Skip to main content

Accidental composite dark matter

A preprint version of the article is available at arXiv.

Abstract

We build models where Dark Matter candidates arise as composite states of a new confining gauge force, stable thanks to accidental symmetries. Restricting to renormalizable theories compatible with SU(5) unification, we find 13 models based on SU(N) gauge theories and 9 based on SO(N). We also describe other models that require non-renormalizable interactions. The two gauge groups lead to distinctive phenomenologies: SU(N) theories give complex DM, with potentially observable electric and magnetic dipole moments that lead to peculiar spin-independent cross sections; SO(N) theories give real DM, with challenging spin-dependent cross sections or inelastic scatterings. Models with Yukawa couplings also give rise to spin-independent direct detection mediated by the Higgs boson and to electric dipole moments for the electron. In some models DM has higher spin. Each model predicts a specific set of lighter composite scalars, possibly observable at colliders.

References

  1. M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].

    ADS  Article  Google Scholar 

  2. M. Cirelli, A. Strumia and M. Tamburini, Cosmology and astrophysics of minimal dark matter, Nucl. Phys. B 787 (2007) 152 [arXiv:0706.4071] [INSPIRE].

    ADS  Article  Google Scholar 

  3. T. Hambye, Hidden vector dark matter, JHEP 01 (2009) 028 [arXiv:0811.0172] [INSPIRE].

    ADS  Article  Google Scholar 

  4. C. Kilic, T. Okui and R. Sundrum, Vectorlike confinement at the LHC, JHEP 02 (2010) 018 [arXiv:0906.0577] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  5. K. Hamaguchi, E. Nakamura, S. Shirai and T.T. Yanagida, Low-scale gauge mediation and composite messenger dark matter, JHEP 04 (2010) 119 [arXiv:0912.1683] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  6. S.B. Gudnason, C. Kouvaris and F. Sannino, Dark matter from new technicolor theories, Phys. Rev. D 74 (2006) 095008 [hep-ph/0608055] [INSPIRE].

    ADS  Google Scholar 

  7. R. Foadi, M.T. Frandsen and F. Sannino, Technicolor dark matter, Phys. Rev. D 80 (2009) 037702 [arXiv:0812.3406] [INSPIRE].

    ADS  Google Scholar 

  8. M.Y. Khlopov and C. Kouvaris, Composite dark matter from a model with composite Higgs boson, Phys. Rev. D 78 (2008) 065040 [arXiv:0806.1191] [INSPIRE].

    ADS  Google Scholar 

  9. D. Marzocca and A. Urbano, Composite dark matter and LHC interplay, JHEP 07 (2014) 107 [arXiv:1404.7419] [INSPIRE].

    ADS  Article  Google Scholar 

  10. R. Barbieri, S. Rychkov and R. Torre, Signals of composite electroweak-neutral dark matter: LHC/direct detection interplay, Phys. Lett. B 688 (2010) 212 [arXiv:1001.3149] [INSPIRE].

    ADS  Article  Google Scholar 

  11. M. Frigerio, A. Pomarol, F. Riva and A. Urbano, Composite scalar dark matter, JHEP 07 (2012) 015 [arXiv:1204.2808] [INSPIRE].

    ADS  Article  Google Scholar 

  12. M. Asano and R. Kitano, Partially composite dark matter, JHEP 09 (2014) 171 [arXiv:1406.6374] [INSPIRE].

    ADS  Article  Google Scholar 

  13. M.Y. Khlopov, A.G. Mayorov and E.Y. Soldatov, Composite dark matter and puzzles of dark matter searches, Int. J. Mod. Phys. D 19 (2010) 1385 [arXiv:1003.1144] [INSPIRE].

    ADS  Article  Google Scholar 

  14. G.D. Kribs, T.S. Roy, J. Terning and K.M. Zurek, Quirky composite dark matter, Phys. Rev. D 81 (2010) 095001 [arXiv:0909.2034] [INSPIRE].

    ADS  Google Scholar 

  15. M.Y. Khlopov, Composite dark matter from 4th generation, Pisma Zh. Eksp. Teor. Fiz. 83 (2006) 3 [JETP Lett. 83 (2006) 1] [astro-ph/0511796] [INSPIRE].

  16. D.S.M. Alves, S.R. Behbahani, P. Schuster and J.G. Wacker, Composite inelastic dark matter, Phys. Lett. B 692 (2010) 323 [arXiv:0903.3945] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  17. M. Lisanti and J.G. Wacker, Parity violation in composite inelastic dark matter models, Phys. Rev. D 82 (2010) 055023 [arXiv:0911.4483] [INSPIRE].

    ADS  Google Scholar 

  18. D. Spier Moreira Alves, S.R. Behbahani, P. Schuster and J.G. Wacker, The cosmology of composite inelastic dark matter, JHEP 06 (2010) 113 [arXiv:1003.4729] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  19. J.M. Cline, A.R. Frey and G.D. Moore, Composite magnetic dark matter and the 130 GeV line, Phys. Rev. D 86 (2012) 115013 [arXiv:1208.2685] [INSPIRE].

    ADS  Google Scholar 

  20. J.M. Cline, Z. Liu, G. Moore and W. Xue, Composite strongly interacting dark matter, Phys. Rev. D 90 (2014) 015023 [arXiv:1312.3325] [INSPIRE].

    ADS  Google Scholar 

  21. Lattice Strong Dynamics collaboration, T. Appelquist et al., Composite bosonic baryon dark matter on the lattice: SU(4) baryon spectrum and the effective Higgs interaction, Phys. Rev. D 89 (2014) 094508 [arXiv:1402.6656] [INSPIRE].

  22. O. Antipin, M. Redi and A. Strumia, Dynamical generation of the weak and Dark Matter scales from strong interactions, JHEP 01 (2015) 157 [arXiv:1410.1817] [INSPIRE].

    ADS  Article  Google Scholar 

  23. M. Farina, D. Pappadopulo and A. Strumia, A modified naturalness principle and its experimental tests, JHEP 08 (2013) 022 [arXiv:1303.7244] [INSPIRE].

    ADS  Google Scholar 

  24. T. Appelquist et al., Stealth dark matter: dark scalar baryons through the Higgs portal, arXiv:1503.04203 [INSPIRE].

  25. Y. Bai and R.J. Hill, Weakly interacting stable pions, Phys. Rev. D 82 (2010) 111701 [arXiv:1005.0008] [INSPIRE].

    ADS  Google Scholar 

  26. E. Nardi, F. Sannino and A. Strumia, Decaying dark matter can explain the e± excesses, JCAP 01 (2009) 043 [arXiv:0811.4153] [INSPIRE].

    ADS  Article  Google Scholar 

  27. A. Arvanitaki et al., Decaying dark matter as a probe of unification and TeV spectroscopy, Phys. Rev. D 80 (2009) 055011 [arXiv:0904.2789] [INSPIRE].

    ADS  Google Scholar 

  28. R. Feger and T.W. Kephart, LieARTA Mathematica application for Lie Algebras and Representation Theory, Comput. Phys. Commun. 192 (2015) 166 [arXiv:1206.6379] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  29. S. Bolognesi, Skyrmions in orientifold and adjoint QCD, arXiv:0901.3796 [INSPIRE].

  30. A. Pich and E. de Rafael, Strong CP-violation in an effective chiral Lagrangian approach, Nucl. Phys. B 367 (1991) 313 [INSPIRE].

    ADS  Article  Google Scholar 

  31. T. DeGrand, Y. Liu, E.T. Neil, Y. Shamir and B. Svetitsky, Spectroscopy of SU(4) gauge theory with two flavors of sextet fermions, Phys. Rev. D 91 (2015) 114502 [arXiv:1501.05665] [INSPIRE].

    ADS  Google Scholar 

  32. R.J. Crewther, P. Di Vecchia, G. Veneziano and E. Witten, Chiral estimate of the electric dipole moment of the neutron in quantum chromodynamics, Phys. Lett. B 88 (1979) 123 [Erratum ibid. B 91 (1980) 487] [INSPIRE].

  33. S.R. Coleman and S.L. Glashow, Electrodynamic properties of baryons in the unitary symmetry scheme, Phys. Rev. Lett. 6 (1961) 423 [INSPIRE].

    ADS  Article  Google Scholar 

  34. V. Barger, W.-Y. Keung and D. Marfatia, Electromagnetic properties of dark matter: Dipole moments and charge form factor, Phys. Lett. B 696 (2011) 74 [arXiv:1007.4345] [INSPIRE].

    ADS  Article  Google Scholar 

  35. M. Cirelli, E. Del Nobile and P. Panci, Tools for model-independent bounds in direct dark matter searches, JCAP 10 (2013) 019 [arXiv:1307.5955] [INSPIRE].

    ADS  Article  Google Scholar 

  36. Lattice Strong Dynamics collaboration, T. Appelquist et al., Lattice calculation of composite dark matter form factors, Phys. Rev. D 88 (2013) 014502 [arXiv:1301.1693] [INSPIRE].

  37. J.B. Dent, L.M. Krauss, J.L. Newstead and S. Sabharwal, A general analysis of direct dark matter detection: from microphysics to observational signatures, arXiv:1505.03117 [INSPIRE].

  38. S. Davidson, S. Forte, P. Gambino, N. Rius and A. Strumia, Old and new physics interpretations of the NuTeV anomaly, JHEP 02 (2002) 037 [hep-ph/0112302] [INSPIRE].

    ADS  Article  Google Scholar 

  39. N. Arkani-Hamed, A. Delgado and G.F. Giudice, The well-tempered neutralino, Nucl. Phys. B 741 (2006) 108 [hep-ph/0601041] [INSPIRE].

    ADS  Article  Google Scholar 

  40. LUX collaboration, C. Faham, First dark matter search results from the Large Underground Xenon (LUX) experiment, arXiv:1405.5906 [INSPIRE].

  41. C. Savage, A. Scaffidi, M. White and A.G. Williams, LUX likelihood and limits on spin-independent and spin-dependent WIMP couplings with LUXCalc, arXiv:1502.02667 [INSPIRE].

  42. D. Tucker-Smith and N. Weiner, Inelastic dark matter, Phys. Rev. D 64 (2001) 043502 [hep-ph/0101138] [INSPIRE].

    ADS  Google Scholar 

  43. E. Del Nobile, R. Franceschini, D. Pappadopulo and A. Strumia, Minimal matter at the Large Hadron Collider, Nucl. Phys. B 826 (2010) 217 [arXiv:0908.1567] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  44. O. Antipin, D. Becciolini, M. Redi, A. Strumia and E. Vigiani, Strongly interacting vector-like fermions, work in progress.

  45. R.D. Pisarski and F. Wilczek, Remarks on the chiral phase transition in chromodynamics, Phys. Rev. D 29 (1984) 338 [INSPIRE].

    ADS  Google Scholar 

  46. P. Schwaller, Gravitational waves from a dark (twin) phase transition, arXiv:1504.07263 [INSPIRE].

  47. P. L. Bender, K. Danzmann and the LISA Study Team, LISA pre-phase a report, MPQ233 (1998), http://lisa.nasa.gov.

  48. R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys. B 703 (2004) 127 [hep-ph/0405040] [INSPIRE].

    ADS  Article  Google Scholar 

  49. G. Marandella, C. Schappacher and A. Strumia, Supersymmetry and precision data after LEP2, Nucl. Phys. B 715 (2005) 173 [hep-ph/0502095] [INSPIRE].

    ADS  Article  Google Scholar 

  50. A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].

    ADS  Article  Google Scholar 

  51. N. Arkani-Hamed, S. Dimopoulos, G.F. Giudice and A. Romanino, Aspects of split supersymmetry, Nucl. Phys. B 709 (2005) 3 [hep-ph/0409232] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  52. ACME collaboration, J. Baron et al., Order of magnitude smaller limit on the electric dipole moment of the electron, Science 343 (2014) 269 [arXiv:1310.7534] [INSPIRE].

  53. E. Witten, Large-N chiral dynamics, Annals Phys. 128 (1980) 363 [INSPIRE].

    ADS  Article  Google Scholar 

  54. G.F. Giudice, R. Rattazzi and A. Strumia, Unificaxion, Phys. Lett. B 715 (2012) 142 [arXiv:1204.5465] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michele Redi.

Additional information

ArXiv ePrint: 1503.08749

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Antipin, O., Redi, M., Strumia, A. et al. Accidental composite dark matter. J. High Energ. Phys. 2015, 39 (2015). https://doi.org/10.1007/JHEP07(2015)039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2015)039

Keywords

  • Technicolor and Composite Models
  • Global Symmetries
  • Chiral Lagrangians