
J
H
E
P
0
7
(
2
0
1
5
)
1
2
5

Published for SISSA by Springer

Received: April 6, 2015

Accepted: July 3, 2015

Published: July 23, 2015

Marginal deformations and the Higgs phenomenon in

higher spin AdS3 holography

Yasuaki Hikidaa and Peter B. Rønneb

aDepartment of Physics, Rikkyo University,

3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
bUniversity of Luxembourg, Mathematics Research Unit, FSTC,

Campus Kirchberg, 6, rue Coudenhove-Kalergi, L-1359 Luxembourg-Kirchberg, Luxembourg

E-mail: hikida@rikkyo.ac.jp, peter.roenne@gmail.com

Abstract: Recently, a 2d coset model with N = 3 superconformal symmetry was pro-

posed to be holographic dual to a higher spin supergravity on AdS3 and the relation to

superstring theory was discussed. However, away from the tensionless limit, there is no

higher spin symmetry and the higher spin states are massive. In this paper, we examine

the deformations of the coset model which preserve N = 3 superconformal symmetry, but

break generic higher spin symmetry. We focus on double-trace type deformations which are

dual to changes of boundary conditions for the bulk matter fields. In the bulk theory, the

symmetry breaking will generate mass for the higher spin fields. As a concrete example,

we compute the Higgs mass of a spin 2 field both from the bulk and the boundary theory.

Keywords: Higher Spin Symmetry, AdS-CFT Correspondence, Conformal and W Sym-

metry, Extended Supersymmetry

ArXiv ePrint: 1503.03870

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP07(2015)125

mailto:hikida@rikkyo.ac.jp
mailto:peter.roenne@gmail.com
http://arxiv.org/abs/1503.03870
http://dx.doi.org/10.1007/JHEP07(2015)125


J
H
E
P
0
7
(
2
0
1
5
)
1
2
5

Contents

1 Introduction 1

2 Higher spin gauge theory 4

3 Dual coset model and chiral primaries 5

3.1 Primary states 6

3.2 Chiral primaries 7

3.3 Bulk theory interpretation 8

4 Marginal deformations 10

4.1 Marginal deformations preserving N = 3 algebra 10

4.2 Double-trace deformations 12

5 Symmetry breaking in the coset model 13

5.1 Symmetry breaking 14

5.2 Higgs mass from the dual CFT 15

6 Higgs phenomenon in higher spin theory 17

7 Conclusion 18

A N = 3 superconformal algebra 19

B Double-trace deformations and holography 19

B.1 Bosonic case 20

B.2 Fermionic case 22

C Higgs mass from bulk matter loops 23

C.1 Setup and prescription 23

C.2 Coordinate system and bi-tensors 24

C.3 The Higgs mass of spin 2 gauge field 26

1 Introduction

Superstring theory contains a plethora of massive excitations and its tensionless limit is

believed to be described by higher spin gauge theory. In fact, it was argued that superstring

theory could be described by the broken phase of higher spin gauge theory [1]. However,

on a flat space-time, the higher spin symmetry is too restrictive, and no-go theorems,

e.g., by Weinberg [2], prohibit a non-trivially interacting theory under some assumptions.
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Fortunately, these no-go theorems do not apply for a theory with a curved background,

and Vasiliev theory constitutes a famous example of a non-trivial higher spin gauge theory

defined on AdS space [3]. Moreover, recent developments of the AdS/CFT correspondence

have revealed non-trivial relations between higher spin gauge theory and superstring the-

ory. The first concrete proposal for this relation (called ABJ triality) was made in [4] by

extending the holographic duality with higher spin gauge theory in [5, 6]. Therefore, it is

natural to expect that superstring theory on AdS space can be realized as a broken phase

of Vasiliev theory.

In this paper, we would like to examine this relation by studying details of a concrete

example. For this purpose it would be nice to have a more tractable setup than the original

ABJ triality. In this case, we want to make use of lower dimensional models. Generalizing

the higher spin AdS/CFT duality in [7], lower dimensional versions of the ABJ triality

were proposed in [8–10] using small or large N = 4 superconformal symmetry, and also

independently in [11, 12] using N = 3 superconformal symmetry. See also [13–16] for re-

lated works. The small or large N = 4 superconformal symmetry is quite constraining, and

one can determine the properties of their triality to a large extent using only the super-

symmetry. Nevertheless, in this paper we consider the case having N = 3 superconformal

symmetry, the reason being that the analogy with the ABJ triality is more transparent

and we expect that the physical intuition can be applied more easily.

In [12] we proposed a holographic duality between a 3d extended Vasiliev theory and a

2d critical level coset model. Utilizing the duality, we discussed the relation to superstring

theory. The higher spin theory is a Z2 truncation of the N = 2 Prokushkin-Vasiliev

theory with U(2M) Chan-Paton (CP) factor. If we set M = 2n−1, then the theory admits

N = 2n + 1 supersymmetry [17, 18]. The dual CFT is proposed to be the following

coset model

su(N +M)N+M ⊕ so(2NM)1
su(N)N+2M ⊕ u(1)κ

(1.1)

with κ = 2NM(N + M)2 and several fermions decoupled. In order to see the relation

to the classical Vasiliev theory, we need to take the large N limit while keeping M finite.

Applying the logic of [4] in this lower-dimensional case, superstring theory should be related

to the higher spin theory with some conditions on the CP factor. We have chosen the

U(M) invariant condition on the U(2M) CP factor, and the dual coset should now be the

Grassmannian Kazama-Suzuki model [19, 20]

su(N +M)N+M ⊕ so(2NM)1
su(N)N+2M ⊕ su(M)M+2N ⊕ u(1)κ

(1.2)

with the central charge c = 3MN/2. The most important property of this model is that it

admits N = 3 superconformal symmetry as we found in [12].

We can now examine the superstring theory dual to the Kazama-Suzuki coset (1.2)

by utilizing the N = 3 superconformal symmetry. The target space of dual superstring

theory should be of the form AdS3×M7 where M7 is some 7-dimensional manifold. In

the case with pure NSNS background, a general argument in [21] states that the only
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possible backgrounds are those with M7 =SU(3)/U(1), SO(5)/SO(3) along with the case

M7 = (S3×S3×S1)/Z2 studied in [22]. The BPS spectrum of the superstring theory with

M7 =SU(3)/U(1) and SO(5)/SO(3) was examined in [23], and the spectrum is consistent

with the chiral primaries in the coset model (1.2) as argued in [12], and this will be elab-

orated on below.1 Therefore it is expected that the coset model lives on the same moduli

space as the superstring theory with M7 =SU(3)/U(1) or SO(5)/SO(3), even though we

know nothing about this moduli space except for a few points.

In this paper, we study the marginal deformations of the coset model (1.2) and interpret

them in terms of the dual higher spin theory. The two theories stay at the same moduli

point which is supposed to correspond to the tensionless limit of superstring theory. Away

from this tensionless limit, there is no higher spin symmetry anymore and the higher spin

states should become massive. We would like to break the higher spin symmetry quite

weakly as in [24], since otherwise we loose control of the models that was given by the

large symmetry algebra. This leads us to consider deformations of the double-trace type

which are known to be dual to changes of the boundary conditions for the bulk fields [25].

We examine the marginal deformations of the coset model (1.2) while preserving the N = 3

superconformal symmetry. We show that the deformations break a spin 2 symmetry and

this, in turn, implies that they break generic higher spin symmetry as well. In the dual

higher spin theory the changes of boundary conditions break higher spin gauge symmetry

and the gauge fields become massive due to the symmetry breaking. As a concrete example,

we compute the Higgs mass of a spin 2 field both from the bulk and the boundary theories.

It is known that the graviton on AdS space can be massive via loop effects of bulk

fields with non-standard boundary conditions [26, 27]. In order for a massless gauge field

to become massive, it should be swallowing extra degrees of freedom, and in this case they

come from bound states of bulk fields. Moreover, it was pointed out in [28] that higher spin

gauge fields of 4d Vasiliev theory can be massive in a similar manner with non-standard

boundary conditions. In this paper, we will show how the marginal deformations of the

coset model (1.2) are mapped to the changes of boundary conditions for the bulk fields of

the 3d Vasiliev theory as in [25]. From the coset model, we can compute the anomalous

dimension of a spin 2 current which is not conserved due to the effects of the marginal

deformation as in [24, 29]. Using the AdS/CFT dictionary, we can read off the Higgs

mass of the dual spin 2 field. From the bulk theory, we compute the Higgs mass directly

by computing the contributions from scalar and fermion loops. For the scalar loops the

results in [29, 30] can be used since the set up is found to be the same. For the fermion

loops we have to extend their analysis.

This paper is organized as follows; in the next section, we review the higher spin gauge

theories which are dual to (1.1) and (1.2). Primary states of the Kazama-Suzuki coset (1.2)

are then studied in section 3. We find new chiral primaries, not considered in [12] and

interpret them in terms of the bulk theory. In section 4 we study marginal deformations

of the coset (1.2) which preserve N = 3 superconformal symmetry. We show that a spin 2

current is not conserved due to these marginal deformations in section 5, and further we

1We can check that the BPS spectrum for the case with M7 = (S3×S3×S1)/Z2 is different.
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compute the Higgs mass of the dual spin 2 field by using the AdS/CFT dictionary. Section 6

then demonstrates how to reproduce this Higgs mass from the viewpoint of the dual higher

spin theory making use of the results in appendices B and C. In section 7 we conclude this

paper. Appendix A gives a summary of the operator products for generators of the N = 3

superconformal algebra. In appendix B we review the holographic interpretation of the

double-trace deformations of a CFT following mainly [4, 31, 32]. Finally, in appendix C

we review the results for scalar loops in [29, 30] and extend them to include the case with

fermion loops.

2 Higher spin gauge theory

In [11] a higher spin AdS/CFT duality was proposed involving the N = 2 supersymmetric

version of Prokushkin-Vasiliev theory with M ′×M ′ matrix valued fields introduced in [17].

The duality can be seen as an extension of the M ′ = 1 case in [33]. The higher spin theory

includes a parameter λ, which determines the gauge algebra denoted by shsM ′ [λ] as well

as the mass of the matter fields. For λ = 1/2, the theory can be truncated consistently by

utilizing a Z2 symmetry, and the resultant theory has N = 2n+1 extended supersymmetry

for M ′ = 2n [12, 17, 18]. The higher spin theory is conjectured in [12] to be dual to the

coset model presented in (1.1) for M ′ = 2M . For M ′ = 1 the duality reduces to the one

in [34] with N = 1 supersymmetry when one uses the coset dualities proposed in [12].2

The Kazama-Suzuki coset in (1.2) is then dual to the higher spin theory, but with a U(M)

invariant condition [12], see [13]. In the rest of this section, we review the higher spin

theory dual to (1.1) or (1.2).

The supergravity theory dual to (1.1) includes higher spin gauge fields with spin s =

1, 2, · · · coupled to matter fields. The gauge algebra is obtained by a Z2 truncation of

shsM ′ [λ] with λ = 1/2. Let us introduce generators yα (α = 1, 2) and k̂, which satisfy

[yα, yβ ] = 2iǫαβ(1− (1− 2λ)k̂) , k̂2 = 1 , {k̂, yα} = 0 . (2.1)

We denote the algebra generated by these elements by sB[λ]. Then the algebra shsM ′ [λ]

is obtained by adding the Chan-Paton factors and removing the central element as

sBM ′ [λ] ≡ sB[λ]⊗MM ′ = C⊕ shsM ′ [λ] , (2.2)

where MM ′ is the M ′ ×M ′ matrix algebra and C is the central element.

At λ = 1/2, the commutator among yα in (2.1) does not involve k̂ any more. Thus, the

algebra can be truncated by requiring the invariance under the Z2 transformation k̂ → −k̂,

and the truncated algebra we denote as shsTM ′ [1/2]. If we set M ′ = 2n, then the M ′ ×M ′

matrix algebra MM ′ can be generated by the Clifford elements φI (I=1, 2, · · · , 2n+1) with

{φI , φJ} = 2δIJ . (2.3)

2This N = 1 duality is different from the one in [35] which has a different truncation of the N = 2

supergravity theory.
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In that case the higher spin algebra shsTM ′ [1/2] includes the superalgebra osp(2n + 1|2)
generated by

Tαβ = {yα, yβ} , QI
α = yα ⊗ φI , M IJ = [φI , φJ ] . (2.4)

This implies that the theory has N = 2n+1 supersymmetry. For the theory dual to (1.1),

we set M ′ = 2M . Furthermore for the theory dual to the Kazama-Suzuki model (1.2) we

assign the U(M) invariant condition. Even under this condition, the shsT2 [1/2] subalgebra

survives and thus the theory still has N = 3 supersymmetry.

Along with higher spin gauge fields, the theory also includes two complex massless

scalars conformally coupled to the graviton and two massless Dirac fermions. It will be

convenient to express the 2M × 2M matrix valued fields by 4 · (M × M) matrix fields

as [φAB̄]
i
j , [φ̃AB̄]

i
j , [ψAB̄]

i
j and [ψ̃AB̄]

i
j with A, B̄ = 1, 2 and i, j = 1, . . . ,M . We may

represents them by [ΞAB̄]
i
j . We are interested in the four single particle fields that are

invariant under the U(M) action and which may be expressed as

ΞAB̄ = trM [ΞAB̄] = [ΞAB̄]
i
i . (2.5)

For multi-particle states, the combinations invariant under the U(M) action are the trace

forms trM [ΞA1B̄1
] · · · [ΞAlB̄l

]. As discussed in appendix B, there are two choices of boundary

conditions for the matter fields and we assign them such that the dual conformal weights

are given by

(h, h̄) = (1/4, 1/4) , (3/4, 3/4) , (3/4, 1/4) , (1/4, 3/4) (2.6)

for [φAB̄]
i
j , [φ̃AB̄]

i
j , [ψAB̄]

i
j and [ψ̃AB̄]

i
j , respectively.

The equations of motion for these fields can be found in [17], and at the linearized

level around the AdS background they are given by (see also [36–38])

dA+A ∧A = 0 , dĀ+ Ā ∧ Ā = 0 , (2.7)

dC +AC − CĀ = 0 , dC̃ + ĀC̃ − C̃A = 0 .

Here the 1-forms A, Ā correspond to higher spin gauge fields and take values in shsT2M [1/2].

Moreover the 0-forms C, C̃ take values in B2M [1/2] with the invariance under k̂ → −k̂, and

they contain the matter fields. For the theory dual to (1.2) we further need to assign the

U(M) invariant condition furthermore.

3 Dual coset model and chiral primaries

The N = 3 higher spin gravity with the U(M) invariant condition on the U(2M) CP

factor is proposed in [12] to be dual to the Kazama-Suzuki model at the critical level (1.2).

The duality holds once we assume a non-diagonal modular invariant where the factor

su(N +M)N+M is expressed by free fermions in the adjoint representation of su(N +M).

Generic Kazama-Suzuki models have N = 2 supersymmetry, but it was shown that the

critical level model (1.2) has enhanced N = 3 supersymmetry. We will deform the coset
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model while preserving the N = 3 superconformal symmetry, so chiral primary states

in the undeformed model can be compared with BPS states in superstring theory. The

comparison of the BPS spectrum has been already done in [12], but we would like to

elaborate on the analysis in this section.

3.1 Primary states

The generic states of the coset (1.2) are labeled by (ΛN+M , ω; ΛN ,ΛM ,m) with ΛL denoting

a highest weight of su(L). Further, ω labels the representation of so(2NM)1, and we will

only consider the NS sector given by the sum of the identity (ω = 0) and the vector

(ω = 2) representations. Finally, we have m ∈ Zκ giving the u(1) charge. The states are

then obtained by the decomposition

ΛN+M ⊗NS =
⊕

ΛN ,ΛM ,m

(ΛN+M ; ΛN ,ΛM ,m)⊗ ΛN ⊗ ΛM ⊗m. (3.1)

The conformal weight is given by

h = n+ hN+M,N+M
ΛN+M

+
ω

4
− hN,N+2M

ΛN
− hM,2N+M

ΛM
− hm , (3.2)

where

hL,KΛL
=

CL(ΛL)

K + L
, hm =

m2

2κ
. (3.3)

We have here denoted the quadratic Casimir of the representation ΛL by CL(ΛL). The

integer n can be computed by considering how the denominator is embedded in the numer-

ator. For large L, it is convenient to express the highest weight ΛL by a set of two Young

tableaux (Λl
L,Λ

r
L), and for large N , m is then fixed as (see [11, 13, 39])

m = N |ΛN+M |− − (N +M)|ΛN |− (3.4)

with the notation |ΛL|− = |Λl
L| − |Λr

L|. Here |α| represents the number of boxes in the

Young diagram α. Since m is uniquely determined, we will suppress it in the following. We

should also take care of field identification among the states [40], but they are irrelevant

for large N .

In order to construct the model with extended supersymmetry, we utilize the fact that

the factor su(N +M)N+M can be described by free fermions ΨA in the adjoint represen-

tation of su(N +M). We decompose su(N +M) as follows

su(N +M) = su(N)⊕ su(M)⊕ u(1)⊕ (N, M̄)⊕ (N̄ ,M) (3.5)

and we use the same notation as in [12]. Namely, α=1, 2, . . . , N2−1 and ρ=1, 2, . . . ,M2−1

are used for the adjoint representations of su(N) and su(M). Moreover, a, (ā) = 1, 2, . . . N

and i, (̄ı) = 1, 2, . . .M are for the (anti-)fundamental representations of su(N) and su(M),

which are denoted as N,M, (N̄ , M̄). Thus we have the following free fermions

Ψα , Ψρ , Ψu(1) , Ψ(aı̄) , Ψ(āi) , ψ(aı̄) , ψ(āi) . (3.6)

– 6 –
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The last two fermions come from so(2NM)1 in the numerator of (1.2). The Hilbert space

is then generated by these free fermions divided by the denominator of the coset (1.2). The

spectrum may be expressed as

H =
⊕

ΛN ,ΛM

H[ΛN ,ΛM ] ⊗ H̄[Λ∗
N ,Λ∗

M ] , H[ΛN ,ΛM ] =
⊕

ΛN+M∈Ω

(ΛN+M ; ΛN ,ΛM ) , (3.7)

where we sum over ΛN+M ∈ Ω satisfying Λl
N+M = (Λr

N+M )t. Here αt represents the

transpose of α. See [12, 34] for more details.

3.2 Chiral primaries

In this subsection, we study the chiral primaries of the N = 3 Kazama-Suzuki coset (1.2).

Among the other generators of the N = 3 superconformal algebra, the so(3) spin 1 currents

are expressed by [12]

J3 =
1

2
δab̄δı̄j

(

Ψ(aı̄)Ψ(b̄j) − ψ(aı̄)ψ(b̄j)
)

, (3.8)

J+ = δab̄δı̄jΨ
(aı̄)ψ(b̄j) , J− = δab̄δı̄jψ

(aı̄)Ψ(b̄j) .

The chiral primaries are given by states with h = q/2, where q is the eigenvalue of the zero

mode J3
0 . The other states in the same so(3) multiplet may be obtained by the action of

J−
0 . See [41] for the representation theory of the so(3) superconformal algebra.

From the explicit expression of the so(3) spin 1 current J3 in (3.8), we can see that

Ψα,Ψρ,Ψu(1) have the charge q = 0, Ψ(aı̄), ψ(āi) have the charge q = 1/2 and Ψ(āi), ψ(aı̄)

have the charge q = −1/2. Therefore, it is natural to expect that chiral primary states can

be constructed by the action of Ψ(aı̄) and ψ(āi). The fermions Ψ(aı̄) are transforming in the

bifundamental representation for su(N)⊕ su(M). Utilizing the decomposition (3.1) we can

construct the state as (adj;N, M̄), where adj represents the adjoint representation. We can

check that the state is a chiral primary with (h, q) = (1/4, 1/2). In the left-right Young

tableaux notation, this state is denoted ((f, f); (f, 0), (0, f)) where f is the (tableaux for

the) fundamental representation and 0 the trivial representation. The fusions of the chiral

primary then lead to other chiral primaries which can be labeled as (Λ; (Λl, 0), (0,Λr))

with Λ = (Λl,Λr) satisfying Λl = (Λr)t. Here we have assumed that M is also relatively

large, where the comparison to superstring theory is reliable, see [4, 12]. Similarly ψ(āi)

is transforming in the bifundamental representation of su(N) ⊕ su(M) and is related to

(0; N̄ ,M) or ((0, 0); (0, f), (f, 0)) in the left-right tableaux notation and has ω = 2. The

state is also a chiral primary with (h, q) = (1/4, 1/2). Taking fusions of the chiral primary,

we get other chiral primaries of the form (0; (0,Ξr), (Ξl, 0)) with Ξr = (Ξl)t. Considering

both types of chiral primaries we can generate chiral primaries which are of the form

(Λ; (Λl,Ξr), (Ξl,Λr)).

We can confirm that the states (Λ; (Λl,Ξr), (Ξl,Λr)) are chiral primaries by computing

the conformal weight h and the so(3) charge q. From the construction we can see that

q = 1
2(|Λl|+ |Ξr|). The conformal weight can be computed as

h =
|Λl|+ |Ξr|

2
− CN ((Λl,Ξr)) + CM ((Ξl,Λr))

2(N +M)
− (N +M)2(|Λl| − |Ξr|)2

4NM(N +M)2
. (3.9)
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For the further computation, it is convenient use that for Π = (Πl,Πr) we have [42]

CL(Π) = CL(Πl) + CL(Πr) +
|Πl||Πr|

L
, (3.10)

and (see, e.g., appendix A of [43])

CL(α) =
1

2
|α|L+

1

2

(

∑

i

r2i −
∑

j

c2j

)

− |α|2
2L

(3.11)

where ri and cj are the number of boxes in the i-th row and in the j-th column, respectively.

In particular we have

CN (Λl) + CM ((Λl)t) =
1

2
|Λl|(N +M)− |Λl|2

2N
− |Λl|2

2M
. (3.12)

We can use the above formulas to show that

h =
|Λl|+ |Ξr|

4
=

q

2
. (3.13)

Therefore the states with (Λ; (Λl,Ξr), (Ξl,Λr)) are indeed chiral primaries.

3.3 Bulk theory interpretation

We would now like to interpret these chiral primaries in terms of the dual higher spin

theory. Let us denote the simplest chiral primaries as

|c1〉 = |(adj;N, M̄)〉 , |c2〉 = |(0; N̄ ,M)〉 . (3.14)

Moreover, the simplest anti-chiral primaries are obtained as |aη〉 = J−
0 |cη〉 with η = 1, 2.

In order to compare them with the bulk fields, we have to combine the anti-holomorphic

sector as in (3.7). Defining3

|c̄1〉 = |(adj;N, M̄)〉 = |(adj; N̄ ,M)〉 , |c̄2〉 = |(0; N̄ ,M)〉 = |(0;N, M̄)〉 (3.15)

and |āη〉 as in the holomorphic sector, we have the following eight fundamental states

|cη〉 ⊗ |c̄η〉 , |cη〉 ⊗ |āη〉 , |aη〉 ⊗ |c̄η〉 , |aη〉 ⊗ |āη〉 . (3.16)

Notice that the same η should be used for the holomorphic and anti-holomorphic sectors

as in (3.7). We would like to identify them as four complex (or eight real) scalars with

conformal weight (h, h̄) = (1/4, 1/4);4

φ11 , φ12 , φ21 , φ22 , (3.17)

respectively, where we use the notation in (2.5). Fermionic descendants may be obtained

by the action of a supercharge G3
−1/2 to the above states, see appendix A for the gener-

ators of the N = 3 algebra. These states should be dual to the spin 1/2 fermions ψAB̄ with

3We need to define the anti-holomorphic currents in a proper way.
4The action of J3

0 is dual to the action of A3 = σ3/2 from the left hand side to the matrix [φ]AB̄ ,

see (2.7). Here we set σ3 =
(

1 0
0 −1

)

.
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(h, h̄) = (3/4, 1/4). Similarly we obtain states with (h, h̄) = (1/4, 3/4), which are dual to

ψ̃AB̄ by the action of Ḡ3
−1/2. The application of G3

−1/2 and Ḡ3
−1/2 to the holomorphic and

anti-holomorphic sectors simultaneously generates states with (h, h̄) = (3/4, 3/4), which

are dual to eight real scalars φ̃AB̄ associated with the opposite boundary condition.

Generic chiral primaries may be generated by the fusions of |cη〉 and also |c̄η〉 as

mentioned above. In the dual higher spin theory, they should correspond to the U(M)

invariants of the products of [φ11]
i
j . In the case of the ABJ triality, a higher spin field

ϕi
j with M ×M matrix elements corresponds to a product of bifundamental fields Ai

aB
a
j

in the ABJ theory [4]. Here the sum over the u(N) index a is taken. A single-string

state is known to be dual to a single-trace operator trABAB · · ·AB, and this should

correspond to the singlet product trϕ · · ·ϕ. The corresponding states may be constructed

as β†
n|v〉 = CntrM [(AB)n]|v〉 with a constant Cn, see for instance [44]. Multi-string states

correspond to multi-trace operators, and thus the corresponding states may be expressed as

|n1, n2, . . . , ni〉 = β†
n1
β†
n2

· · ·β†
ni
|v〉 (3.18)

with M ≥ n1 ≥ n2 ≥ · · · ≥ ni. We would like to identify nj as the number of boxes in

the j-th column of a Young diagram. A single string state corresponds to the case where

only n1 is non-zero, and this means that the representation of su(M) should take the form

of [0n1−1, 1, 0, . . . , 0] for single string states. From the above arguments, we conjecture

that single string states correspond to the states with (Ξl,Λr) which are of the form as

Ξl = [0ℓ−1, 1, 0, . . . , 0] and Λr = [0p−1, 1, 0, . . . , 0]. In other words, the chiral primaries

corresponding to single-string states have h = q/2 = (ℓ + p)/4 with non-negative integers

ℓ, p. The states with other (Ξl,Λr) should correspond to multi-string states. However,

we admit that the map is actually not so precise since it is known that there should be

mixing between single-trace and multi-trace operators. So we may use the map just for

the purpose of state counting.

Before ending this section, let us comment on a set of important primary states which

are not chiral primaries. Since the coset model (1.2) and the higher spin theory stay at the

same moduli point, even non-chiral primaries of the coset model have bulk interpretation

in the dual higher spin theory. We can see from (3.8) that the first type of fermions in (3.6)

have q = 0, and the products of these fermions may yield the states of the form (Λ;Λ, 0)

with Λ ∈ Ω. The conformal weight is

h =
1

2(N +M)
(CN+M (Λ)− CN (Λ)) ∼ M |Λ|

4(N +M)
(3.19)

for large N . Therefore for finite M the conformal weight vanishes and the corresponding

states are the so-called “light states” [7, 43]. In the ’t Hooft limit it is argued that they de-

couple from the other states and we can consistently remove them from the spectrum. We

may regard these light states as duals of non-perturbative geometry dressed with pertur-

bative matter [45–50]. When we discuss the relation to superstring theory, we take N,M

large but keep M/N finite as in [4]. Within this region these states are no longer light and

it is expected that they are not decoupled from the other states. Since these light states are

not chiral primaries, we cannot say anything about them from the dual string viewpoint.

– 9 –



J
H
E
P
0
7
(
2
0
1
5
)
1
2
5

4 Marginal deformations

We conjecture that the introduction of finite string tension corresponds to a deformation

of the critical coset model (1.2). In this section we find the deformations of the coset

model (1.2) that preserve N = 3 superconformal symmetry. We introduce the deformations

of the double-trace type and interpret them in terms of the dual higher spin theory.

4.1 Marginal deformations preserving N = 3 algebra

We will now deform the coset model (1.2) by adding the deformation term

∆S = −f

∫

d2wT (w, w̄) (4.1)

to the action. Let A(z) denote a generator of the chiral symmetry. Then the corresponding

symmetry is not broken to first order if the following condition is satisfied (see, e.g., [51])
∮

dw T (w, w̄)A(z) = 0 . (4.2)

Here the integral contour is around w = z and with no other insertions within. This

condition is equivalent to that the OPE between T (w, w̄) and A(z) is given by a total

derivative of some operator. For instance, let A(z) be the energy momentum tensor T (z)

and T (w, w̄) a primary operator of the conformal dimension ∆. Since we have

T (z)T (w, w̄) ∼ ∆T (w, w̄)

(z − w)2
+

∂wT (w, w̄)

z − w
=

(∆− 1)T (w, w̄)

(z − w)2
+ ∂w

(T (w, w̄)

z − w

)

, (4.3)

the deformation preserves conformal symmetry (or the deformation is marginal) only

if ∆ = 1.

In subsection 3.2 we found several (h, q) = (1/2, 1) chiral primaries with |Λl|+ |Ξr| = 2.

Inside the N = 3 multiplet that contains such a chiral primary there is an operator with

(h, q) = (1, 0), and we would like to show that these generate exactly marginal defor-

mations preserving the N = 3 supersymmetry. Let us denote a chiral primary with

(h, q) = (1/2, 1) by Φ(1) and the generators of the N = 3 superconformal algebra by

{Ln, G
a
n+1/2, J

a
n ,Ψn+1/2} with a = 1, 2, 3 and n ∈ Z, see appendix A. We may construct

an N = 3 multiplet from Φ(1) by the action of the supersymmetry operators {Ga
−1/2, J

a
0 },

whose commutation relations are

[J3
0 , J

±
0 ] = ±J±

0 , [J+
0 , J−

0 ] = 2J3
0 , (4.4)

[J±
0 , G3

−1/2] = ∓G±
−1/2 , [J±

0 , G∓
−1/2] = ±2G3

−1/2 ,

where we have defined

J±
n = J1

n ± iJ2
n , G±

n+1/2 = G1
n+1/2 ± iG2

n+1/2 . (4.5)

In the N = 3 multiplet we define the operators in the spin 1 representation of so(3)

algebra as

Φ(1) , Φ(0) ≡
1√
2
J−
0 Φ(1) , Φ(−1) ≡

1

2
(J−

0 )2Φ(1) , (4.6)
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which in particular satisfy

G+
−1/2Φ(1) = 0 , G−

−1/2Φ(−1) = 0 . (4.7)

In other words, Φ(−1) is an anti-chiral primary.

With this notation, we would like to propose that the deformation by the operator

T = G+
−1/2Φ(−1) −G−

−1/2Φ(1) (4.8)

preserves the N = 3 superconformal symmetry. Here we suppress the anti-holomorphic

structure. What we will explicitly show in the following is that the condition (4.2) is

satisfied by all the generators of the N = 3 superconformal algebra, ensuring preservation

of the algebra at linear level. First of all, we can show that this operator is singlet under

the so(3) algebra as

J+
0 T =

√
2G+

−1/2Φ(0) − 2G3
−1/2Φ(1) = 0 , (4.9)

J−
0 T = −2G3

−1/2Φ(−1) −
√
2G−

−1/2Φ(0) = 0

from which also follow that J3
0T = 0. In the above equations, we have used (4.4), (4.6)

and (4.7).

The N = 3 superconformal algebra includes the N = 2 superconformal algebra as a

subalgebra generated by e.g. G±. The proposed form of deformation is known to preserve

N = 2 superconformal symmetry, as we will now show explicitly. We can compute

G±
−1/2T = ∓G±

−1/2G
∓
−1/2Φ(±1) = ∓{G±

−1/2, G
∓
−1/2}Φ(±1) = ∓4L−1Φ(±1) = ∓4∂Φ(±1) ,

G±
1/2T = ∓G±

1/2G
∓
−1/2Φ(±1) = ∓{G±

1/2, G
∓
−1/2}Φ(±1) = ∓(4L0 ± 2J0)Φ(±1) = ∓4Φ(±1) ,

where we have used the commutation relations in appendix A. We thus have

G±(z)T (w) ∼ ∓
4Φ(±1)(w)

(z − w)2
∓

4∂Φ(±1)(w)

z − w
= ∓ ∂

∂w

(

4Φ(±1)(w)

z − w

)

. (4.10)

Therefore, the N = 2 subalgebra has been shown to be preserved to the first order. Since

the conformal dimension of the deformation operator T is one, the deformation is marginal

to the first order. Actually it was shown that the deformation preserves conformal sym-

metry to all order of the perturbation (i.e. the deformation is exactly marginal) [52], see

also appendix A of [53].

Finally we check the symmetry generators not included in the N = 2 sub-algebra. For

Ψ(w) we can see

Ψ1/2T = {Ψ1/2, G
+
−1/2}Φ(−1) − {Ψ1/2, G

−
−1/2}Φ(1) = J+

0 Φ(−1) − J−
0 Φ(1) = 0 , (4.11)

which means Ψ(w)T (z) ∼ 0. For G3(w) we notice that

G+
−1/2(J

−
0 )2Φ(1) =

(

[G+
−1/2, J

−
0 ]J−

0 + J−
0 G+

−1/2J
−
0

)

Φ(1) (4.12)

=
(

2G3
−1/2J

−
0 + J−

0 [G+
−1/2, J

−
0 ]

)

Φ(1) =
(

4G3
−1/2J

−
0 + 2[J−

0 , G3
−1/2]

)

Φ(1)

=
(

4G3
−1/2J

−
0 + 2G−

−1/2

)

Φ(1) ,
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which leads to

T = 2
√
2G3

−1/2Φ(0) . (4.13)

Since we have

G3
−1/2G

3
−1/2Φ(0) = L−1Φ(0) = ∂Φ(0) , G3

1/2G
3
−1/2Φ(0) = 2L0Φ(0) = Φ(0) , (4.14)

we can show that

G3(z)T (w) ∼
2
√
2Φ(0)(w)

(z − w)2
+

2
√
2∂Φ(0)(w)

z − w
=

∂

∂w

(

2
√
2Φ(0)(w)

z − w

)

. (4.15)

In this way, we have shown that the deformation by the operator (4.8) preserves the N = 3

superconformal symmetry to the first order of the perturbation.

4.2 Double-trace deformations

As we saw in last subsection, we can construct operators generating deformations preserving

the N = 3 superconformal symmetry by using chiral primaries Φ(1) with (h, q) = (1/2, 1)

and equation (4.8). There are several choices of Φ(1), but we will be interested in those

given by a product of two operators. There are two types of the simplest chiral primaries

|cη〉 with (h, q) = (1/4, 1/2) given in (3.14) and we now introduce operators ξη(1/2) creating

these states i.e. |cη〉 ≡ ξη(1/2)|0〉. Combining with the anti-holomorphic sector, we have

two operators dual to two real BPS states with alternative quantization φ11 = φ1
11 + iφ2

11

in (3.17). From the simple product of these operators we can construct the chiral primary

Φ(1) with (h, q) = (1/2, 1) since the product of chiral primaries does not have any singular

terms, as explained in [54]. In the following we consider the case with

Φ(1) = ξ(1/2)ξ(1/2) , (4.16)

where ξ(1/2) is ξ1(1/2) or ξ2(1/2). We would like to regard the deformation operator (4.8)

constructed using (4.16) as a double-trace deformation, which has a dual interpretation as

a change of boundary conditions for bulk fields. For this purpose we need to rewrite the

deformation operator (4.8) in a suitable way.

The marginal deformation T in (4.8) is given by Φ(±1) with the action of supercon-

formal generators, and we would like to clarify the role of these generators. We write the

doublet ξ(1/2), ξ(−1/2) ≡ J−
0 ξ(1/2) in the spin 1/2 spinor representation. Via the action of the

superconformal generators, we define the following operators with (h, q) = (3/4,±1/2) as

ξ′(1/2) ≡
1√
2
G+

−1/2ξ(−1/2) , ξ′(−1/2) ≡
1√
2
G−

−1/2ξ(1/2) . (4.17)

The normalization is chosen such that the norm for ξ′(±1/2) is the same as that for ξ(±1/2).
5

Combining the anti-holomorphic sector, we introduce

OAB̄ = ξ(3/2−A) ⊗ ξ̄(3/2−B̄) , O′AB̄
= ξ′(3/2−A) ⊗ ξ̄′(3/2−B̄) , (4.18)

FAB̄ = ξ′(3/2−A) ⊗ ξ̄(3/2−B̄) , F ′AB̄
= ξ(3/2−A) ⊗ ξ̄′(3/2−B̄) .

5Let us define |c′〉 = ξ′(1/2)|0〉. Then we find 〈c′|c′〉 = 1
2
〈a|G−

1/2G
+
−1/2|a〉 =

1
2
〈a|(4L0 − 2J3

0 )|a〉 = 〈a|a〉.
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As explained in subsection 3.3, OAB̄, O′AB̄ are dual to scalar fields with the alternative

and the standard quantizations φAB̄, φ̃AB̄, respectively. Moreover, FAB̄,F ′AB̄ are dual to

spin 1/2 fermionic fields ψAB̄, ψ̃AB̄. Indeed, since we have

ξ′(1/2) =
1√
2
[G+

−1/2, J
−
0 ]ξ(1/2) =

√
2G3

−1/2ξ(1/2) , (4.19)

ξ′(−1/2) =
1√
2
[G−

−1/2, J
+
0 ]ξ(−1/2) = −

√
2G3

−1/2ξ(−1/2) , (4.20)

we can show that

ξ′(1/2) =
1√
2
[J+

0 , G−
−1/2]ξ(1/2) = J+

0 ξ′(−1/2) , (4.21)

ξ′(−1/2) = − 1√
2
[G+

−1/2, J
−
0 ]ξ(−1/2) = J−

0 ξ′(1/2) ,

which implies that the doublet ξ′(±1/2) is in the spin 1/2 spinor representation.

With the above preparations, we can now rewrite the marginal operator in (4.8) as

T =1
4(ξ

′
(1/2)ξ(−1/2) + ξ(−1/2)ξ

′
(1/2) − ξ′(−1/2)ξ(1/2) − ξ(1/2)ξ

′
(−1/2))

⊗ (ξ̄′(1/2)ξ̄(−1/2) + ξ̄(−1/2)ξ̄
′
(1/2) − ξ̄′(−1/2)ξ̄(1/2) − ξ̄(1/2)ξ̄

′
(−1/2))

=1
2ǫACǫBD

[

O′ABOCD + F ′ABFCD
]

(4.22)

by combining the anti-holomorphic sector. In the above expression, we have changed the

overall normalization such that deformation from equation (4.1) takes the form

∆S = −f

2
ǫACǫBD

∫

d2w
[

O′ABOCD + F ′ABFCD
]

(w, w̄) (4.23)

= −fǫACǫBD

∫

d2x
[

O′ABOCD + F ′ABFCD
]

(x1, x2) .

Here we have changed the worldsheet coordinates as w = x1+ ix2, w̄ = x1− ix2. As in [25]

and appendix B, the deformation has a natural interpretation as the change of boundary

condition for the dual bulk fields. This leads us to think of the deformation as double-trace

type even there is no trace in the operators O,O′,F ,F ′.6

5 Symmetry breaking in the coset model

In the previous section, we obtained the operator (4.8) which preserves the N = 3 super-

conformal symmetry of the coset model (1.2). It is natural to expect that the deformation

breaks higher spin symmetry generically. In the large N limit, we show that a certain spin

2 current is not conserved anymore. This implies the breaking of generic higher spin sym-

metry since operator products with the spin 2 current generate other higher spin currents.7

The breaking of higher spin gauge symmetry should thus also occur in the dual bulk theory

and this will give rise to the Higgs mass of higher spin fields. We will now calculate the

anomaly of the spin 2 current and use this to compute the mass of the dual spin 2 field.

6This name can be supported by the property of large N factorization for these operators. This property

is assumed here, but it can be shown as in [55].
7It is important to confirm the breaking of generic higher spin symmetry in a direct way.
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5.1 Symmetry breaking

We start from a generic situation with a spin s current A(s)(z). Here s = 2, 3, 4, . . . for

bosonic currents and s = 3/2, 5/2, . . . for fermionic currents. The corrections of the chiral

symmetry current to the first order in the perturbation can be computed from

A(s)(z)f

∫

d2wT (w, w̄) . (5.1)

Let us assume A(s)
r T = 0 for r > 0, then the operator product can be expressed as

A(s)(z)T (w, w̄) =

[s−1]
∑

l=0

1

(z − w)l+1
(A(s)

−s+l+1T )(w, w̄) . (5.2)

Here [t] is the biggest integer number less than t. Acting with the derivative ∂z̄, we have

∂z̄A(s)(z)T (w, w̄) = 2π

[s−1]
∑

l=0

(−1)l

l!
∂l
zδ

(2)(z − w)(A(s)
−s+l+1T )(w, w̄) , (5.3)

where we have used ∂z̄(z − w)−1 = 2πδ(2)(z − w). From (5.1) we can read off the non-

conservation of the chiral symmetry current as (see, e.g., [56])

∂z̄A(s)(z, z̄) = 2πf

[s−1]
∑

l=0

(−1)l

l!
∂l
z(A(s)

−s+l+1T )(z, z̄) . (5.4)

When the right hand side vanishes, (4.2) is satisfied and the current is still holomorphic.

Along with the energy momentum tensor T , the Kazama-Suzuki coset (1.2) would

have spin 2 currents T a (a = 1, 2, 3) in the adjoint representation of so(3). We then focus

on a specific example with a spin 2 current T 3, which may be effectively expressed as a

composite operator T 3 = 2TJ3
0 in the large N limit.8 We will see it convenient to use

linear combinations

T 11 =
1

2
(T + T 3) = TP+ , T 22 =

1

2
(T − T 3) = TP− , P± =

1

2
(1± 2J3

0 ) (5.5)

instead of T 3 itself. The central charges of T 11 and T 22 are

c1 = c2 =
c

2
, (5.6)

respectively. Now the deformation operator in (4.22) is written in terms of operators

defined in (4.18), and the deformation operator consists of the following type of terms as

∆S = −f

2

∫

d2wK(1)K(2)(w, w̄) . (5.7)

8We propose this from the fact that there are four dual spin 2 fields (or gravitons) [hµν ]AB̄ which are

U(M) singlets. The trace element should be dual to T , while the element proportional to σ3 should be dual

to T 3. See also footnote 4.
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The operators are K(i) = OiB̄,O′iB̄,F iB̄,F ′iB̄ (B̄ = 1, 2) and K(i) has non-trivial OPE

only with T ii. Denoting the conformal weight of K(i) by (hi, h̄i), we have h1, h2 = 1/4, 3/4

with h1 + h2 = 1, and similarly for h̄i. Notice that there are n0 = 4 terms with bosonic

operators and n1/2 = 4 terms with fermionic operators. We use T ii instead of T 3 since now

the system for the bosonic sector can be identified with the one analyzed in [29, 30], and

we can utilize their analysis.

With the above definitions get the following OPEs

T 11(z)K(1)K(2)(w, w̄) ∼ h1K(1)K(2)(w, w̄)

(z − w)2
+

(∂K(1))K(2)(w, w̄)

z − w
, (5.8)

T 22(z)K(1)K(2)(w, w̄) ∼ h2K(1)K(2)(w, w̄)

(z − w)2
+

K(1)(∂K(2))(w, w̄)

z − w
. (5.9)

Using the generic expression in (5.4), we can rewrite them in terms of current non-

conservation as

∂̄T 11 = πf [(∂K(1))K(2) − h1∂(K(1)K(2))] , (5.10)

∂̄T 22 = πf [K(1)(∂K(2))− h2∂(K(1)K(2))] . (5.11)

Therefore we have

∂̄T = 0 , ∂̄T 3 = 2πf [h2(∂K(1))K(2) − h1K(1)(∂K(2))] . (5.12)

The first equation just means that the conformal symmetry is preserved at the first order

perturbation as seen in the previous section. The second equation indicates that the spin

2 current T 3 is broken by the marginal deformation (5.7).

5.2 Higgs mass from the dual CFT

In order for a higher spin gauge field to acquire a non-zero mass, it should swallow the

degrees of freedom from the Goldstone modes. Let us consider a generic d dimensional

CFT with higher spin symmetry. Without deformation, higher spin currents are conserved

as ∂ · J (s) = 0. After the marginal deformations, the higher spin currents are generically

no longer conserved and satisfying

∂ · J (s) = αO(s−1) . (5.13)

The divergence of currents are related to another set of operators O(s−1), and this is dual

to the phenomena that the massless gauge fields acquire extra degrees of freedom by the

Higgs mechanism. In our example, the operator O(s−1) is given by a double-trace type

as in (5.12), and this is related to the fact that the higher spin symmetry is broken only

slightly as in [57].

The Higgs mass of the higher spin field can be read off from the anomalous dimension

of the higher spin current J (s). We denote by LMN the generators of so(2, d) that is the

isometry algebra of AdSd+1. A bulk particle can be classified by the representation of the

subalgebra so(2)⊕ so(d) as (E0, γ). The second Casimir is (see, e.g., [58])

Q =
1

2
L2
MN = E0(E0 − d) + 2Cd

2 (γ) = M2
∆ , (5.14)
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where E0 corresponds to the conformal dimension of dual operator i.e. E0 = ∆ and Cd
2 (γ)

is the value of the second Casimir for the representation γ of so(d). For instance, Cd
2 =

s(d + s − 2) for the s-th totally symmetric representation. A bulk field satisfying its

equation of motion is given by the eigenfunction of the Casimir operator Q with eigenvalue

M2
∆, see also appendix C.3. The eigenvalue M2

∆ is not the mass square for bulk field

and the contribution from AdS curvature should be extracted. From the unitarity bound

we know that ∆ = d + s − 2 for the conserved current with spin s, and this leads to

M2
d+s−2 = (d+s−2)(2s−2) for the dual massless higher spin field. Subtracting this value,

we have

M2
(s) = ∆(∆− d)− (d+ s− 2)(s− 2) . (5.15)

This is the formula we will use to compute the Higgs mass.

The anomalous dimension ∆ of the higher spin current J (s) may be computed in the

following way. As in appendix A of [57] (and section 2 of [29] for s = 2) we have

|∂ · J (s)|2 ∝ (∆− s− d+ 2)〈J (s)|J (s)〉 . (5.16)

Since the r.h.s. of (5.13) leads to

|αO(s−1)|2 = α2〈O(s−1)|O(s−1)〉 , (5.17)

we can obtain ∆ by equating the above two equations.

We apply the above method for d = 2 and a spin 2 current T 3 with

(h, h̄) =

(

∆+ 2

2
,
∆− 2

2

)

. (5.18)

Here ∆ = 2 for the conserved energy momentum tensor and we expect ∆ 6= 2 after the

deformation. First we obtain

|∂̄T 3|2 = 〈T 3|L̄−1L̄1|T 3〉 = 2〈T 3|L̄0|T 3〉 = 2 · ∆− 2

2
· c
2
, (5.19)

where we have used 〈T 3|T 3〉 = c/2. Computing the right hand side of (5.12), we have

(∆− 2)c

2
= (2πf)2(2h21h2 + 2h22h1)N1N2 (5.20)

with 〈K(i)|K(i)〉 = Ni. We set N1 = N2 = 1/(2π) from (B.8) and (B.24), which are used for

the operators dual to the bulk fields with standard kinetic terms. At the leading order of

f2, the formula (5.15) becomes M2
(2) = 2(∆− 2). Since K(i) could be a spin 1/2 operator,

we have totally the generated mass as

M2
(2) = f2 3

2c
(n0 + n1/2) (5.21)

with n0 = n1/2 = 4.
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6 Higgs phenomenon in higher spin theory

In this section we reproduce the mass obtained in (5.21) for spin 2 field dual to T 3 from

the bulk side. As explained in section 2 the bulk fields are of a 2M × 2M matrix form,

and we consider singlets under the U(M) subgroup denoted by ΞAB̄ (A, B̄ = 1, 2) defined

in (2.5). Thus, we can think of these as being of 2× 2 matrix form and we have additional

multiplications with 2× 2 matrix algebra. We need to know how spin 2 fields are coupled

with scalar fields or spin 1/2 fermions. The coupling may be read off from the equations of

motion in (2.7). Here we should notice that the Vasiliev theory is given in the frame-like

formulation with fields of the form as A
a1...as−1
µ with one vector index and s − 1 Lorentz

indices. For our purpose, it is convenient to move to the metric-like formulation with the

fields having the form ϕµ1...µs with s being vector indices. We can use the map

ϕµ1...µs =
1

s
ē a1
(µ1

· · · ē as−1
µs−1

Aµs)a1...as−1
(6.1)

with ē a
µ as the background vielbein at the linearized level. Without the CP factor, the

spin 2 field is just the graviton field hµν in the metric-like formulation, and we know that

the graviton is coupled with matter fields through the bulk energy momentum tensor T̂µν

as κhµν T̂µν . Here we have used κ2 = 8πGN with the Newton constant GN .

The effects of CP factor can be read off from the equations of motion in (2.7). A spin 2

field [hµν ]AB̄ is multiplied to a matter field from right hand side (or from left hand side). In

the deformation operator in (5.7), the (11) component operator is always paired with (22),

and similarly (12) is always paired with (21). From the rule of multiplication we can see

that [hµν ]11 couples only one of the dual paired fields (Ξ11,Ξ22) or (Ξ12,Ξ21) and [hµν ]22
couples the other one. We denote by T̂ (1) and T̂ (2) the bulk energy momentum tensors

that couple with [hµν ]11 and [hµν ]22, respectively. We can think that [hµν ]11 and [hµν ]22 as

metric fields for two different AdS spaces, and the paired matter fields live in the different

spaces. Therefore, we can again identify our set up as the one in [29, 30]. The computation

is summarized for the bosonic case and extended to the fermionic case in appendix C.

Using the result in (C.33), the mass of the spin 2 field dual to T 3 is computed from

the bulk theory as

M2
(2) = f2GN

2
(n0 + n1/2) (6.2)

for our setup with (d, dim) = (2, 2). It is known that the central charge is related to the

Newton constant as (see also (5.6))

3

2GN
= c1 = c2 =

c

2
(6.3)

as explained in [59–61]. From the relation, we can conclude that the mass from the bulk

theory in (6.2) is exactly the same as the mass from the CFT in (5.21).
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7 Conclusion

In this paper, we have studied the deformations of the Kazama-Suzuki coset model with

N = 3 superconformal symmetry in (1.2). We found that the deformation preserving the

N = 3 superconformal symmetry should be of the form as in (4.8) with a chiral primary

Φ(1) having (h, q) = (1/2, 1). We set the chiral primary to be the product of two chiral

primaries ξ(1/2) with (h, q) = (1/4, 1/2) as in (4.16). Then the deformation can be regarded

as being of the double-trace type as is seen in (4.22) or (4.23).

Further, we have shown that in the large N limit a spin 2 symmetry is broken by

the deformation and this implies that the generic higher spin symmetry is also broken.

The coset model in (1.2) is proposed to be dual to a higher spin gauge theory in [17].

The double-trace type of deformation is dual to the change of boundary conditions for the

bulk scalar and spin 1/2 fields. This change is also expected to break higher spin gauge

symmetry, and the breaking would generate the mass for the higher spin gauge fields. We

have computed the Higgs mass of a spin 2 field in (5.21) from the coset model and also

in (6.2) from the bulk higher spin theory. We can show that the two expressions match by

using the parameter mapping of the AdS/CFT correspondence.

An immediate question would be what happens for higher spin fields with s > 2. In

this paper we have studied a spin 2 field as a simple example and expected that a similar

story holds also for generic higher spin fields. However, this is something we have to

confirm. The bulk computation seems to be too complicated to generalize, but the CFT

computation looks to be tractable. In fact, we have already obtained partial results on the

Higgs masses for generic spin fields at the leading order of 1/c using the bulk/boundary

correspondence. We would like to report on these results in near future [62].

We have investigated the holographic duality proposed in [12] because of the connection

to superstring theory. Thus the most important task may be to understand the meaning

of the marginal deformation for the coset model (1.2) in terms of superstring theory. It

should be related to the introduction of non-zero string tension, but the precise interpre-

tation is unclear so far. In order to do so, we need to investigate the moduli space of the

dual superstring theory. For example it should be checked whether the superstrings on

AdS3×M7 with M7 =SU(3)/U(1) or SO(5)/SO(3) are really related or not. The meaning

of parameters for the moduli space should be understood. It should be helpful if we can

find the brane construction yielding the string background in the near horizon limit.

In order to obtain the physical meaning in terms of superstring theory, it might be

better to utilize the other trialities presented in [4, 8–10]. The relation to superstring

theory is well understood in the ABJ triality of [4]. Thus it is worth studying the Higgs

phenomenon in that case though the computation should be quite involved. For instance,

we should study the loop effects of gauge fields with spin s ≥ 1. In this sense, it might

be easier to study the low dimensional holography with N = 4 superconformal symmetry

in [8–10]. However, it is not a simple task to see how higher spin fields are mapped to strings

in their holography. Probably it would be useful to examine similarities and discrepancies

among the different types of triality.
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A N = 3 superconformal algebra

The generators of N = 3 superconformal algebra are the energy momentum tensor T (z),

the superconformal currents Ga(z), the so(3) currents Ja(z) and a spin 1/2 fermion Ψ(z),

where a = 1, 2, 3. The OPEs are (c = 3k)

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

z − w
,

Ga(z)Gb(w) ∼ 2c/3δab

(z − w)3
+

2iǫabcJ
c(w)

(z − w)2
+

2δabT (w) + iǫabc∂J
c(w)

z − w
, (A.1)

Ja(z)Jb(w) ∼ kδab

(z − w)2
+

iǫabcJ
c(w)

z − w
, Ja(z)Gb(w) ∼ δabΨ(w)

(z − w)2
+

iǫabcG
c(w)

z − w
,

Ψ(z)Ga(w) ∼ Ja(w)

z − w
, Ψ(z)Ψ(w) ∼ k

z − w
.

The mode expansions of these generators are expressed by {Ln, G
a
r , J

a
n ,Ψr} with n ∈ Z

and r ∈ Z+ 1/2. The commutation relations are

[Lm, Ln] =
c

12
m(m2 − 1)δm+n + (m− n)Lm+n ,

{Ga
r , G

b
s} =

c

3

(

r2 − 1

4

)

δabδr+s + 2δabLr+s + (r − s)iǫabcJ
c
r+s , (A.2)

[Ja
m, Jb

n] = kmδabδm+n + iǫabcJ
c
m+n , [Ja

m, Gb
r] = mδabΨm+r + iǫabcG

c
m+r ,

{Ψr, G
a
s} = Ja

r+s , {Ψr,Ψs} = kδr+s .

B Double-trace deformations and holography

In this paper, we encounter deformation of the double-trace type with operators which

have scale dimension ∆i with ∆1 + ∆2 = d. The operators are dual to fields with the

same mass, but with different boundary conditions. This type of marginal deformation

was firstly discussed in [25] and appears also in the context of ABJ triality [4]. We first

consider the case with bosonic operators Oi(x). The deformation is given by

S′ = −f

∫

ddxO1(x)O2(x) . (B.1)

Then we move to the case with fermionic operators Fi(x). In that case we consider the

following deformation

S′ = −f

∫

ddx(F̄1(x)F2(x) + F1(x)F̄2(x)) . (B.2)
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In this appendix we relate these marginal deformations to the changes of boundary condi-

tions for the dual bulk fields. We mainly follow the arguments in [4], see also, e.g., [31, 32].

B.1 Bosonic case

We use the Poincare coordinates of Euclidean AdSd+1, whose metric is

ds2 =
dz2 +

∑d
i=1 dx

2
i

z2
. (B.3)

Here we set the AdS radius equal to one. In these coordinates, the boundary is at z = 0.

The action for a real scalar propagating on AdSd+1 is given by

S =
1

2

∫

dd+1x
√
g
(

∂µφ∂
µφ+m2φ2

)

. (B.4)

The mass m2 includes the contribution from the coupling with the background curvature.

We consider the case with −(d2/4− 1) > m2 > −d2/4. The conformal dimensions of dual

operators are given by

∆± =
d

2
± ξ , ξ =

√

d2

4
+m2 . (B.5)

Near the boundary z = 0, a general solution to the equation of motion behaves as

φ = αzd/2−ξ +
β

2ξ
zd/2+ξ . (B.6)

We assume the regularity at z = ∞, which relates α and β as

β(x) =

∫

ddy G
∆+

φ (x− y)α(y) , (B.7)

where

G∆
φ (x− y) =

N∆
φ

|x− y|2∆ , N∆
φ = π−d/2 (2∆− d)Γ(∆)

Γ(∆− d/2)
. (B.8)

Since the metric diverges at z = 0, we introduce a cut off at z = ǫ. Then the on-shell

action is evaluated over the boundary as

S = −1

2

∫

ddxǫ1−dφ∂zφ , (B.9)

and it diverges as ǫ−2ξ at ǫ → 0. In order to remove the divergence we introduce the

boundary action

δS =
1

2

∫

ddxǫ−d

(

d

2
− ξ

)

φ2 , (B.10)

and then we have the finite action as

S + δS = −1

2

∫

ddxα(x)β(x) . (B.11)
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We obtain the standard normalization in the above expression due to the 2ξ factor in (B.6).

As in the appendix C of [4], we will use an abbreviated notation as S = −1
2αβ, which may

be written as

S = −1

2
αG∆+

φ α (B.12)

using β = G∆+

φ α in (B.7).

We consider φ1 with the alternative quantization and φ2 with the standard quanti-

zation, and O1 and O2 as their dual operators. Near z = 0, we assume the boundary

behaviors as

φ1 =
α1

2ξ
zd/2−ξ + β1z

d/2+ξ , φ2 = α2z
d/2−ξ +

β2
2ξ

zd/2+ξ . (B.13)

The expectation value of O1 corresponds to α1, while the expectation value of O2 corre-

sponds to β2. We are considering the double trace deformation in (B.1). Since (B.12) is

written in terms of α, we need to perform a Legendre transform for α2. Introducing the

sources Ji, the boundary action after the deformation may be written as [4]

S = −1

2
(2ξ)−2α1G

∆+

φ α1 −
1

2
α2G

∆+

φ α2 + α2β
′
2 − J1α1 − J2β

′
2 − fα1β

′
2 . (B.14)

On-shell we have β′
2 = β2. The two-point functions without the deformation (i.e., with

f = 0) can be computed from the boundary action as9

〈O1(x)O1(y)〉 = −(2ξ)2(G∆+

φ )−1 = G∆−

φ , 〈O2(x)O2(y)〉 = G∆+

φ . (B.15)

Examining the equations of motion, we have

J2 = −fα1 + α2 , J1 = −β1 − fβ2 . (B.16)

Setting J1 = J2 = 0, we obtain the deformed boundary conditions for the fields φ1 and φ2.

Rotating the fields, we define

φ̂1 =
1

√

1 + f̃2

(φ1 + f̃φ2) , φ̂2 =
1

√

1 + f̃2

(−f̃φ1 + φ2) (B.17)

with f̃ = 2ξf . Then the new fields φ̂i have the same boundary condition as φi before

the deformation. Utilizing the new fields φ̂i the two-point functions among φi can be read

off as [63]

Gij
φ =

1

1 + f̃2

(

G∆−

φ + f̃2G∆+

φ f̃G∆−

φ − f̃G∆+

φ

f̃G∆−

φ − f̃G∆+

φ G∆+

φ + f̃2G∆−

φ

)

. (B.18)

Here G∆
φ is the propagator of scalar field with dual dimension ∆ before the deformation,

and its expression is given in (B.8).

9In order to compute the expression of (G∆+

φ )−1, it is convenient to work with the momentum basis by

using the formula
∫

ddx exp(ik·x)

|x|2∆
= 2d−2∆πd/2 Γ(d/2−∆)

Γ(∆)
|k|2∆−d.
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B.2 Fermionic case

We need expressions similar to (B.18) for the the deformation with fermionic operators

in (B.2) as well. A similar analysis can be found in [32]. Let us denote Γa for Euclidean

so(d+1) Gamma matrices with {Γa,Γb} = 2δab and set Γz = Γd+1. The action for a Dirac

fermion propagating on AdSd+1 is

S =

∫

dd+1x
√
gψ̄

(

1

2
(
−→
/∇ −

←−
/∇)−m

)

ψ . (B.19)

We consider 0 ≤ m ≤ 1/2. The conformal dimensions of dual operators are

∆± = d/2±m. (B.20)

Near the boundary z = 0, a solution to the equation of motion may behave as

ψ = χzd/2−m + ζzd/2+m (B.21)

with

Γzχ = −χ , Γzζ = ζ . (B.22)

Regularity at z = ∞ relates χ and ζ as

ζ(x) =

∫

ddyG
∆+

ψ (x− y)χ(y) , (B.23)

where

G∆
ψ =

N∆
ψ Γ · (x− y)

|x− y|2∆+1
, N∆

ψ = π−d/2 Γ(∆ + 1/2)

Γ(∆ + 1/2− d/2)
. (B.24)

Notice that these equations are consistent with the assignment in (B.22).

The on-shell action at z = ǫ is10

S = −1

2

∫

ddxǫ−dψ̄Γzψ , (B.25)

which diverges as ǫ−2m as ǫ → 0. We introduce the boundary action

δS = −1

2

∫

ddxǫ−dψ̄ψ (B.26)

as in [32], then the on-shell action becomes

S + δS = −
∫

ddxχ̄(x)ζ(x) . (B.27)

This may be written as S = −χ̄G∆+

ψ χ in the abbreviated form from ζ = G∆+

ψ χ in (B.23).

10Note that the Gamma matrices on AdSd+1 are defined as {γµ, γν} = 2gµν . Related to the so(d + 1)

Gamma matrices, we have, for instance, γz = zΓz.
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We consider ψi dual to the operators Fi. Near z = 0, we assume

ψi = χiz
d/2−m + ζiz

d/2+m , Γzχi = −χi , Γzζi = ζi , (B.28)

where the expectation values of F1 and F2 correspond to χ1 and ζ2, respectively. The

deformation is now as in (B.2). With the sources ηi, η̄i, the action becomes

S =− χ̄1G
∆+

ψ χ1 − χ̄2G
∆+

ψ χ2 + χ̄2ζ
′
2 + ζ̄ ′2χ2 (B.29)

− η̄1χ1 − χ̄1η1 − η̄2ζ
′
2 − ζ̄ ′2η2 − f(χ̄1ζ

′
2 + ζ̄ ′2χ1) ,

where we have ζ ′2 = ζ2 and ζ̄ ′2 = ζ̄2 on-shell. The two-point functions before the deforma-

tion are

〈F1(x)F̄1(y)〉 = −(G∆+

ψ )−1 = G∆−

ψ , 〈F2(x)F̄2(y)〉 = G∆+

ψ . (B.30)

Examining the equations of motion, we have

η2 = −fχ1 + χ2 , η1 = −ζ1 − fζ2 (B.31)

and their barred expressions. Using the rotated fields

ψ̂1 =
1

√

1 + f2
(ψ1 + fψ2) , ψ̂2 =

1
√

1 + f2
(−fψ1 + ψ2) , (B.32)

the two-point functions among ψi can be read off as

Gij
ψ =

1

1 + f2

(

G∆−

ψ + f2G∆+

ψ fG∆−

ψ − fG∆+

ψ

fG∆−

ψ − fG∆+

ψ G∆+

ψ + f2G∆−

ψ

)

. (B.33)

Here G∆
ψ is the propagator of the spinor field with dual dimension ∆ before the deformation,

and its expression is given in (B.24).

C Higgs mass from bulk matter loops

In section 6, we have shown that the computation for the Higgs mass of a spin 2 field can

be reduced to the one in [29, 30] for the case with scalar loops. In this appendix we review

their analysis and extend it to the case with spin 1/2 fermion loops.

C.1 Setup and prescription

As in [29, 30] we prepare a product of two d dimensional CFTs with energy momentum

tensors T (1) and T (2). We only consider the case where their central charges are equal as

c1 = c2. The product theory is deformed by the following marginal operator as

−f

∫

ddxO(1)O(2) , (C.1)

where the operators O(1) and O(2) live in the different CFTs. We denote the field dual to

O(i) as φ(i). In this paper, we consider only massless scalars conformally coupled to the
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graviton, and in our case the dual conformal dimensions are ∆(1,2) = d±1
2 (∆(1)+∆(2) = d).

The deformation is dual to the change of boundary conditions for the bulk fields as seen in

appendix B, and this would lead to the breaking of higher spin gauge symmetry generically.

We study the mass of bulk spin 2 fields generated due to the symmetry breaking.

We consider spin 2 fields dual to the boundary energy momentum tensors T± = (T (1)±
T (2))/

√
2. As discussed in [26, 27, 29], the generated mass can be read off from the two-

point function of bulk energy momentum tensors T̂±
µν = (T̂

(1)
µν ± T̂

(2)
µν )/

√
2;

〈T̂±
µν(x)T̂

±
µ′ν′(y)〉 (C.2)

=
1

2

(

〈T̂ (1)
µν (x)T̂

(1)
µ′ν′(y)〉 ± 〈T̂ (1)

µν (x)T̂
(2)
µ′ν′(y)〉 ± 〈T̂ (2)

µν (x)T̂
(1)
µ′ν′(y)〉+ 〈T̂ (2)

µν (x)T̂
(2)
µ′ν′(y)〉

)

.

The bulk energy momentum tensor T̂
(i)
µν is written in terms of bilinears of φ(i) as in (C.25),

and the two-point function 〈T̂ (i)
µν (x)T̂

(j)
µ′ν′(y)〉 can be computed by using propagators

Gij
φ = aij

∆−G
∆−

φ + aij
∆+G

∆+

φ (C.3)

in (B.18). Therefore, the two-point function has terms proportional to (a∆+)2, a∆+a∆−

and (a∆−)2. We already know that the mass is not generated without the deformation,

and this fact implies that there is no contribution from the terms proportional to (a∆+)2

and (a∆−)2. Therefore, we only need to take care the term proportional to a∆+a∆− .

From (B.18) we have

a11∆+a
11
∆− = a22∆+a

22
∆− = −a12∆+a

12
∆− = −a21∆+a

21
∆− = f̃2 (C.4)

up to the order f̃2. Therefore, we can conclude that there is no mass generated for the spin

2 field dual to T+ = (T (1) + T (2))/
√
2. For the spin 2 field dual to T− = (T (1) − T (2))/

√
2,

we just need to compute one of the four terms, say 〈T̂ (1)
µν (x)T̂

(2)
µ′ν′(y)〉, and then multiply

factor −1/2 · 4 = −2. This prescription can be found to be the same as that in [29].

We also consider the following deformation

−f

∫

ddx(F̄ (1)F (2) + F (1)F̄ (2)) , (C.5)

where the operators F (i) are spin 1/2 spinors. We consider only massless fermions, and the

dual conformal dimensions are ∆(1,2) = d/2. The arguments in the bosonic case hold also

for the fermionic case. The bulk energy momentum tensor is given in (C.27) below in this

case. No mass is generated for the spin 2 field dual to T+ = (T (1)+T (2))/
√
2 and the mass

for the spin 2 field dual to T− = (T (1) − T (2))/
√
2 can be computed from 〈T̂ (1)

µν (x)T̂
(2)
µ′ν′(y)〉

with the multiplication of a factor −2.

C.2 Coordinate system and bi-tensors

We would like to compute the corrections of the mass of a spin 2 field induced by the

one-loop effects of matter fields. As mentioned above, we need to compute the two-point

function 〈T̂µν(x)T̂µ′ν′(y)〉 of the bulk energy momentum tensors. We use µ, ν and µ′, ν ′ for
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tensor indices at x and y, respectively. In a maximally symmetric space-time, the two-point

function may be decomposed by the following bi-tensors [64, 65]

I1 = gµνgµ′ν′ , I2 = n̂µn̂ν n̂µ′ n̂ν′ ,

I3 = gµµ′gνν′ + gµν′gνµ′ , I4 = gµν n̂µ′ n̂ν′ + gµ′ν′ n̂µn̂ν , (C.6)

I5 = gµµ′ n̂ν n̂ν′ + gµν′ n̂ν n̂µ′ + gνν′ n̂µn̂µ′ + gνµ′ n̂µn̂ν′ .

We use n̂a ≡ ∇aµ̃ as unit vectors tangent to the geodesic from x to y, where µ̃ is the

geodesic distance. Moreover, gµµ′ is the parallel propagator defined in [66]. We can com-

pute quantities involving these objects by making use of the rule in table 1 of [66] or

table 1 of [65].

With the above bi-tensors, we define the following three traceless bases as

T1 =
1

d(dz2 + 1)
(I1 + (d+ 1)2I2 − (d+ 1)I4) ,

T2 = −1

d
I1 +

d− 1

d
I2 +

1

2
I3 +

1

d
I4 +

1

2
I5 , (C.7)

T3 =
1

2z
(4I2 + I5) .

Here z = − cosh µ̃. We choose the above three bases such that the expressions for d = 3

reduce to those in (22) of [27]. Then a transverse and traceless basis may be written in the

form of

T = a1(z)(dz
2 + 1)T1 + a2(z)T2 + a3(z)T3 . (C.8)

Divergence of this basis is computed as

∇µTµνµ′ν′ =−
√

z2 − 1
(

(dz2 + 1)a′1 + 2dza1)n̂ · T1 + a′2n̂ · T2 + a′3n̂ · T3

)

(C.9)

+ a1(dz
2 + 1)∇ · T1 + a2∇ · T2 + a3∇ · T3 ,

where

n̂ · T1 =
1

dz2 + 1
A , n̂ · T2 = 0 , n̂ · T2 =

1

2z
B (C.10)

with

Aνµ′ν′ = ((d+ 1)n̂ν n̂µ′nν′ − n̂νgµ′ν′) , Bνµ′ν′ = (2n̂ν n̂µ′nν′ + gνµ′ n̂ν′ + gνν′ n̂µ′) . (C.11)

We also have

√

z2 − 1∇ · T1 = −z(1 + 3d+ (d2 − d)z2)

(dz2 + 1)2
A+

d+ 1

d(dz2 + 1)
B , (C.12)

√

z2 − 1∇ · T2 =
d2 + d− 2

2d
B ,

√

z2 − 1∇ · T3 =
1

z
A− 1 + dz2

2z2
B .

Assigning ∇ · T = 0 we have two equations

z(z2 − 1)a′1 = −(d+ 1)z2a1 + a3 , (C.13)

(z2 − 1)za′3 = 2z2
(

d+ 1

d

)

a1 +
z2(d2 + d− 2)

d
a2 − (1 + dz2)a3 .
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We also need T(n) for a1 = 1/zn with n = d + 1, d + 2, · · · , and the explicit expressions

can be obtained by solving these equations. For d = 3 we reproduce the results in ap-

pendix B of [27].

It will be convenient to use homogeneous coordinates instead of intrinsic coordinates,

see, e.g., [27, 67]. The AdSd+1 space-time can be described by a hypersurface XMXM = −1

(M = 0, 1, 2, . . . , d+1) in a d+2 dimensional space-time, whose metric is given by ηMN =

diag(−,+,+, · · · ,+,+,−). Here the AdS radius is equal to one as before. We denote the

homogeneous coordinates by XM and Y M ′
. We use GMN (X) = ηMN + XMXN as the

d + 1 dimensional metric and also the operator projecting the vector quantities onto the

hypersurface. Tensor fields hMNP ···(X) on the hypersurface satisfy XMhMNP ···(X) = 0.

We compute the two-point function ΣMNM ′N ′(X,Y ) = 〈T̂MN (X)T̂M ′N ′(Y )〉 of the

bulk energy momentum tensors. The geodesic distance µ̃ is related as Z ≡ X · Y =

− cosh µ̃(≡ z). In order to express the quantity, we can use bi-tensors (C.6) but now in

terms of

ĜMM ′(X,Y ) = GMN (X)ηNN ′
GN ′M ′(Y ) = ηMM ′ +XMXM ′ + YMYM ′ + ZXMYM ′ ,

NM (X) =
YM + ZXM√

Z2 − 1
, NM ′(Y ) =

XM ′ + ZYM ′√
Z2 − 1

, (C.14)

where we should replace as gMM ′ = ĜMM ′ − (Z + 1)NMNM ′ and n̂M = −NM . Instead of

I3 and I5, it can be convenient to use

Ĩ3 = ĜMM ′ĜNN ′ + ĜMN ′ĜNM ′ , (C.15)

Ĩ5 = ĜMM ′NNNN ′ + ĜMN ′NNNM ′ + ĜNM ′NMNN ′ + ĜNN ′NMNM ′ .

The relation between the two bases is

Ĩ3 = I3 + (Z + 1)I5 + 2(Z + 1)2I2 , Ĩ5 = I5 + 4(Z + 1)I2 . (C.16)

Using the property, XMhMNP ···(X) = 0, we can neglect the terms with XM or YM ′ in the

bi-tensor basis as in (19) of [27].

C.3 The Higgs mass of spin 2 gauge field

We start to compute the explicit expressions for the propagators by generalizing the analysis

in [27] for the case with generic d. Using the propagators, we evaluate the two-point function

〈T̂µν(x)T̂µ′ν′(y)〉 by utilizing the Wick contraction, and from it we read off the corrections

to the mass of a spin 2 field due to the scalar and fermion loops. There would also be a

contribution from the loop effects of spin 1 gauge field for d > 2 as computed in [27] for

d = 3. Here we do not consider this type of effects since the spin 1 gauge field in our d = 2

setup is not dynamical.

The second Casimir of the AdS isometry so(2, d) generated by LMN is given by (5.14),

and the equations of motion for the bulk fields may be expressed as the eigenvalue equations

of the second Casimir. For a scalar field φ(X) with s = 0, we have LMN = i(XM∂N −
XN∂M ) and the Klein-Gordon equation is

(

N̂(N̂ + d)−X2∂2 − E0(E0 − d)
)

φ(X) = 0 (C.17)
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with N̂ = X · ∂. The Green’s function ∆0(X,Y ) = ∆0(Z) can be obtained from

(

(1− Z2)∂2
Z − (d+ 1)Z∂Z + E0(E0 − d)

)

∆0(Z) = 0 , (C.18)

where we have used ∂2 = −∂2
Z and N̂ = X · ∂ = Z∂Z . We set E0 = (d ± 1)/2 for a

conformally coupled massless scalar, and we use the solution

∆
(α)
0 =

Γ((d+ 1)/2)

(d− 1)(−2π)(d+1)/2

(

α+

(Z + 1)(d−1)/2
+

α−

(Z − 1)(d−1)/2

)

. (C.19)

We reproduce the propagator of flat space at the X = Y limit

∆
(α)
0 ∼ − Γ((d+ 1)/2)

2(d− 1)π(d+1)/2

1

|X − Y |d−1
, (C.20)

when we set α+ = 1. We choose the notation such that the expression become the same as

the one in [27] for d = 3. For the scalar with standard quantization, we should set α+ =

−α− = 1, and for the scalar with alternative quantization, we should set α+ = α− = 1.

With these values the relation between α± and a∆± in (C.3) can be found as

a∆+ =
1

2
(α+ + α−) , a∆− =

1

2
(α+ − α−) . (C.21)

We move to the spin 1/2 propagator. As in [27] we define K = ΓMNXM∂N with

{ΓM ,ΓN} = 2ηMN , which satisfy K(K − d) = N̂(N̂ + d) −X2∂2. For a spin 1/2 spinor,

LMN = i(XM∂N−XN∂M )+ i
2ΓMN and the value of Casimir operator for a spinor represen-

tation is Cd
2 (s) = d(d−1)/16. Since Q = N̂(N̂+d)−X2∂2+(d+1)(d+2)/8−K = K(K−

d−1)+(d+1)(d+2)/8, we have a factorized relation (K−1/2)(K−1/2−d) = E0(E0−d)

when acting on the spin 1/2 state Ψ(X). Thus the Dirac equations are

[K − (E0 + 1/2)]Ψ(X) = 0 , [K + (E0 − 1/2− d)]Ψ(X) = 0 . (C.22)

We set E0 = d/2 for a massless fermion. Since we have

[K − (E0 + 1/2)][K + (E0 + 1/2− d)] = N̂(N̂ + d)−X2 − (E0 + 1/2)(E0 + 1/2− d) ,

[K + (E0 − 1/2− d)][K − (E0 − 1/2)] = N̂(N̂ + d)−X2 − (E0 − 1/2)(E0 − 1/2− d) ,

the solutions to the Dirac equation may be obtained as

Ψ(X) = [K + (E0 + 1/2− d)]Ψ0φ(X) or Ψ(X) = [K − (E0 − 1/2)]Ψ0φ(X) , (C.23)

where E
(0)
0 = E0+1/2 for the first scalar and E

(0)
0 = E0−1/2 for the second scalar. More-

over, Ψ0 is a constant spinor. With this expression we can derive the fermion propagator

from the scalar one. For E0 = d/2, the propagator for Dirac fermion can be written as

∆
(α)
1/2 =

Γ((d+ 1)/2)

2(−2π)(d+1)/2

(

α+Γ
M (XM − YM )

(Z + 1)(d+1)/2
+

α−Γ
M (XM − YM )

(Z − 1)(d+1)/2

)

. (C.24)
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As before we reproduce the propagator of flat space in the X = Y limit

∆
(α)
1/2 ∼

Γ((d+ 1)/2)

2π(d+1)/2

ΓM (XM − Y M )

|X − Y |d+1
∼ ΓM∂M

(

− Γ((d+ 1)/2)

2(d− 1)π(d+1)/2

1

|X − Y |d−1

)

,

when we set α+ = 1.

With the help of propagators obtained above, we compute the two-point function of the

bulk energy momentum tensors. The energy momentum tensor for a massless conformally

coupled scalar is

T̂µν =
d+ 1

2d
∂µφ∂νφ− d− 1

2d
φ∇µ∂νφ− gµν

(

1

2d
(∂φ)2 +

(d− 1)2

8d
φ2

)

. (C.25)

Here we have used the equation of motion for φ since we neglect the contact terms. The

two-point function can be computed by applying Wick contractions as

〈T̂µν(x)T̂µ′ν′(y)〉 =
(

Γ((d+ 1)/2)2

4d(−2π)d+1

)

(

α2
+

(

(1 + dZ2)T1 + (1 + d)(T2 + ZT3)
)

(Z + 1)d+1
(C.26)

+
α2
−

(

(1 + dZ2)T1 + (1 + d)(T2 − ZT3)
)

(Z − 1)d+1

)

,

where the bases Ti (i = 1, 2, 3) are defined in (C.7). In the above expression, we have

ignored the term proportional to α+α−, since they are irrelevant as mentioned above.

The energy momentum tensor for a massless Dirac fermion is

T̂µν =
1

2
ψ̄γ(µ(

−→∇ν −
←−∇ν))ψ , (C.27)

where we have used the equation of motion. The two-point function can be computed as

〈T̂µν(x)T̂µ′ν′(y)〉 =
(

Γ((d+ 1)/2)2dim

8(−2π)d+1

)

(

α2
+

(

(1 + dZ2)T1 + (1 + d)(T2 + ZT3)
)

(Z + 1)d+1

+
α2
−

(

(1 + dZ2)T1 + (1 + d)(T2 − ZT3)
)

(Z − 1)d+1

)

. (C.28)

The dimension of gamma matrices is denoted by dim. The contribution from a massless

Dirac fermion is (d dim)/2 times that from a massless scalar. We are interested in the case

with (d, dim) = (2, 2). Since the contribution from a Majorana fermion is half of that from

Dirac fermion, the corrections from a massless scalar and a massless Majorana spinor are

the same as expected from the dual CFT point of view.

As explained in [26, 27] we can read off the mass of a spin 2 field from the term

proportional to the exchange of a massive spin 1 field

Πµνµ′ν′ = −2∇µ∇µ′Dνν′ , (C.29)

where the symmetrization of the indices (µν) and (µ′ν ′) is implicitly assumed. Here Dνν′

is the massive spin 1 propagator. As argued in section 2.2 of [29] the conformal dimension
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of the dual operator is E0 = d+1. The second Casimir for a vector representation of so(d)

is Cd
2 (v) = (d − 1)/2, and thus we have Q = 2d on the massive spin 1 state Aµ(X). The

propagator for a spin 1 field with M2
(1) = 2d can be found in [66]. With that expression

we find

Πµνµ′ν′ =
Γ((d+ 3)/2)Z

(−1)ddπ(d+1)/2(Z2 − 1)(d+3)/2

×
(

(d+ 2)T1

(

dZ2 + 1
)

+ 2T2 − (d+ 2)T3

(

Z2 + 1
))

. (C.30)

For large −Z, we may expand the expression in terms of T(n) introduced above as

Πµνµ′ν′ =
Γ((d+ 3)/2)(d+ 2)

(−1)ddπ(d+1)/2
T(d+2) + · · · . (C.31)

Denoting the numbers of real scalar and Majorana spin 1/2 spinors by respectively n0 and

n1/2, we can expand the self energy of a spin 2 field for large −Z as

Σµνµ′ν′(x, y) = 8πGN 〈T̂µν(x)T̂µ′ν′(y)〉 (C.32)

= 8πGN (α2
+ − α2

−)

(

n0 +
d dim

4
n1/2

)(

−Γ((d+ 1)/2)2(d+ 1)

4d(−2π)d+1

)

T(d+2) + · · · ,

where we have considered only the term proportional to that for the spin 1 exchange. As

explained above we should set α2
+ − α2

− = 4α∆+α∆− = −4f̃2 = −4f2 and multiply −2 to

obtain the mass of the spin 2 field. The final result is

M2
(2) = 64πGNf2

(

n0 +
d dim

4
n1/2

)

Γ((d+ 1)/2)

2(d+ 2)(4π)(d+1)/2
. (C.33)
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