Skip to main content

Advertisement

SpringerLink
  • Journal of High Energy Physics
  • Journal Aims and Scope
  • Submit to this journal
T-branes through 3d mirror symmetry
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

The two faces of T-branes

11 October 2019

Iosif Bena, Johan Blåbäck, … Gianluca Zoccarato

D-branes in λ-deformations

04 September 2018

Sibylle Driezen, Alexander Sevrin & Daniel C. Thompson

The conformal brane-scan: an update

10 June 2022

M. J. Duff

Branes and 2d N $$ \mathcal{N} $$ = (2, 2) gauge theories with orthogonal and symplectic groups

07 August 2018

Oren Bergman & Eran Avraham

Charged chiral fermions from M5-branes

10 April 2018

Neil Lambert & Miles Owen

The different faces of branes in double field theory

13 September 2019

Eric Bergshoeff, Axel Kleinschmidt, … Fabio Riccioni

Towards an M5-brane model. Part III. Self-duality from additional trivial fields

07 June 2021

Dominik Rist, Christian Saemann & Miró van der Worp

M5-brane sources, holography, and Argyres-Douglas theories

18 November 2021

Ibrahima Bah, Federico Bonetti, … Emily Nardoni

Deconfining N $$ \mathcal{N} $$ = 2 SCFTs or the art of brane bending

22 March 2022

Iñaki García Etxebarria, Ben Heidenreich, … Ajit Kumar Sorout

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 19 July 2016

T-branes through 3d mirror symmetry

  • Andrés Collinucci1,
  • Simone Giacomelli1,
  • Raffaele Savelli2 &
  • …
  • Roberto Valandro3,4,5 

Journal of High Energy Physics volume 2016, Article number: 93 (2016) Cite this article

  • 322 Accesses

  • 32 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

T-branes are exotic bound states of D-branes, characterized by mutually non-commuting vacuum expectation values for the worldvolume scalars. The M/F-theory geometry lifting D6/D7-brane configurations is blind to the T-brane data. In this paper, we make this data manifest, by probing the geometry with an M2-brane. We find that the effect of a T-brane is to deform the membrane worldvolume superpotential with monopole operators, which partially break the three-dimensional flavor symmetry, and reduce super-symmetry from \( \mathcal{N} \) = 4 to \( \mathcal{N} \) = 2. Our main tool is 3d mirror symmetry. Through this language, a very concrete framework is developed for understanding T-branes in M-theory. This leads us to uncover a new class of \( \mathcal{N} \) = 2 quiver gauge theories, whose Higgs branches mimic those of membranes at ADE singularities, but whose Coulomb branches differ from their \( \mathcal{N} \) = 4 counterparts.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. K.A. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys. Lett. B 387 (1996) 513 [hep-th/9607207] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. J. de Boer, K. Hori, H. Ooguri and Y. Oz, Mirror symmetry in three-dimensional gauge theories, quivers and D-branes, Nucl. Phys. B 493 (1997) 101 [hep-th/9611063] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. M. Porrati and A. Zaffaroni, M theory origin of mirror symmetry in three-dimensional gauge theories, Nucl. Phys. B 490 (1997) 107 [hep-th/9611201] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. J. de Boer, K. Hori, H. Ooguri, Y. Oz and Z. Yin, Mirror symmetry in three-dimensional theories, \( \mathrm{S}\mathrm{L}\left(2,\mathbb{Z}\right) \) and D-brane moduli spaces, Nucl. Phys. B 493 (1997) 148 [hep-th/9612131] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. J. de Boer, K. Hori, Y. Oz and Z. Yin, Branes and mirror symmetry in N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 502 (1997) 107 [hep-th/9702154] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. J. de Boer, K. Hori and Y. Oz, Dynamics of N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 500 (1997) 163 [hep-th/9703100] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. O. Aharony, A. Hanany, K.A. Intriligator, N. Seiberg and M.J. Strassler, Aspects of N = 2 supersymmetric gauge theories in three-dimensions, Nucl. Phys. B 499 (1997) 67 [hep-th/9703110] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. A. Kapustin and M.J. Strassler, On mirror symmetry in three-dimensional Abelian gauge theories, JHEP 04 (1999) 021 [hep-th/9902033] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. V. Borokhov, A. Kapustin and X.-k. Wu, Topological disorder operators in three-dimensional conformal field theory, JHEP 11 (2002) 049 [hep-th/0206054] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. V. Borokhov, A. Kapustin and X.-k. Wu, Monopole operators and mirror symmetry in three-dimensions, JHEP 12 (2002) 044 [hep-th/0207074] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. T. Gomez and E.R. Sharpe, D-branes and scheme theory, hep-th/0008150 [INSPIRE].

  13. R. Donagi, S. Katz and E. Sharpe, Spectra of D-branes with Higgs vevs, Adv. Theor. Math. Phys. 8 (2004) 813 [hep-th/0309270] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  14. J.J. Heckman, Y. Tachikawa, C. Vafa and B. Wecht, N = 1 SCFTs from Brane Monodromy, JHEP 11 (2010) 132 [arXiv:1009.0017] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. S. Cecotti, C. Cordova, J.J. Heckman and C. Vafa, T-Branes and Monodromy, JHEP 07 (2011) 030 [arXiv:1010.5780] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. L.B. Anderson, J.J. Heckman and S. Katz, T-Branes and Geometry, JHEP 05 (2014) 080 [arXiv:1310.1931] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. A. Collinucci and R. Savelli, F-theory on singular spaces, JHEP 09 (2015) 100 [arXiv:1410.4867] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. F. Benini, C. Closset and S. Cremonesi, Chiral flavors and M2-branes at toric CY4 singularities, JHEP 02 (2010) 036 [arXiv:0911.4127] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. P.K. Townsend, Brane surgery, Nucl. Phys. Proc. Suppl. 58 (1997) 163 [hep-th/9609217] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. R. Argurio, Intersection rules and open branes, hep-th/9712170 [INSPIRE].

  21. R. Argurio, F. Englert and L. Houart, Intersection rules for p-branes, Phys. Lett. B 398 (1997) 61 [hep-th/9701042] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. R. Argurio, F. Englert, L. Houart and P. Windey, On the opening of branes, Phys. Lett. B 408 (1997) 151 [hep-th/9704190] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. A. Strominger, Open p-branes, Phys. Lett. B 383 (1996) 44 [hep-th/9512059] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. U. Lindström, M. Roček and R. von Unge, HyperKähler quotients and algebraic curves, JHEP 01 (2000) 022 [hep-th/9908082] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  25. V. Borokhov, Monopole operators in three-dimensional N = 4 SYM and mirror symmetry, JHEP 03 (2004) 008 [hep-th/0310254] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. M. Bullimore, T. Dimofte and D. Gaiotto, The Coulomb Branch of 3d \( \mathcal{N} \) = 4 Theories, arXiv:1503.04817 [INSPIRE].

  27. S. Cremonesi, A. Hanany, N. Mekareeya and A. Zaffaroni, Coulomb branch Hilbert series and Hall-Littlewood polynomials, JHEP 09 (2014) 178 [arXiv:1403.0585] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. S. Cremonesi, A. Hanany and A. Zaffaroni, Monopole operators and Hilbert series of Coulomb branches of 3d \( \mathcal{N} \) = 4 gauge theories, JHEP 01 (2014) 005 [arXiv:1309.2657] [INSPIRE].

    Article  ADS  Google Scholar 

  29. S. Cremonesi, The Hilbert series of 3d \( \mathcal{N} \) = 2 Yang-Mills theories with vectorlike matter, J. Phys. A 48 (2015) 455401 [arXiv:1505.02409] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  30. D. Bashkirov, Examples of global symmetry enhancement by monopole operators, arXiv:1009.3477 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Physique Théorique et Mathématique and International Solvay Institutes, Université Libre de Bruxelles, C.P. 231, 1050, Bruxelles, Belgium

    Andrés Collinucci & Simone Giacomelli

  2. Institut de Physique Théorique, CEA Saclay, Orme de Merisiers, F-91191, Gif-sur-Yvette, France

    Raffaele Savelli

  3. Dipartimento di Fisica, Università di Trieste, Strada Costiera 11, 34151, Trieste, Italy

    Roberto Valandro

  4. INFN, Sezione di Trieste, Via Valerio 2, 34127, Trieste, Italy

    Roberto Valandro

  5. Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste, Italy

    Roberto Valandro

Authors
  1. Andrés Collinucci
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Simone Giacomelli
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Raffaele Savelli
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Roberto Valandro
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Raffaele Savelli.

Additional information

ArXiv ePrint: 1603.00062

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Collinucci, A., Giacomelli, S., Savelli, R. et al. T-branes through 3d mirror symmetry. J. High Energ. Phys. 2016, 93 (2016). https://doi.org/10.1007/JHEP07(2016)093

Download citation

  • Received: 08 March 2016

  • Accepted: 12 July 2016

  • Published: 19 July 2016

  • DOI: https://doi.org/10.1007/JHEP07(2016)093

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Duality in Gauge Field Theories
  • Supersymmetric gauge theory
  • F-Theory
  • M-Theory
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.