Skip to main content
SpringerLink
Account
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Marginal deformations and the Higgs phenomenon in higher spin AdS3 holography

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 23 July 2015
  • volume 2015, Article number: 125 (2015)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Marginal deformations and the Higgs phenomenon in higher spin AdS3 holography
Download PDF
  • Yasuaki Hikida1 &
  • Peter B. Rønne2 
  • 333 Accesses

  • 21 Citations

  • 1 Altmetric

  • Explore all metrics

Cite this article

A preprint version of the article is available at arXiv.

Abstract

Recently, a 2d coset model with \( \mathcal{N}=3 \) superconformal symmetry was pro-posed to be holographic dual to a higher spin supergravity on AdS3 and the relation to superstring theory was discussed. However, away from the tensionless limit, there is no higher spin symmetry and the higher spin states are massive. In this paper, we examine the deformations of the coset model which preserve \( \mathcal{N}=3 \) superconformal symmetry, but break generic higher spin symmetry. We focus on double-trace type deformations which are dual to changes of boundary conditions for the bulk matter fields. In the bulk theory, the symmetry breaking will generate mass for the higher spin fields. As a concrete example, we compute the Higgs mass of a spin 2 field both from the bulk and the boundary theory.

Article PDF

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. D.J. Gross, High-energy symmetries of string theory, Phys. Rev. Lett. 60 (1988) 1229 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. S. Weinberg, Photons and gravitons in S matrix theory: Derivation of charge conservation and equality of gravitational and inertial mass, Phys. Rev. 135 (1964) B1049.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. M.A. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dS(d), Phys. Lett. B 567 (2003) 139 [hep-th/0304049] [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. C.-M. Chang, S. Minwalla, T. Sharma and X. Yin, ABJ triality: from higher spin fields to strings, J. Phys. A 46 (2013) 214009 [arXiv:1207.4485] [INSPIRE].

    ADS  MATH  MathSciNet  Google Scholar 

  5. E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].

  6. I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. M.R. Gaberdiel and R. Gopakumar, An AdS3 dual for minimal model CFTs, Phys. Rev. D 83 (2011) 066007 [arXiv:1011.2986] [INSPIRE].

    ADS  Google Scholar 

  8. M.R. Gaberdiel and R. Gopakumar, Large-\( \mathcal{N}=4 \) holography, JHEP 09 (2013) 036 [arXiv:1305.4181] [INSPIRE].

    Article  ADS  Google Scholar 

  9. M.R. Gaberdiel and R. Gopakumar, Higher spins & strings, JHEP 11 (2014) 044 [arXiv:1406.6103] [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. M.R. Gaberdiel and R. Gopakumar, Stringy symmetries and the higher spin square, arXiv:1501.07236 [INSPIRE].

  11. T. Creutzig, Y. Hikida and P.B. Rønne, Extended higher spin holography and Grassmannian models, JHEP 11 (2013) 038 [arXiv:1306.0466] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  12. T. Creutzig, Y. Hikida and P.B. Rønne, Higher spin AdS3 holography with extended supersymmetry, JHEP 10 (2014) 163 [arXiv:1406.1521] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  13. C. Candu and C. Vollenweider, On the coset duals of extended higher spin theories, JHEP 04 (2014) 145 [arXiv:1312.5240] [INSPIRE].

    Article  ADS  Google Scholar 

  14. M.R. Gaberdiel and C. Peng, The symmetry of large \( \mathcal{N}=4 \) holography, JHEP 05 (2014) 152 [arXiv:1403.2396] [INSPIRE].

    Article  ADS  Google Scholar 

  15. M. Beccaria, C. Candu and M.R. Gaberdiel, The large- \( \mathcal{N}=4 \) superconformal W∞ algebra, JHEP 06 (2014) 117 [arXiv:1404.1694] [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. C. Candu, C. Peng and C. Vollenweider, Extended supersymmetry in AdS3 higher spin theories, JHEP 12 (2014) 113 [arXiv:1408.5144] [INSPIRE].

    Article  ADS  Google Scholar 

  17. S.F. Prokushkin and M.A. Vasiliev, Higher spin gauge interactions for massive matter fields in 3-D AdS space-time, Nucl. Phys. B 545 (1999) 385 [hep-th/9806236] [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  18. M. Henneaux, G. Lucena Gómez, J. Park and S.-J. Rey, Super-W∞ asymptotic symmetry of higher-spin AdS3 supergravity, JHEP 06 (2012) 037 [arXiv:1203.5152] [INSPIRE].

    Article  ADS  Google Scholar 

  19. Y. Kazama and H. Suzuki, Characterization of \( \mathcal{N}=2 \) superconformal models generated by coset space method, Phys. Lett. B 216 (1989) 112 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. Y. Kazama and H. Suzuki, New \( \mathcal{N}=2 \) superconformal field theories and superstring compactification, Nucl. Phys. B 321 (1989) 232 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. R. Argurio, A. Giveon and A. Shomer, Superstring theory on AdS3 × G/H and boundary N =3 superconformal symmetry, JHEP 04 (2000) 010 [hep-th/0002104] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  22. S. Yamaguchi, Y. Ishimoto and K. Sugiyama, AdS3/CF T2 correspondence and space-time N =3 superconformal algebra, JHEP 02 (1999) 026[hep-th/9902079] [INSPIRE].

    Article  ADS  Google Scholar 

  23. R. Argurio, A. Giveon and A. Shomer, The spectrum of \( \mathcal{N}=3 \) string theory on AdS3 × G/H, JHEP 12 (2000) 025 [hep-th/0011046] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  24. J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a higher spin symmetry, J. Phys. A 46 (2013) 214011 [arXiv:1112.1016] [INSPIRE].

    ADS  MATH  MathSciNet  Google Scholar 

  25. E. Witten, Multitrace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].

  26. M. Porrati, Higgs phenomenon for 4-D gravity in anti-de Sitter space, JHEP 04 (2002) 058 [hep-th/0112166] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. M.J. Duff, J.T. Liu and H. Sati, Complementarity of the Maldacena and Karch-Randall pictures, Phys. Rev. D 69 (2004) 085012 [hep-th/0207003] [INSPIRE].

    ADS  MATH  MathSciNet  Google Scholar 

  28. L. Girardello, M. Porrati and A. Zaffaroni, 3-D interacting CFTs and generalized Higgs phenomenon in higher spin theories on AdS, Phys. Lett. B 561 (2003) 289 [hep-th/0212181] [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. O. Aharony, A.B. Clark and A. Karch, The CFT/AdS correspondence, massive gravitons and a connectivity index conjecture, Phys. Rev. D 74 (2006) 086006 [hep-th/0608089] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  30. E. Kiritsis, Product CFTs, gravitational cloning, massive gravitons and the space of gravitational duals, JHEP 11 (2006) 049 [hep-th/0608088] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  31. W. Mueck, An improved correspondence formula for AdS/CFT with multitrace operators, Phys. Lett. B 531 (2002) 301 [hep-th/0201100] [INSPIRE].

    Article  ADS  Google Scholar 

  32. A. Allais, Double-trace deformations, holography and the c-conjecture, JHEP 11 (2010) 040 [arXiv:1007.2047] [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. T. Creutzig, Y. Hikida and P.B. Rønne, Higher spin AdS3 supergravity and its dual CFT, JHEP 02 (2012) 109 [arXiv:1111.2139] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  34. M. Beccaria, C. Candu, M.R. Gaberdiel and M. Groher, \( \mathcal{N}=1 \) extension of minimal model holography, JHEP 07 (2013) 174 [arXiv:1305.1048] [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. T. Creutzig, Y. Hikida and P.B. Rønne, \( \mathcal{N}=1 \) supersymmetric higher spin holography on AdS3, JHEP 02 (2013) 019 [arXiv:1209.5404] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  36. M. Ammon, P. Kraus and E. Perlmutter, Scalar fields and three-point functions in D = 3 higher spin gravity, JHEP 07 (2012) 113 [arXiv:1111.3926] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  37. T. Creutzig, Y. Hikida and P.B. Rønne, Three point functions in higher spin AdS3 supergravity, JHEP 01 (2013) 171 [arXiv:1211.2237] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  38. H. Moradi and K. Zoubos, Three-point functions in \( \mathcal{N}=2 \) higher-spin holography, JHEP 04 (2013) 018 [arXiv:1211.2239] [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  39. C. Candu and M.R. Gaberdiel, Supersymmetric holography on AdS3, JHEP 09 (2013) 071 [arXiv:1203.1939] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  40. D. Gepner, Field identification in coset conformal field theories, Phys. Lett. B 222 (1989) 207 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  41. K. Miki, The representation theory of the SO(3) invariant superconformal algebra, Int. J. Mod. Phys. A 5 (1990) 1293 [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. D.J. Gross and W. Taylor, Two-dimensional QCD is a string theory, Nucl. Phys. B 400 (1993) 181 [hep-th/9301068] [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  43. M.R. Gaberdiel, R. Gopakumar, T. Hartman and S. Raju, Partition functions of holographic minimal models, JHEP 08 (2011) 077 [arXiv:1106.1897] [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  44. D. Berenstein, A toy model for the AdS/CFT correspondence, JHEP 07 (2004) 018 [hep-th/0403110] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  45. A. Castro, R. Gopakumar, M. Gutperle and J. Raeymaekers, Conical defects in higher spin theories, JHEP 02 (2012) 096 [arXiv:1111.3381] [INSPIRE].

    ADS  MATH  MathSciNet  Google Scholar 

  46. H.S. Tan, Exploring three-dimensional higher-spin supergravity based on sl(N |N − 1) Chern-Simons theories, JHEP 11 (2012) 063 [arXiv:1208.2277] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  47. S. Datta and J.R. David, Supersymmetry of classical solutions in Chern-Simons higher spin supergravity, JHEP 01 (2013) 146 [arXiv:1208.3921] [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  48. E. Perlmutter, T. Prochazka and J. Raeymaekers, The semiclassical limit of W N CFTs and Vasiliev theory, JHEP 05 (2013) 007 [arXiv:1210.8452] [INSPIRE].

    Article  ADS  Google Scholar 

  49. Y. Hikida, Conical defects and \( \mathcal{N}=2 \) higher spin holography, JHEP 08 (2013) 127 [arXiv:1212.4124] [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  50. A. Campoleoni, T. Prochazka and J. Raeymaekers, A note on conical solutions in 3D Vasiliev theory, JHEP 05 (2013) 052 [arXiv:1303.0880] [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  51. S. Fredenhagen, M.R. Gaberdiel and C.A. Keller, Symmetries of perturbed conformal field theories, J. Phys. A 40 (2007) 13685 [arXiv:0707.2511] [INSPIRE].

    ADS  MATH  MathSciNet  Google Scholar 

  52. L.J. Dixon, Some world sheet properties of superstring compactifications, on orbifolds and otherwise, PUPT-1074 (1987).

  53. S. Gukov, E. Martinec, G.W. Moore and A. Strominger, The search for a holographic dual to AdS3 × S3 × S3 × S1, Adv. Theor. Math. Phys. 9 (2005) 435 [hep-th/0403090] [INSPIRE].

    Article  MATH  MathSciNet  Google Scholar 

  54. W. Lerche, C. Vafa and N.P. Warner, Chiral rings in \( \mathcal{N}=2 \) superconformal theories, Nucl. Phys. B 324 (1989) 427 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  55. C.-M. Chang and X. Yin, Correlators in W N minimal model revisited, JHEP 10 (2012) 050 [arXiv:1112.5459] [INSPIRE].

    Article  ADS  Google Scholar 

  56. M.R. Gaberdiel, K. Jin and W. Li, Perturbations of W∞ CFTs, JHEP 10 (2013) 162 [arXiv:1307.4087] [INSPIRE].

    Article  ADS  Google Scholar 

  57. J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a slightly broken higher spin symmetry, Class. Quant. Grav. 30 (2013) 104003 [arXiv:1204.3882] [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  58. M.A. Vasiliev, Higher spin superalgebras in any dimension and their representations, JHEP 12 (2004) 046 [hep-th/0404124] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  59. M. Henneaux and S.-J. Rey, Nonlinear W∞ as asymptotic symmetry of three-dimensional higher spin anti-de Sitter gravity, JHEP 12 (2010) 007 [arXiv:1008.4579] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  60. A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [arXiv:1008.4744] [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  61. A. Campoleoni, S. Fredenhagen and S. Pfenninger, Asymptotic W-symmetries in three-dimensional higher-spin gauge theories, JHEP 09 (2011) 113 [arXiv:1107.0290] [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  62. T. Creutzig and Y. Hikida, Higgs phenomenon for higher spin fields on AdS3, arXiv:1506.04465 [INSPIRE].

  63. O. Aharony, M. Berkooz and B. Katz, Non-local effects of multi-trace deformations in the AdS/CFT correspondence, JHEP 10 (2005) 097 [hep-th/0504177] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  64. B. Allen and M. Turyn, An evaluation of the graviton propagator in de Sitter space, Nucl. Phys. B 292 (1987) 813 [INSPIRE].

    Article  ADS  Google Scholar 

  65. E. D’Hoker, D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Graviton and gauge boson propagators in AdSd+1, Nucl. Phys. B 562 (1999) 330 [hep-th/9902042] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  66. B. Allen and T. Jacobson, Vector two point functions in maximally symmetric spaces, Commun. Math. Phys. 103 (1986) 669 [INSPIRE].

    Article  ADS  MATH  MathSciNet  Google Scholar 

  67. C. Fronsdal, Singletons and massless, integral spin fields on de Sitter space, Phys. Rev. D 20 (1979) 848 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Department of Physics, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo, 171-8501, Japan

    Yasuaki Hikida

  2. University of Luxembourg, Mathematics Research Unit, FSTC, Campus Kirchberg, 6, rue Coudenhove-Kalergi, L-1359, Luxembourg-Kirchberg, Luxembourg

    Peter B. Rønne

Authors
  1. Yasuaki Hikida
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Peter B. Rønne
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Peter B. Rønne.

Additional information

ArXiv ePrint: 1503.03870

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hikida, Y., Rønne, P.B. Marginal deformations and the Higgs phenomenon in higher spin AdS3 holography. J. High Energ. Phys. 2015, 125 (2015). https://doi.org/10.1007/JHEP07(2015)125

Download citation

  • Received: 06 April 2015

  • Accepted: 03 July 2015

  • Published: 23 July 2015

  • DOI: https://doi.org/10.1007/JHEP07(2015)125

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Higher Spin Symmetry
  • AdS-CFT Correspondence
  • Conformal and W Symmetry
  • Extended Supersymmetry
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature