Skip to main content
Log in

Vectorlike confinement at the LHC

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We argue for the plausibility of a broad class of vectorlike confining gauge theories at the TeV scale which interact with the Standard Model predominantly via gauge interactions. These theories have a rich phenomenology at the LHC if confinement occurs at the TeV scale, while ensuring negligible impact on precision electroweak and flavor observables. Spin-1 bound states can be resonantly produced via their mixing with Standard Model gauge bosons. The resonances promptly decay to pseudo-Goldstone bosons, some of which promptly decay to a pair of Standard Model gauge bosons, while others are charged and stable on collider time scales. The diverse set of final states with little background include multiple photons and leptons, missing energy, massive stable charged particles and the possibility of highly displaced vertices in dilepton, leptoquark or diquark decays. Among others, a novel experimental signature of resonance reconstruction out of massive stable charged particles is highlighted. Some of the long-lived states also constitute Dark Matter candidates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [SPIRES].

    Article  ADS  Google Scholar 

  2. G.D. Kribs, T. Plehn, M. Spannowsky and T.M.P. Tait, Four generations and Higgs physics, Phys. Rev. D 76 (2007) 075016 [arXiv:0706.3718] [SPIRES].

    ADS  Google Scholar 

  3. E. Eichten and K.D. Lane, Dynamical Breaking of Weak Interaction Symmetries, Phys. Lett. B 90 (1980) 125 [SPIRES].

    ADS  Google Scholar 

  4. C. Kilic, T. Okui and R. Sundrum, Colored Resonances at the Tevatron: Phenomenology and Discovery Potential in Multijets, JHEP 07 (2008) 038 [arXiv:0802.2568] [SPIRES].

    Article  ADS  Google Scholar 

  5. C. Kilic, S. Schumann and M. Son, Searching for Multijet Resonances at the LHC, JHEP 04 (2009) 128 [arXiv:0810.5542] [SPIRES].

    Article  ADS  Google Scholar 

  6. J. Kang and M.A. Luty, Macroscopic Strings and ‘Quirks’ at Colliders, JHEP 11 (2009) 065 [arXiv:0805.4642] [SPIRES].

    Article  Google Scholar 

  7. M.J. Strassler and K.M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B 651 (2007) 374 [hep-ph/0604261] [SPIRES].

    ADS  Google Scholar 

  8. T. Han, Z. Si, K.M. Zurek and M.J. Strassler, Phenomenology of Hidden Valleys at Hadron Colliders, JHEP 07 (2008) 008 [arXiv:0712.2041] [SPIRES].

    Article  ADS  Google Scholar 

  9. L. Susskind, Dynamics of Spontaneous Symmetry Breaking in the Weinberg- Salam Theory, Phys. Rev. D 20 (1979) 2619 [SPIRES].

    ADS  Google Scholar 

  10. S. Weinberg, Implications of Dynamical Symmetry Breaking, Phys. Rev. D 13 (1976) 974 [SPIRES].

    ADS  Google Scholar 

  11. S. Weinberg, Implications of Dynamical Symmetry Breaking: An Addendum, Phys. Rev. D 19 (1979) 1277 [SPIRES].

    ADS  Google Scholar 

  12. E. Farhi and L. Susskind, Technicolor, Phys. Rept. 74 (1981) 277 [SPIRES].

    Article  ADS  Google Scholar 

  13. C.T. Hill and E.H. Simmons, Strong dynamics and electroweak symmetry breaking, Phys. Rept. 381 (2003) 235 [Erratum ibid. 390 (2004) 553] [hep-ph/0203079] [SPIRES].

    Article  ADS  Google Scholar 

  14. K. Lane and S. Mrenna, The Collider phenomenology of technihadrons in the technicolor straw man model, Phys. Rev. D 67 (2003) 115011 [hep-ph/0210299] [SPIRES].

    ADS  Google Scholar 

  15. G.H. Brooijmans et al., New Physics at the LHC: A Les Houches Report. Physics at TeV Colliders 2007 — New Physics Working Group, arXiv:0802.3715 [SPIRES].

  16. F. Sannino, Dynamical Stabilization of theFermi Scale: Phase Diagram of Strongly Coupled Theories for (Minimal) Walking Technicolor and Unparticles, arXiv:0804.0182 [SPIRES].

  17. T.W. Appelquist, D. Karabali and L.C.R. Wijewardhana, Chiral Hierarchies and the Flavor Changing Neutral Current Problem in Technicolor, Phys. Rev. Lett. 57 (1986) 957 [SPIRES].

    Article  ADS  Google Scholar 

  18. T. Appelquist and L.C.R. Wijewardhana, Chiral Hierarchies and Chiral Perturbations in Technicolor, Phys. Rev. D 35 (1987) 774 [SPIRES].

    ADS  Google Scholar 

  19. M.A. Luty and T. Okui, Conformal technicolor, JHEP 09 (2006) 070 [hep-ph/0409274] [SPIRES].

    Article  ADS  Google Scholar 

  20. M.A. Luty, Strong Conformal Dynamics at the LHC and on the Lattice, JHEP 04 (2009) 050 [arXiv:0806.1235] [SPIRES].

    Article  ADS  Google Scholar 

  21. D.D. Dietrich, F. Sannino and K. Tuominen, Light composite Higgs from higher representations versus electroweak precision measurements: Predictions for LHC, Phys. Rev. D 72 (2005) 055001 [hep-ph/0505059] [SPIRES].

    ADS  Google Scholar 

  22. R. Foadi, M.T. Frandsen, T.A. Ryttov and F. Sannino, Minimal Walking Technicolor: Set Up for Collider Physics, Phys. Rev. D 76 (2007) 055005 [arXiv:0706.1696] [SPIRES].

    ADS  Google Scholar 

  23. E. Eichten and K. Lane, Low-scale technicolor at the Tevatron and LHC, Phys. Lett. B 669 (2008) 235 [arXiv:0706.2339] [SPIRES].

    ADS  Google Scholar 

  24. A. Belyaev et al., Technicolor Walks at the LHC, Phys. Rev. D 79 (2009) 035006 [arXiv:0809.0793] [SPIRES].

    ADS  Google Scholar 

  25. C. Kilic and T. Okui, The LHC Phenomenology of Vectorlike Confinement, arXiv:1001.4526 [SPIRES].

  26. B. Holdom and J. Terning, Large corrections to electroweak parameters in technicolor theories, Phys. Lett. B 247 (1990) 88 [SPIRES].

    ADS  Google Scholar 

  27. M. Golden and L. Randall, Radiative corrections to electroweak parameters in technicolor theories, Nucl. Phys. B 361 (1991) 3 [SPIRES].

    Article  ADS  Google Scholar 

  28. M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev. D 46 (1992) 381 [SPIRES].

    ADS  Google Scholar 

  29. UTfit collaboration, M. Bona et al., Model-independent constraints onF = 2 operators and the scale of new physics, JHEP 03 (2008) 049 [arXiv:0707.0636] [SPIRES].

    Article  ADS  Google Scholar 

  30. M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [SPIRES].

    Article  ADS  Google Scholar 

  31. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].

    ADS  Google Scholar 

  32. D0 collaboration, V.M. Abazov et al., Search for a scalar or vector particle decaying into Zγ in \( p\bar p \) collisions at \( \sqrt s = 1.96\;TeV \), Phys. Lett. B 671 (2009) 349 [arXiv:0806.0611] [SPIRES].

    ADS  Google Scholar 

  33. D0 collaboration, V.M. Abazov et al., Search for long-lived particles decaying into electron or photon pairs with the D0 detector, Phys. Rev. Lett. 101 (2008) 111802 [arXiv:0806.2223] [SPIRES].

    Article  ADS  Google Scholar 

  34. CDF collaboration, A.L. Scott, Search for long-lived parents of the Z 0 boson, Int. J. Mod. Phys. A 20 (2005) 3263 [hep-ex/0410019] [SPIRES].

    ADS  Google Scholar 

  35. P.F. Smith and J.R.J. Bennett, A search for heavy stable particles, Nucl. Phys. B 149 (1979) 525 [SPIRES].

    Article  ADS  Google Scholar 

  36. T.K. Hemmick et al., A search for anomalously heavy isotopes of low Z nuclei, Phys. Rev. D 41 (1990) 2074 [SPIRES].

    ADS  Google Scholar 

  37. P. Verkerk et al., Search for superheavy hydrogen in sea water, Phys. Rev. Lett. 68 (1992) 1116 [SPIRES].

    Article  ADS  Google Scholar 

  38. T. Yamagata, Y. Takamori and H. Utsunomiya, Search for anomalously heavy hydrogen in deep sea water at 4000m, Phys. Rev. D 47 (1993) 1231 [SPIRES].

    ADS  Google Scholar 

  39. P.F. Smith et al., A search for anomalous hydrogen in enriched D-2 O, using a time-of-flight spectrometer, Nucl. Phys. B 206 (1982) 333 [SPIRES].

    Article  ADS  Google Scholar 

  40. CDF collaboration, K. Hatakeyama, High Mass Resonance Searches at CDF, arXiv:0810.3681 [SPIRES].

  41. CDF Collaboration, High-Mass Dielectron Resonance Search in \( p\bar p \) Collisions at \( \sqrt s = 1.96\;TeV \), CDF public note 9160.

  42. CDF collaboration, T. Aaltonen et al., A search for high-mass resonances decaying to dimuons at CDF, Phys. Rev. Lett. 102 (2009) 091805 [arXiv:0811.0053] [SPIRES].

    Article  ADS  Google Scholar 

  43. D0 Collaboration, Search for Heavy ZBosons in the Dielectron Channel with 200 pb −1 of Data with the D0 Detector, D0 public note 4375.

  44. D0 Collaboration, Search for Heavy ZBosons in the Dimuon Channel with 250 pb −1 of Data with the D0 Detector”, D0 public note 4577.

  45. CHARM collaboration, F. Bergsma et al., Search for axion like particle production in 400GeV proton-copper interactions, Phys. Lett. B 157 (1985) 458 [SPIRES].

    ADS  Google Scholar 

  46. E.M. Riordan et al., A search for short lived axions in an electron beam dump experiment, Phys. Rev. Lett. 59 (1987) 755 [SPIRES].

    Article  ADS  Google Scholar 

  47. J.D. Bjorken et al., Search for Neutral Metastable Penetrating Particles Produced in the SLAC Beam Dump, Phys. Rev. D 38 (1988) 3375 [SPIRES].

    ADS  Google Scholar 

  48. A. Bross et al., A Search for Shortlived Particles Produced in an Electron Beam Dump, Phys. Rev. Lett. 67 (1991) 2942 [SPIRES].

    Article  ADS  Google Scholar 

  49. J.D. Bjorken, R. Essig, P. Schuster and N. Toro, New Fixed-Target Experiments to Search for Dark Gauge Forces, Phys. Rev. D 80 (2009) 075018 [arXiv:0906.0580] [SPIRES].

    Google Scholar 

  50. BaBar collaboration, B. Aubert et al., Search for Invisible Decays of a Light Scalar in Radiative Transitions υ 3S → γ A0, arXiv:0808.0017 [SPIRES].

  51. LEP collaboration, A. Rosca, Fermiophobic Higgs bosons at LEP, hep-ex/0212038 [SPIRES].

  52. D0 collaboration, V.M. Abazov et al., Search for Long-Lived Charged Massive Particles with the D0 Detector, Phys. Rev. Lett. 102 (2009) 161802 [arXiv:0809.4472] [SPIRES].

    Article  ADS  Google Scholar 

  53. CDF collaboration, T. Aaltonen et al., Search for Long-Lived Massive Charged Particles in 1.96 TeV \( \bar pp \) Collisions, Phys. Rev. Lett. 103 (2009) 021802 [arXiv:0902.1266] [SPIRES].

    Article  ADS  Google Scholar 

  54. CDF collaboration, D.E. Acosta et al., Measurement of the cross section for prompt diphoton production in \( p\bar p \) collisions at \( \sqrt s = 1.96\;TeV \), Phys. Rev. Lett. 95 (2005) 022003 [hep-ex/0412050] [SPIRES].

    Article  ADS  Google Scholar 

  55. D0 collaboration, V.M. Abazov et al., Search for third-generation leptoquarks in \( p\bar p \) collisions at \( \sqrt s = 1.96\;TeV \), Phys. Rev. Lett. 99 (2007) 061801 [arXiv:0705.0812] [SPIRES].

    Article  ADS  Google Scholar 

  56. D0 collaboration, V.M. Abazov et al., Search for third generation scalar leptoquarks decaying into τb, Phys. Rev. Lett. 101 (2008) 241802 [arXiv:0806.3527] [SPIRES].

    Article  ADS  Google Scholar 

  57. Z. Chacko, C.A. Krenke and T. Okui, Supersymmetry in Slow Motion, JHEP 01 (2009) 050 [arXiv:0809.3820] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  58. T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Can Kilic.

Additional information

ArXiv ePrint: 0906.0577

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kilic, C., Okui, T. & Sundrum, R. Vectorlike confinement at the LHC. J. High Energ. Phys. 2010, 18 (2010). https://doi.org/10.1007/JHEP02(2010)018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP02(2010)018

Keywords

Navigation