Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Constraining dark sectors with monojets and dijets

  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 17 July 2015
  • volume 2015, Article number: 89 (2015)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Constraining dark sectors with monojets and dijets
Download PDF
  • Mikael Chala1,
  • Felix Kahlhoefer1,
  • Matthew McCullough2,
  • Germano Nardini1 &
  • …
  • Kai Schmidt-Hoberg1 
  • 446 Accesses

  • 96 Citations

  • 2 Altmetric

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

We consider dark sector particles (DSPs) that obtain sizeable interactions with Standard Model fermions from a new mediator. While these particles can avoid observation in direct detection experiments, they are strongly constrained by LHC measurements. We demonstrate that there is an important complementarity between searches for DSP production and searches for the mediator itself, in particular bounds on (broad) dijet resonances. This observation is crucial not only in the case where the DSP is all of the dark matter but whenever — precisely due to its sizeable interactions with the visible sector — the DSP annihilates away so efficiently that it only forms a dark matter subcomponent. To highlight the different roles of DSP direct detection and LHC monojet and dijet searches, as well as perturbativity constraints, we first analyse the exemplary case of an axial-vector mediator and then generalise our results. We find important implications for the interpretation of LHC dark matter searches in terms of simplified models.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. M. Beltrán, D. Hooper, E.W. Kolb and Z.C. Krusberg, Deducing the nature of dark matter from direct and indirect detection experiments in the absence of collider signatures of new physics, Phys. Rev. D 80 (2009) 043509 [arXiv:0808.3384] [INSPIRE].

    ADS  Google Scholar 

  2. M. Beltrán, D. Hooper, E.W. Kolb, Z.A.C. Krusberg and T.M.P. Tait, Maverick dark matter at colliders, JHEP 09 (2010) 037 [arXiv:1002.4137] [INSPIRE].

    Article  ADS  Google Scholar 

  3. G. Busoni, A. De Simone, T. Jacques, E. Morgante and A. Riotto, Making the most of the relic density for dark matter searches at the LHC 14 TeV run, JCAP 03 (2015) 022 [arXiv:1410.7409] [INSPIRE].

    Article  ADS  Google Scholar 

  4. B. Holdom, Two U(1)’s and ϵ charge shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].

    Article  ADS  Google Scholar 

  5. K.S. Babu, C.F. Kolda and J. March-Russell, Implications of generalized Z-Z′ mixing, Phys. Rev. D 57 (1998) 6788 [hep-ph/9710441] [INSPIRE].

    ADS  Google Scholar 

  6. E. Dudas, Y. Mambrini, S. Pokorski and A. Romagnoni, (In)visible Z′ and dark matter, JHEP 08 (2009) 014 [arXiv:0904.1745] [INSPIRE].

  7. P.J. Fox, J. Liu, D. Tucker-Smith and N. Weiner, An effective Z′, Phys. Rev. D 84 (2011) 115006 [arXiv:1104.4127] [INSPIRE].

    ADS  Google Scholar 

  8. M.T. Frandsen, F. Kahlhoefer, A. Preston, S. Sarkar and K. Schmidt-Hoberg, LHC and Tevatron bounds on the dark matter direct detection cross-section for vector mediators, JHEP 07 (2012) 123 [arXiv:1204.3839] [INSPIRE].

    Article  ADS  Google Scholar 

  9. A. Alves, S. Profumo and F.S. Queiroz, The dark Z′ portal: direct, indirect and collider searches, JHEP 04 (2014) 063 [arXiv:1312.5281] [INSPIRE].

    Article  ADS  Google Scholar 

  10. G. Arcadi, Y. Mambrini, M.H.G. Tytgat and B. Zaldivar, Invisible Z′ and dark matter: LHC vs LUX constraints, JHEP 03 (2014) 134 [arXiv:1401.0221] [INSPIRE].

    Article  ADS  Google Scholar 

  11. O. Lebedev and Y. Mambrini, Axial dark matter: the case for an invisible Z′, Phys. Lett. B 734 (2014) 350 [arXiv:1403.4837] [INSPIRE].

    Article  ADS  Google Scholar 

  12. V.M. Lozano, M. Peiró and P. Soler, Isospin violating dark matter in Stückelberg portal scenarios, JHEP 04 (2015) 175 [arXiv:1503.01780] [INSPIRE].

    Article  ADS  Google Scholar 

  13. O. Buchmueller, M.J. Dolan and C. McCabe, Beyond effective field theory for dark matter searches at the LHC, JHEP 01 (2014) 025 [arXiv:1308.6799] [INSPIRE].

    Article  ADS  Google Scholar 

  14. O. Buchmueller, M.J. Dolan, S.A. Malik and C. McCabe, Characterising dark matter searches at colliders and direct detection experiments: vector mediators, JHEP 01 (2015) 037 [arXiv:1407.8257] [INSPIRE].

    Article  ADS  Google Scholar 

  15. P. Harris, V.V. Khoze, M. Spannowsky and C. Williams, Constraining dark sectors at colliders: beyond the effective theory approach, Phys. Rev. D 91 (2015) 055009 [arXiv:1411.0535] [INSPIRE].

    ADS  Google Scholar 

  16. M. Fairbairn and J. Heal, Complementarity of dark matter searches at resonance, Phys. Rev. D 90 (2014) 115019 [arXiv:1406.3288] [INSPIRE].

    ADS  Google Scholar 

  17. T. Jacques and K. Nordström, Mapping monojet constraints onto simplified dark matter models, JHEP 06 (2015) 142 [arXiv:1502.05721] [INSPIRE].

    Article  ADS  Google Scholar 

  18. CMS collaboration, Search for dark matter, extra dimensions and unparticles in monojet events in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 75 (2015) 235 [arXiv:1408.3583] [INSPIRE].

  19. ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Eur. Phys. J. C 75 (2015) 299 [arXiv:1502.01518] [INSPIRE].

  20. UA2 collaboration, J. Alitti et al., A search for new intermediate vector mesons and excited quarks decaying to two jets at the CERN \( \overline{p}p \) collider, Nucl. Phys. B 400 (1993) 3 [INSPIRE].

  21. CDF collaboration, T. Aaltonen et al., Search for new particles decaying into dijets in proton-antiproton collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. D 79 (2009) 112002 [arXiv:0812.4036] [INSPIRE].

  22. CMS collaboration, Search for resonances and quantum black holes using dijet mass spectra in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. D 91 (2015) 052009 [arXiv:1501.04198] [INSPIRE].

  23. ATLAS collaboration, Search for new phenomena in the dijet mass distribution using pp collision data at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 91 (2015) 052007 [arXiv:1407.1376] [INSPIRE].

  24. ATLAS collaboration, Search for a dijet resonance produced in association with a leptonically decaying W or Z boson with the ATLAS detector at \( \sqrt{s}=8 \) TeV, ATLAS-CONF-2013-074, CERN, Geneva Switzerland (2013) [ATLAS-COM-CONF-2013-078].

  25. F. Wilczek, Problem of strong p and t invariance in the presence of instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].

    Article  ADS  Google Scholar 

  26. S. Weinberg, A new light boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].

    Article  ADS  Google Scholar 

  27. G. Gelmini and P. Gondolo, DM production mechanisms, arXiv:1009.3690 [INSPIRE].

  28. Q.-H. Cao, C.-R. Chen, C.S. Li and H. Zhang, Effective dark matter model: relic density, CDMS II, Fermi LAT and LHC, JHEP 08 (2011) 018 [arXiv:0912.4511] [INSPIRE].

    Google Scholar 

  29. J.-M. Zheng, Z.-H. Yu, J.-W. Shao, X.-J. Bi, Z. Li and H.-H. Zhang, Constraining the interaction strength between dark matter and visible matter: I. Fermionic dark matter, Nucl. Phys. B 854 (2012) 350 [arXiv:1012.2022] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  30. J. March-Russell, J. Unwin and S.M. West, Closing in on asymmetric dark matter I: model independent limits for interactions with quarks, JHEP 08 (2012) 029 [arXiv:1203.4854] [INSPIRE].

    Article  ADS  Google Scholar 

  31. K. Cheung, P.-Y. Tseng, Y.-L.S. Tsai and T.-C. Yuan, Global constraints on effective dark matter interactions: relic density, direct detection, indirect detection and collider, JCAP 05 (2012) 001 [arXiv:1201.3402] [INSPIRE].

    Article  ADS  Google Scholar 

  32. K. Griest and M. Kamionkowski, Unitarity limits on the mass and radius of dark matter particles, Phys. Rev. Lett. 64 (1990) 615 [INSPIRE].

    Article  ADS  Google Scholar 

  33. I.M. Shoemaker and L. Vecchi, Unitarity and monojet bounds on models for DAMA, CoGeNT and CRESST-II, Phys. Rev. D 86 (2012) 015023 [arXiv:1112.5457] [INSPIRE].

    ADS  Google Scholar 

  34. Q.-F. Xiang, X.-J. Bi, P.-F. Yin and Z.-H. Yu, Searches for dark matter signals in simplified models at future hadron colliders, Phys. Rev. D 91 (2015) 095020 [arXiv:1503.02931] [INSPIRE].

    ADS  Google Scholar 

  35. G. Busoni, A. De Simone, E. Morgante and A. Riotto, On the validity of the effective field theory for dark matter searches at the LHC, Phys. Lett. B 728 (2014) 412 [arXiv:1307.2253] [INSPIRE].

    Article  ADS  Google Scholar 

  36. G. Busoni, A. De Simone, J. Gramling, E. Morgante and A. Riotto, On the validity of the effective field theory for dark matter searches at the LHC, part II: complete analysis for the s-channel, JCAP 06 (2014) 060 [arXiv:1402.1275] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  37. LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].

  38. A. Alves, A. Berlin, S. Profumo and F.S. Queiroz, Dark matter complementarity and the Z′ portal, arXiv:1501.03490 [INSPIRE].

  39. U. Haisch and F. Kahlhoefer, On the importance of loop-induced spin-independent interactions for dark matter direct detection, JCAP 04 (2013) 050 [arXiv:1302.4454] [INSPIRE].

    Article  ADS  Google Scholar 

  40. A. Crivellin, F. D’Eramo and M. Procura, New constraints on dark matter effective theories from standard model loops, Phys. Rev. Lett. 112 (2014) 191304 [arXiv:1402.1173] [INSPIRE].

    Article  ADS  Google Scholar 

  41. F. D’Eramo and M. Procura, Connecting dark matter UV complete models to direct detection rates via effective field theory, JHEP 04 (2015) 054 [arXiv:1411.3342] [INSPIRE].

    Article  Google Scholar 

  42. M. Duerr and P. Fileviez Perez, Baryonic dark matter, Phys. Lett. B 732 (2014) 101 [arXiv:1309.3970] [INSPIRE].

    Article  ADS  Google Scholar 

  43. M. Duerr and P. Fileviez Perez, Theory for baryon number and dark matter at the LHC, Phys. Rev. D 91 (2015) 095001 [arXiv:1409.8165] [INSPIRE].

    ADS  Google Scholar 

  44. H. An, X. Ji and L.-T. Wang, Light dark matter and Z′ dark force at colliders, JHEP 07 (2012) 182 [arXiv:1202.2894] [INSPIRE].

    Article  ADS  Google Scholar 

  45. H. An, R. Huo and L.-T. Wang, Searching for low mass dark portal at the LHC, Phys. Dark Univ. 2 (2013) 50 [arXiv:1212.2221] [INSPIRE].

    Article  Google Scholar 

  46. C.D. Carone and H. Murayama, Realistic models with a light U(1) gauge boson coupled to baryon number, Phys. Rev. D 52 (1995) 484 [hep-ph/9501220] [INSPIRE].

    ADS  Google Scholar 

  47. E.J. Chun, J.-C. Park and S. Scopel, Dark matter and a new gauge boson through kinetic mixing, JHEP 02 (2011) 100 [arXiv:1011.3300] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  48. M.T. Frandsen, F. Kahlhoefer, S. Sarkar and K. Schmidt-Hoberg, Direct detection of dark matter in models with a light Z′, JHEP 09 (2011) 128 [arXiv:1107.2118] [INSPIRE].

    Article  ADS  Google Scholar 

  49. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs3: a program for calculating dark matter observables, Comput. Phys. Commun. 185 (2014) 960 [arXiv:1305.0237] [INSPIRE].

    Article  ADS  Google Scholar 

  50. Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    Google Scholar 

  51. C. Savage, A. Scaffidi, M. White and A.G. Williams, LUX likelihood and limits on spin-independent and spin-dependent WIMP couplings with LUXCalc, arXiv:1502.02667 [INSPIRE].

  52. P. Klos, J. Menéndez, D. Gazit and A. Schwenk, Large-scale nuclear structure calculations for spin-dependent WIMP scattering with chiral effective field theory currents, Phys. Rev. D 88 (2013) 083516 [Erratum ibid. D 89 (2014) 029901] [arXiv:1304.7684] [INSPIRE].

  53. P.J. Fox, Y. Kahn and M. McCullough, Taking halo-independent dark matter methods out of the bin, JCAP 10 (2014) 076 [arXiv:1403.6830] [INSPIRE].

    Article  ADS  Google Scholar 

  54. L. Goodenough and D. Hooper, Possible evidence for dark matter annihilation in the inner milky way from the Fermi gamma ray space telescope, arXiv:0910.2998 [INSPIRE].

  55. D. Hooper and L. Goodenough, Dark matter annihilation in the galactic center as seen by the Fermi gamma ray space telescope, Phys. Lett. B 697 (2011) 412 [arXiv:1010.2752] [INSPIRE].

    Article  ADS  Google Scholar 

  56. D. Hooper and T. Linden, On the origin of the gamma rays from the galactic center, Phys. Rev. D 84 (2011) 123005 [arXiv:1110.0006] [INSPIRE].

    ADS  Google Scholar 

  57. K.N. Abazajian and M. Kaplinghat, Detection of a gamma-ray source in the galactic center consistent with extended emission from dark matter annihilation and concentrated astrophysical emission, Phys. Rev. D 86 (2012) 083511 [Erratum ibid. D 87 (2013) 129902] [arXiv:1207.6047] [INSPIRE].

  58. T. Daylan et al., The characterization of the gamma-ray signal from the central milky way: a compelling case for annihilating dark matter, arXiv:1402.6703 [INSPIRE].

  59. Y. Bai, P.J. Fox and R. Harnik, The Tevatron at the frontier of dark matter direct detection, JHEP 12 (2010) 048 [arXiv:1005.3797] [INSPIRE].

    Article  ADS  Google Scholar 

  60. J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M.P. Tait and H.-B. Yu, Constraints on dark matter from colliders, Phys. Rev. D 82 (2010) 116010 [arXiv:1008.1783] [INSPIRE].

    ADS  Google Scholar 

  61. A. Rajaraman, W. Shepherd, T.M.P. Tait and A.M. Wijangco, LHC bounds on interactions of dark matter, Phys. Rev. D 84 (2011) 095013 [arXiv:1108.1196] [INSPIRE].

    ADS  Google Scholar 

  62. J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M.P. Tait and H.-B. Yu, Constraints on light Majorana dark matter from colliders, Phys. Lett. B 695 (2011) 185 [arXiv:1005.1286] [INSPIRE].

    Article  ADS  Google Scholar 

  63. P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, Missing energy signatures of dark matter at the LHC, Phys. Rev. D 85 (2012) 056011 [arXiv:1109.4398] [INSPIRE].

    ADS  Google Scholar 

  64. H. Dreiner, D. Schmeier and J. Tattersall, Contact interactions probe effective dark matter models at the LHC, Europhys. Lett. 102 (2013) 51001 [arXiv:1303.3348] [INSPIRE].

    Article  ADS  Google Scholar 

  65. D. Racco, A. Wulzer and F. Zwirner, Robust collider limits on heavy-mediator dark matter, JHEP 05 (2015) 009 [arXiv:1502.04701] [INSPIRE].

    Article  ADS  Google Scholar 

  66. P.J. Fox and C. Williams, Next-to-leading order predictions for dark matter production at hadron colliders, Phys. Rev. D 87 (2013) 054030 [arXiv:1211.6390] [INSPIRE].

    ADS  Google Scholar 

  67. U. Haisch, F. Kahlhoefer and E. Re, QCD effects in mono-jet searches for dark matter, JHEP 12 (2013) 007 [arXiv:1310.4491] [INSPIRE].

    Article  ADS  Google Scholar 

  68. A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  69. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  70. B.A. Dobrescu and F. Yu, Coupling-mass mapping of dijet peak searches, Phys. Rev. D 88 (2013) 035021 [Erratum ibid. D 90 (2014) 079901] [arXiv:1306.2629] [INSPIRE].

  71. C.-W. Chiang, T. Nomura and K. Yagyu, Leptophobic Z′ in models with multiple Higgs doublet fields, JHEP 05 (2015) 127 [arXiv:1502.00855] [INSPIRE].

    Article  ADS  Google Scholar 

  72. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    Article  ADS  Google Scholar 

  73. A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

    Article  ADS  Google Scholar 

  74. P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [INSPIRE].

    ADS  Google Scholar 

  75. E. Accomando, A. Belyaev, L. Fedeli, S.F. King and C. Shepherd-Themistocleous, Z′ physics with early LHC data, Phys. Rev. D 83 (2011) 075012 [arXiv:1010.6058] [INSPIRE].

    ADS  Google Scholar 

  76. DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].

  77. M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    Article  ADS  Google Scholar 

  78. E. Conte, B. Dumont, B. Fuks and C. Wymant, Designing and recasting LHC analyses with MadAnalysis 5, Eur. Phys. J. C 74 (2014) 3103 [arXiv:1405.3982] [INSPIRE].

    Article  Google Scholar 

  79. T. Junk, Confidence level computation for combining searches with small statistics, Nucl. Instrum. Meth. A 434 (1999) 435 [hep-ex/9902006] [INSPIRE].

    Article  ADS  Google Scholar 

  80. M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  81. F. del Águila and M. Chala, LHC bounds on lepton number violation mediated by doubly and singly-charged scalars, JHEP 03 (2014) 027 [arXiv:1311.1510] [INSPIRE].

    Article  Google Scholar 

  82. J. de Blas, M. Chala and J. Santiago, Global constraints on lepton-quark contact interactions, Phys. Rev. D 88 (2013) 095011 [arXiv:1307.5068] [INSPIRE].

    ADS  Google Scholar 

  83. CDF and D0 collaborations, T.A. Aaltonen et al., Combination of measurements of the top-quark pair production cross section from the Tevatron collider, Phys. Rev. D 89 (2014) 072001 [arXiv:1309.7570] [INSPIRE].

  84. CMS collaboration, Measurement of the \( t\overline{t} \) production cross section in pp collisions at \( \sqrt{s}=8 \) TeV in dilepton final states containing one τ lepton, Phys. Lett. B 739 (2014) 23 [arXiv:1407.6643] [INSPIRE].

  85. M. Czakon, P. Fiedler and A. Mitov, Total top-quark pair-production cross section at hadron colliders through O(α 4 S ), Phys. Rev. Lett. 110 (2013) 252004 [arXiv:1303.6254] [INSPIRE].

    Article  ADS  Google Scholar 

  86. Y. Bai and T.M.P. Tait, Searches with mono-leptons, Phys. Lett. B 723 (2013) 384 [arXiv:1208.4361] [INSPIRE].

    Article  ADS  Google Scholar 

  87. ATLAS collaboration, Search for dark matter in events with a hadronically decaying W or Z boson and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. Lett. 112 (2014) 041802 [arXiv:1309.4017] [INSPIRE].

  88. XENON1T collaboration, E. Aprile, The XENON1T dark matter search experiment, Springer Proc. Phys. 148 (2013) 93 [arXiv:1206.6288] [INSPIRE].

  89. D.C. Malling et al., After LUX: the LZ program, arXiv:1110.0103 [INSPIRE].

  90. F. Ruppin, J. Billard, E. Figueroa-Feliciano and L. Strigari, Complementarity of dark matter detectors in light of the neutrino background, Phys. Rev. D 90 (2014) 083510 [arXiv:1408.3581] [INSPIRE].

    ADS  Google Scholar 

  91. ATLAS collaboration, Sensitivity to WIMP dark matter in the final states containing jets and missing transverse momentum with the ATLAS detector at 14 TeV LHC, ATL-PHYS-PUB-2014-007, CERN, Geneva Switzerland (2014).

  92. F. Yu, Di-jet resonances at future hadron colliders: a Snowmass whitepaper, arXiv:1308.1077 [INSPIRE].

  93. C. Doglioni, private communication.

  94. CMS collaboration, Search for narrow resonances using the dijet mass spectrum in pp collisions at \( \sqrt{s}=7 \) TeV, CMS-PAS-EXO-11-094, CERN, Geneva Switzerland (2012).

  95. ATLAS collaboration, Search for \( t\overline{t} \) resonances in the lepton plus jets final state with ATLAS using 4.7 fb−1 of pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. D 88 (2013) 012004 [arXiv:1305.2756] [INSPIRE].

  96. CMS collaboration, Search for Z′ resonances decaying to \( t\overline{t} \) in dilepton+jets final states in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. D 87 (2013) 072002 [arXiv:1211.3338] [INSPIRE].

  97. C. Doglioni, Dijet benchmarks for calorimeters, presented at FHC BSM meeting, February 26 2015.

  98. M. de Vries, Four-quark effective operators at hadron colliders, JHEP 03 (2015) 095 [arXiv:1409.4657] [INSPIRE].

    Article  Google Scholar 

  99. CMS collaboration, Search for quark contact interactions and extra spatial dimensions using dijet angular distributions in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Phys. Lett. B 746 (2015) 79 [arXiv:1411.2646] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. DESY, Notkestrasse 85, D-22607, Hamburg, Germany

    Mikael Chala, Felix Kahlhoefer, Germano Nardini & Kai Schmidt-Hoberg

  2. Theory Division, CERN, 1211, Geneva 23, Switzerland

    Matthew McCullough

Authors
  1. Mikael Chala
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Felix Kahlhoefer
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Matthew McCullough
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Germano Nardini
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Kai Schmidt-Hoberg
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Mikael Chala.

Additional information

ArXiv ePrint: 1503.05916

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chala, M., Kahlhoefer, F., McCullough, M. et al. Constraining dark sectors with monojets and dijets. J. High Energ. Phys. 2015, 89 (2015). https://doi.org/10.1007/JHEP07(2015)089

Download citation

  • Received: 30 March 2015

  • Revised: 12 June 2015

  • Accepted: 22 June 2015

  • Published: 17 July 2015

  • DOI: https://doi.org/10.1007/JHEP07(2015)089

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Cosmology of Theories beyond the SM

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature