P. Schupp and R.J. Szabo, Nonassociative geometry and twist deformations in non-geometric string theory, PoS(ICMP 2013)007 [arXiv:1402.7306] [INSPIRE].
R. Blumenhagen, A Course on Noncommutative Geometry in String Theory, Fortsch. Phys. 62 (2014) 709 [arXiv:1403.4805] [INSPIRE].
G.E. Barnes, A. Schenkel and R.J. Szabo, Working with Nonassociative Geometry and Field Theory, PoS(CORFU2015)081 [arXiv:1601.07353] [INSPIRE].
C.M. Hull and R.A. Reid-Edwards, Non-geometric backgrounds, doubled geometry and generalised T-duality, JHEP 09 (2009) 014 [arXiv:0902.4032] [INSPIRE].
M.J. Duff, Duality Rotations in String Theory, Nucl. Phys. B 335 (1990) 610 [INSPIRE].
A.A. Tseytlin, Duality Symmetric Formulation of String World Sheet Dynamics, Phys. Lett. B 242 (1990) 163 [INSPIRE].
W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].
W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].
C.M. Hull, A geometry for non-geometric string backgrounds, JHEP 10 (2005) 065 [hep-th/0406102] [INSPIRE].
C.M. Hull, Doubled Geometry and T-Folds, JHEP 07 (2007) 080 [hep-th/0605149] [INSPIRE].
C. Hull and B. Zwiebach, Double Field Theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].
C. Hull and B. Zwiebach, The gauge algebra of double field theory and Courant brackets, JHEP 09 (2009) 090 [arXiv:0908.1792] [INSPIRE].
O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].
O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].
L. Freidel, R.G. Leigh and D. Minic, Metastring Theory and Modular Space-time, JHEP 06 (2015) 006 [arXiv:1502.08005] [INSPIRE].
G. Aldazabal, D. Marqués and C. Núñez, Double Field Theory: A Pedagogical Review, Class. Quant. Grav. 30 (2013) 163001 [arXiv:1305.1907] [INSPIRE].
D.S. Berman and D.C. Thompson, Duality Symmetric String and M-theory, Phys. Rept. 566 (2014) 1 [arXiv:1306.2643] [INSPIRE].
O. Hohm, D. Lüst and B. Zwiebach, The Spacetime of Double Field Theory: Review, Remarks and Outlook, Fortsch. Phys. 61 (2013) 926 [arXiv:1309.2977] [INSPIRE].
T.J. Courant, Dirac manifolds, Trans. Am. Math. Soc. 319 (1990) 631.
Z.-J. Liu, A. Weinstein and P. Xu, Manin Triples for Lie Bialgebroids, J. Diff. Geom. 45 (1997) 547 [dg-ga/9508013] [INSPIRE].
D. Roytenberg, Courant algebroids, derived brackets and even symplectic supermanifolds, Ph.D. Thesis, University of California at Berkeley, U.S.A., math.DG/9910078.
P. Ševera, Letters to Alan Weinstein about Courant algebroids, arXiv:1707.00265 [INSPIRE].
N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. 54 (2003) 281 [math/0209099] [INSPIRE].
M. Gualtieri, Generalized complex geometry, Ph.D. thesis, Oxford U., 2003. math/0401221 [INSPIRE].
G.R. Cavalcanti and M. Gualtieri, Generalized complex geometry and T-duality CRM Proc. Lect. Notes 50 (2010) 341 [arXiv:1106.1747] [INSPIRE].
P. Bouwknegt, K. Hannabuss and V. Mathai, T duality for principal torus bundles, JHEP 03 (2004) 018 [hep-th/0312284] [INSPIRE].
L. Freidel, F.J. Rudolph and D. Svoboda, Generalised Kinematics for Double Field Theory, JHEP 11 (2017) 175 [arXiv:1706.07089] [INSPIRE].
I. Vaisman, On the geometry of double field theory, J. Math. Phys. 53 (2012) 033509 [arXiv:1203.0836] [INSPIRE].
A. Deser and J. Stasheff, Even symplectic supermanifolds and double field theory, Commun. Math. Phys. 339 (2015) 1003 [arXiv:1406.3601] [INSPIRE].
A. Deser and C. Sämann, Extended Riemannian Geometry I: Local Double Field Theory, arXiv:1611.02772 [INSPIRE].
M.A. Heller, N. Ikeda and S. Watamura, Unified picture of non-geometric fluxes and T-duality in double field theory via graded symplectic manifolds, JHEP 02 (2017) 078 [arXiv:1611.08346] [INSPIRE].
D. Roytenberg, On the structure of graded symplectic supermanifolds and Courant algebroids, in Workshop on Quantization, Deformations and New Homological and Categorical Methods in Mathematical Physics Manchester, England, July 7-13, 2001, 2002, math/0203110 [INSPIRE].
M. Alexandrov, A. Schwarz, O. Zaboronsky and M. Kontsevich, The geometry of the master equation and topological quantum field theory, Int. J. Mod. Phys. A 12 (1997) 1405 [hep-th/9502010] [INSPIRE].
D. Roytenberg, AKSZ-BV Formalism and Courant Algebroid-induced Topological Field Theories, Lett. Math. Phys. 79 (2007) 143 [hep-th/0608150] [INSPIRE].
J.-S. Park, Topological open p-branes, in Symplectic geometry and mirror symmetry. Proceedings, 4th KIAS Annual International Conference, Seoul, South Korea, August 14–18, 2000, pp. 311–384, 2000, hep-th/0012141 [INSPIRE].
N. Ikeda, Chern-Simons gauge theory coupled with BF theory, Int. J. Mod. Phys. A 18 (2003) 2689 [hep-th/0203043] [INSPIRE].
C. Hofman and J.-S. Park, BV quantization of topological open membranes, Commun. Math. Phys. 249 (2004) 249 [hep-th/0209214] [INSPIRE].
P. Aschieri and R.J. Szabo, Triproducts, nonassociative star products and geometry of R-flux string compactifications, J. Phys. Conf. Ser. 634 (2015) 012004 [arXiv:1504.03915] [INSPIRE].
A. Chatzistavrakidis, L. Jonke and O. Lechtenfeld, Sigma-models for genuinely non-geometric backgrounds, JHEP 11 (2015) 182 [arXiv:1505.05457] [INSPIRE].
T. Bessho, M.A. Heller, N. Ikeda and S. Watamura, Topological Membranes, Current Algebras and H-flux - R-flux Duality based on Courant Algebroids, JHEP 04 (2016) 170 [arXiv:1511.03425] [INSPIRE].
A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as Generalised Geometry I: Type II Theories, JHEP 11 (2011) 091 [arXiv:1107.1733] [INSPIRE].
M. Kontsevich, Deformation quantization of Poisson manifolds. 1., Lett. Math. Phys. 66 (2003) 157 [q-alg/9709040] [INSPIRE].
A.S. Cattaneo and G. Felder, A path integral approach to the Kontsevich quantization formula, Commun. Math. Phys. 212 (2000) 591 [math/9902090] [INSPIRE].
J. Shelton, W. Taylor and B. Wecht, Nongeometric flux compactifications, JHEP 10 (2005) 085 [hep-th/0508133] [INSPIRE].
G. Aldazabal, W. Baron, D. Marqués and C. Núñez, The effective action of Double Field Theory, JHEP 11 (2011) 052 [Erratum ibid. 11 (2011) 109] [arXiv:1109.0290] [INSPIRE].
D. Geissbühler, Double Field Theory and N = 4 Gauged Supergravity, JHEP 11 (2011) 116 [arXiv:1109.4280] [INSPIRE].
D. Geissbühler, D. Marqués, C. Núñez and V. Penas, Exploring Double Field Theory, JHEP 06 (2013) 101 [arXiv:1304.1472] [INSPIRE].
R. Blumenhagen, X. Gao, D. Herschmann and P. Shukla, Dimensional Oxidation of Non-geometric Fluxes in Type II Orientifolds, JHEP 10 (2013) 201 [arXiv:1306.2761] [INSPIRE].
N. Halmagyi, Non-geometric backgrounds and the first order string sigma-model, arXiv:0906.2891 [INSPIRE].
I. Bakas, D. Lüst and E. Plauschinn, Towards a world-sheet description of doubled geometry in string theory, Fortsch. Phys. 64 (2016) 730 [arXiv:1602.07705] [INSPIRE].
K. Uchino, Remarks on the definition of a Courant algebroid, Lett. Math. Phys. 60 (2002) 171 [math.DG/0204010].
I. Vaisman, Transitive Courant algebroids, Int. J. Math. Math. Sci. 2005 (2005) 1737 [math/0407399] [INSPIRE].
M. Hansen and T. Strobl, First Class Constrained Systems and Twisting of Courant Algebroids by a Closed 4-form, in Fundamental Interactions: A Memorial Volume for Wolfgang Kummer, eds. D. Grumiller, A. Rebhan and D.V. Vassilevich, World Scientific, (2010), pp. 115–144, arXiv:0904.0711 [INSPIRE].
A.J. Bruce and J. Grabowski, Pre-Courant algebroids, arXiv:1608.01585.
Z. Liu, Y. Sheng and X. Xu, Pre-Courant Algebroids and Associated Lie 2-Algebras, arXiv:1205.5898 [INSPIRE].
D. Svoboda, Algebroid Structures on Para-Hermitian Manifolds, arXiv:1802.08180 [INSPIRE].
R. Blumenhagen and M. Fuchs, Towards a Theory of Nonassociative Gravity, JHEP 07 (2016) 019 [arXiv:1604.03253] [INSPIRE].
P. Aschieri, M. Dimitrijević Ćirić and R.J. Szabo, Nonassociative differential geometry and gravity with non-geometric fluxes, JHEP 02 (2018) 036 [arXiv:1710.11467] [INSPIRE].
N. Ikeda, Lectures on AKSZ sigma-models for Physicists, in Noncommutative Geometry and Physics 4, eds. Y. Maeda, H. Moriyoshi, M. Kotani and S. Watamura, World Scientific, (2017), pp. 79–170, arXiv:1204.3714 [INSPIRE].
D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, A geometric action for non-geometric fluxes, Phys. Rev. Lett. 108 (2012) 261602 [arXiv:1202.3060] [INSPIRE].
C. Condeescu, I. Florakis and D. Lüst, Asymmetric Orbifolds, Non-Geometric Fluxes and Non-Commutativity in Closed String Theory, JHEP 04 (2012) 121 [arXiv:1202.6366] [INSPIRE].
L. Freidel, R.G. Leigh and D. Minic, Intrinsic non-commutativity of closed string theory, JHEP 09 (2017) 060 [arXiv:1706.03305] [INSPIRE].
D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, Non-Geometric Fluxes in Supergravity and Double Field Theory, Fortsch. Phys. 60 (2012) 1150 [arXiv:1204.1979] [INSPIRE].
M. Graña, R. Minasian, M. Petrini and D. Waldram, T-duality, Generalized Geometry and Non-Geometric Backgrounds, JHEP 04 (2009) 075 [arXiv:0807.4527] [INSPIRE].
I. Bakas and D. Lüst, 3-Cocycles, Non-Associative Star-Products and the Magnetic Paradigm of R-Flux String Vacua, JHEP 01 (2014) 171 [arXiv:1309.3172] [INSPIRE].
D. Mylonas, P. Schupp and R.J. Szabo, Non-Geometric Fluxes, Quasi-Hopf Twist Deformations and Nonassociative Quantum Mechanics, J. Math. Phys. 55 (2014) 122301 [arXiv:1312.1621] [INSPIRE].
G.E. Barnes, A. Schenkel and R.J. Szabo, Nonassociative geometry in quasi-Hopf representation categories I: Bimodules and their internal homomorphisms, J. Geom. Phys. 89 (2014) 111 [arXiv:1409.6331] [INSPIRE].
I. Bakas and D. Lüst, T-duality, Quotients and Currents for Non-Geometric Closed Strings, Fortsch. Phys. 63 (2015) 543 [arXiv:1505.04004] [INSPIRE].
V.G. Kupriyanov and D.V. Vassilevich, Nonassociative Weyl star products, JHEP 09 (2015) 103 [arXiv:1506.02329] [INSPIRE].
R. Blumenhagen, M. Fuchs, F. Haßler, D. Lüst and R. Sun, Non-associative Deformations of Geometry in Double Field Theory, JHEP 04 (2014) 141 [arXiv:1312.0719] [INSPIRE].
Z. Kökényesi, A. Sinkovics and R.J. Szabo, Double field theory for the A/B-models and topological S-duality in generalized geometry, arXiv:1805.11485 [INSPIRE].
A. Chatzistavrakidis, L. Jonke and O. Lechtenfeld, Dirac structures on nilmanifolds and coexistence of fluxes, Nucl. Phys. B 883 (2014) 59 [arXiv:1311.4878] [INSPIRE].
R. Blumenhagen, A. Deser, E. Plauschinn and F. Rennecke, Bianchi Identities for Non-Geometric Fluxes - From Quasi-Poisson Structures to Courant Algebroids, Fortsch. Phys. 60 (2012) 1217 [arXiv:1205.1522] [INSPIRE].
C. Sämann and R.J. Szabo, Groupoids, Loop Spaces and Quantization of 2-Plectic Manifolds, Rev. Math. Phys. 25 (2013) 1330005 [arXiv:1211.0395] [INSPIRE].
P. Ševera, Some title containing the words ‘homotopy’ and ‘symplectic’, e.g. this one, Trav. Math. 16 (2005) 121 [math.SG/0105080].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1802.07003
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Chatzistavrakidis, A., Jonke, L., Khoo, F.S. et al. Double field theory and membrane sigma-models. J. High Energ. Phys. 2018, 15 (2018). https://doi.org/10.1007/JHEP07(2018)015
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP07(2018)015
Keywords
- Differential and Algebraic Geometry
- Sigma Models
- String Duality
- Topological Field Theories