M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].
ADS
Article
Google Scholar
M. Cirelli, A. Strumia and M. Tamburini, Cosmology and astrophysics of minimal dark matter, Nucl. Phys. B 787 (2007) 152 [arXiv:0706.4071] [INSPIRE].
ADS
Article
Google Scholar
T. Hambye, Hidden vector dark matter, JHEP 01 (2009) 028 [arXiv:0811.0172] [INSPIRE].
ADS
Article
Google Scholar
C. Kilic, T. Okui and R. Sundrum, Vectorlike confinement at the LHC, JHEP 02 (2010) 018 [arXiv:0906.0577] [INSPIRE].
ADS
Article
MATH
Google Scholar
K. Hamaguchi, E. Nakamura, S. Shirai and T.T. Yanagida, Low-scale gauge mediation and composite messenger dark matter, JHEP 04 (2010) 119 [arXiv:0912.1683] [INSPIRE].
ADS
Article
MATH
Google Scholar
S.B. Gudnason, C. Kouvaris and F. Sannino, Dark matter from new technicolor theories, Phys. Rev. D 74 (2006) 095008 [hep-ph/0608055] [INSPIRE].
ADS
Google Scholar
R. Foadi, M.T. Frandsen and F. Sannino, Technicolor dark matter, Phys. Rev. D 80 (2009) 037702 [arXiv:0812.3406] [INSPIRE].
ADS
Google Scholar
M.Y. Khlopov and C. Kouvaris, Composite dark matter from a model with composite Higgs boson, Phys. Rev. D 78 (2008) 065040 [arXiv:0806.1191] [INSPIRE].
ADS
Google Scholar
D. Marzocca and A. Urbano, Composite dark matter and LHC interplay, JHEP 07 (2014) 107 [arXiv:1404.7419] [INSPIRE].
ADS
Article
Google Scholar
R. Barbieri, S. Rychkov and R. Torre, Signals of composite electroweak-neutral dark matter: LHC/direct detection interplay, Phys. Lett. B 688 (2010) 212 [arXiv:1001.3149] [INSPIRE].
ADS
Article
Google Scholar
M. Frigerio, A. Pomarol, F. Riva and A. Urbano, Composite scalar dark matter, JHEP 07 (2012) 015 [arXiv:1204.2808] [INSPIRE].
ADS
Article
Google Scholar
M. Asano and R. Kitano, Partially composite dark matter, JHEP 09 (2014) 171 [arXiv:1406.6374] [INSPIRE].
ADS
Article
Google Scholar
M.Y. Khlopov, A.G. Mayorov and E.Y. Soldatov, Composite dark matter and puzzles of dark matter searches, Int. J. Mod. Phys. D 19 (2010) 1385 [arXiv:1003.1144] [INSPIRE].
ADS
Article
Google Scholar
G.D. Kribs, T.S. Roy, J. Terning and K.M. Zurek, Quirky composite dark matter, Phys. Rev. D 81 (2010) 095001 [arXiv:0909.2034] [INSPIRE].
ADS
Google Scholar
M.Y. Khlopov, Composite dark matter from 4th generation, Pisma Zh. Eksp. Teor. Fiz. 83 (2006) 3 [JETP Lett. 83 (2006) 1] [astro-ph/0511796] [INSPIRE].
D.S.M. Alves, S.R. Behbahani, P. Schuster and J.G. Wacker, Composite inelastic dark matter, Phys. Lett. B 692 (2010) 323 [arXiv:0903.3945] [INSPIRE].
ADS
Article
MATH
Google Scholar
M. Lisanti and J.G. Wacker, Parity violation in composite inelastic dark matter models, Phys. Rev. D 82 (2010) 055023 [arXiv:0911.4483] [INSPIRE].
ADS
Google Scholar
D. Spier Moreira Alves, S.R. Behbahani, P. Schuster and J.G. Wacker, The cosmology of composite inelastic dark matter, JHEP 06 (2010) 113 [arXiv:1003.4729] [INSPIRE].
ADS
Article
MATH
Google Scholar
J.M. Cline, A.R. Frey and G.D. Moore, Composite magnetic dark matter and the 130 GeV line, Phys. Rev. D 86 (2012) 115013 [arXiv:1208.2685] [INSPIRE].
ADS
Google Scholar
J.M. Cline, Z. Liu, G. Moore and W. Xue, Composite strongly interacting dark matter, Phys. Rev. D 90 (2014) 015023 [arXiv:1312.3325] [INSPIRE].
ADS
Google Scholar
Lattice Strong Dynamics collaboration, T. Appelquist et al., Composite bosonic baryon dark matter on the lattice: SU(4) baryon spectrum and the effective Higgs interaction, Phys. Rev. D 89 (2014) 094508 [arXiv:1402.6656] [INSPIRE].
O. Antipin, M. Redi and A. Strumia, Dynamical generation of the weak and Dark Matter scales from strong interactions, JHEP 01 (2015) 157 [arXiv:1410.1817] [INSPIRE].
ADS
Article
Google Scholar
M. Farina, D. Pappadopulo and A. Strumia, A modified naturalness principle and its experimental tests, JHEP 08 (2013) 022 [arXiv:1303.7244] [INSPIRE].
ADS
Google Scholar
T. Appelquist et al., Stealth dark matter: dark scalar baryons through the Higgs portal, arXiv:1503.04203 [INSPIRE].
Y. Bai and R.J. Hill, Weakly interacting stable pions, Phys. Rev. D 82 (2010) 111701 [arXiv:1005.0008] [INSPIRE].
ADS
Google Scholar
E. Nardi, F. Sannino and A. Strumia, Decaying dark matter can explain the e± excesses, JCAP 01 (2009) 043 [arXiv:0811.4153] [INSPIRE].
ADS
Article
Google Scholar
A. Arvanitaki et al., Decaying dark matter as a probe of unification and TeV spectroscopy, Phys. Rev. D 80 (2009) 055011 [arXiv:0904.2789] [INSPIRE].
ADS
Google Scholar
R. Feger and T.W. Kephart, LieART — A Mathematica application for Lie Algebras and Representation Theory, Comput. Phys. Commun. 192 (2015) 166 [arXiv:1206.6379] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
S. Bolognesi, Skyrmions in orientifold and adjoint QCD, arXiv:0901.3796 [INSPIRE].
A. Pich and E. de Rafael, Strong CP-violation in an effective chiral Lagrangian approach, Nucl. Phys. B 367 (1991) 313 [INSPIRE].
ADS
Article
Google Scholar
T. DeGrand, Y. Liu, E.T. Neil, Y. Shamir and B. Svetitsky, Spectroscopy of SU(4) gauge theory with two flavors of sextet fermions, Phys. Rev. D 91 (2015) 114502 [arXiv:1501.05665] [INSPIRE].
ADS
Google Scholar
R.J. Crewther, P. Di Vecchia, G. Veneziano and E. Witten, Chiral estimate of the electric dipole moment of the neutron in quantum chromodynamics, Phys. Lett. B 88 (1979) 123 [Erratum ibid. B 91 (1980) 487] [INSPIRE].
S.R. Coleman and S.L. Glashow, Electrodynamic properties of baryons in the unitary symmetry scheme, Phys. Rev. Lett. 6 (1961) 423 [INSPIRE].
ADS
Article
Google Scholar
V. Barger, W.-Y. Keung and D. Marfatia, Electromagnetic properties of dark matter: Dipole moments and charge form factor, Phys. Lett. B 696 (2011) 74 [arXiv:1007.4345] [INSPIRE].
ADS
Article
Google Scholar
M. Cirelli, E. Del Nobile and P. Panci, Tools for model-independent bounds in direct dark matter searches, JCAP 10 (2013) 019 [arXiv:1307.5955] [INSPIRE].
ADS
Article
Google Scholar
Lattice Strong Dynamics collaboration, T. Appelquist et al., Lattice calculation of composite dark matter form factors, Phys. Rev. D 88 (2013) 014502 [arXiv:1301.1693] [INSPIRE].
J.B. Dent, L.M. Krauss, J.L. Newstead and S. Sabharwal, A general analysis of direct dark matter detection: from microphysics to observational signatures, arXiv:1505.03117 [INSPIRE].
S. Davidson, S. Forte, P. Gambino, N. Rius and A. Strumia, Old and new physics interpretations of the NuTeV anomaly, JHEP 02 (2002) 037 [hep-ph/0112302] [INSPIRE].
ADS
Article
Google Scholar
N. Arkani-Hamed, A. Delgado and G.F. Giudice, The well-tempered neutralino, Nucl. Phys. B 741 (2006) 108 [hep-ph/0601041] [INSPIRE].
ADS
Article
Google Scholar
LUX collaboration, C. Faham, First dark matter search results from the Large Underground Xenon (LUX) experiment, arXiv:1405.5906 [INSPIRE].
C. Savage, A. Scaffidi, M. White and A.G. Williams, LUX likelihood and limits on spin-independent and spin-dependent WIMP couplings with LUXCalc, arXiv:1502.02667 [INSPIRE].
D. Tucker-Smith and N. Weiner, Inelastic dark matter, Phys. Rev. D 64 (2001) 043502 [hep-ph/0101138] [INSPIRE].
ADS
Google Scholar
E. Del Nobile, R. Franceschini, D. Pappadopulo and A. Strumia, Minimal matter at the Large Hadron Collider, Nucl. Phys. B 826 (2010) 217 [arXiv:0908.1567] [INSPIRE].
ADS
Article
MATH
Google Scholar
O. Antipin, D. Becciolini, M. Redi, A. Strumia and E. Vigiani, Strongly interacting vector-like fermions, work in progress.
R.D. Pisarski and F. Wilczek, Remarks on the chiral phase transition in chromodynamics, Phys. Rev. D 29 (1984) 338 [INSPIRE].
ADS
Google Scholar
P. Schwaller, Gravitational waves from a dark (twin) phase transition, arXiv:1504.07263 [INSPIRE].
P. L. Bender, K. Danzmann and the LISA Study Team, LISA pre-phase a report, MPQ233 (1998), http://lisa.nasa.gov.
R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [INSPIRE].
ADS
Article
Google Scholar
G. Marandella, C. Schappacher and A. Strumia, Supersymmetry and precision data after LEP2, Nucl. Phys. B 715 (2005) 173 [hep-ph/0502095] [INSPIRE].
ADS
Article
Google Scholar
A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].
ADS
Article
Google Scholar
N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
ACME collaboration, J. Baron et al., Order of magnitude smaller limit on the electric dipole moment of the electron, Science 343 (2014) 269 [arXiv:1310.7534] [INSPIRE].
E. Witten, Large-N chiral dynamics, Annals Phys. 128 (1980) 363 [INSPIRE].
ADS
Article
Google Scholar
G.F. Giudice, R. Rattazzi and A. Strumia, Unificaxion, Phys. Lett. B 715 (2012) 142 [arXiv:1204.5465] [INSPIRE].
ADS
Article
Google Scholar