Skip to main content
Log in

M-theoretic derivations of 4d-2d dualities: from a geometric Langlands duality for surfaces, to the AGT correspondence, to integrable systems

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

In part I, we extend our analysis in [arXiv:0807.1107], and show that a mathematically conjectured geometric Langlands duality for complex surfaces in [1], and its generalizations — which relate some cohomology of the moduli space of certain (“ramified”) G-instantons to the integrable representations of the Langlands dual of certain affine (sub) G-algebras, where G is any compact Lie group — can be derived, purely physically, from the principle that the spacetime BPS spectra of string-dual M-theory compactifications ought to be equivalent.

In part II, to the setup in part I, we introduce Omega-deformation via fluxbranes and add half-BPS boundary defects via M9-branes, and show that the celebrated AGT correspondence in [2, 3], and its generalizations — which essentially relate, among other things, some equivariant cohomology of the moduli space of certain (“ramified”) G-instantons to the integrable representations of the Langlands dual of certain affine \( \mathcal{W} \)-algebras — can likewise be derived from the principle that the spacetime BPS spectra of string-dual M-theory compactifications ought to be equivalent.

In part III, we consider various limits of our setup in part II, and connect our story to chiral fermions and integrable systems. Among other things, we derive the NekrasovOkounkov conjecture in [4] — which relates the topological string limit of the dual Nekrasov partition function for pure G to the integrable representations of the Langlands dual of an affine G-algebra — and also demonstrate that the Nekrasov-Shatashvili limit of the “fullyramified” Nekrasov instanton partition function for pure G is a simultaneous eigenfunction of the quantum Toda Hamiltonians associated with the Langlands dual of an affine G-algebra. Via the case with matter, we also make contact with Hitchin systems and the “ramified” geometric Langlands correspondence for curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Braverman and M. Finkelberg, Pursuing the double affine Grassmannian I: transversal slices via instantons on A k-singularities, Duke Math. 152 (2010) 175 [arXiv:0711.2083].

    Article  MathSciNet  MATH  Google Scholar 

  2. L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. D. Gaiotto, Asymptotically free N = 2 theories and irregular conformal blocks, arXiv:0908.0307 [INSPIRE].

  4. N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, Prog. Math. 244 (2006) 525 [hep-th/0306238] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  5. H. Nakajima, Instantons on ALE Spaces, Quiver Varieties, and Kac-Moody Algebras, Duke Math. 76 (1994) 365.

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Vafa and E. Witten, A Strong coupling test of S duality, Nucl. Phys. B 431 (1994) 3 [hep-th/9408074] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. C. Vafa, Instantons on D-branes, Nucl. Phys. B 463 (1996) 435 [hep-th/9512078] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. J.A. Harvey and G.W. Moore, On the algebras of BPS states, Commun. Math. Phys. 197 (1998) 489 [hep-th/9609017] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [INSPIRE].

    MathSciNet  Google Scholar 

  10. R. Dijkgraaf, L. Hollands, P. Sulkowski and C. Vafa, Supersymmetric gauge theories, intersecting branes and free fermions, JHEP 02 (2008) 106 [arXiv:0709.4446] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. I. Mirkovic and K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, math.RT/0401222.

  12. A. Beilinson and V. Drinfeld, Quantization of Hitchins integrable system and Hecke eigensheaves, preprint (ca. 1995).

  13. E. Witten, Duality from Six-Dimensions I, II, III, lectures delivered at the IAS in Feb. 2008. Notes for the lectures taken by D. Ben-Zvi can be found at: http://www.math.utexas.edu/users/benzvi/GRASP/lectures/IASterm.html.

  14. E. Witten, Geometric Langlands From Six Dimensions, arXiv:0905.2720 [INSPIRE].

  15. M.-C. Tan, Five-Branes in M-theory and a Two-Dimensional Geometric Langlands Duality, Adv. Theor. Math. Phys. 14 (2010) 179 [arXiv:0807.1107] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  16. D. Gaiotto, \( \mathcal{N} \) = 2 dualities, JHEP 08 (2012) 034 [arXiv:0904.2715] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. N. Wyllard, A(N-1) conformal Toda field theory correlation functions from conformal N =2 SU(N) quiver gauge theories,JHEP 11 (2009) 002[arXiv:0907.2189] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. C.A. Keller, N. Mekareeya, J. Song and Y. Tachikawa, The ABCDEFG of Instantons and W-algebras, JHEP 03 (2012) 045 [arXiv:1111.5624] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. L.F. Alday and Y. Tachikawa, Affine SL(2) conformal blocks from 4d gauge theories, Lett. Math. Phys. 94 (2010) 87 [arXiv:1005.4469] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. A. Braverman, B. Feigin, M. Finkelberg and L. Rybnikov, A Finite analog of the AGT relation I: Finite W -algebras and quasimapsspaces, Commun. Math. Phys. 308 (2011) 457 [arXiv:1008.3655] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. O. Schiffmann and E. Vasserot, Cherednik algebras, W algebras and the equivariant cohomology of the moduli space of instantons on \( {{\mathbb{A}}^2} \), arXiv:1202.2756.

  22. D. Maulik and A. Okounkov, Quantum Groups and Quantum Cohomology, arXiv:1211.1287 [INSPIRE].

  23. J. Yagi, On the Six-Dimensional Origin of the AGT Correspondence, JHEP 02 (2012) 020 [arXiv:1112.0260] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. J. Yagi, Compactification on the Ω-background and the AGT correspondence, JHEP 09 (2012) 101 [arXiv:1205.6820] [INSPIRE].

    Article  ADS  Google Scholar 

  25. N. Wyllard, Instanton partition functions in N = 2 SU(N ) gauge theories with a general surface operator and their W-algebra duals, JHEP 02 (2011) 114 [arXiv:1012.1355] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. H. Kanno and Y. Tachikawa, Instanton counting with a surface operator and the chain-saw quiver, JHEP 06 (2011) 119 [arXiv:1105.0357] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. A. Braverman, Instanton counting via affine Lie algebras. 1. Equivariant J functions of (affine) flag manifolds and Whittaker vectors, math/0401409 [INSPIRE].

  28. O. Chacaltana, J. Distler and Y. Tachikawa, Nilpotent orbits and codimension-two defects of 6d N=(2,0) theories, Int. J. Mod. Phys. A 28 (2013) 1340006 [arXiv:1203.2930] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  29. V. Belavin and B. Feigin, Super Liouville conformal blocks from N = 2 SU(2) quiver gauge theories, JHEP 07 (2011) 079 [arXiv:1105.5800] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. G. Bonelli, K. Maruyoshi and A. Tanzini, Instantons on ALE spaces and Super Liouville Conformal Field Theories, JHEP 08 (2011) 056 [arXiv:1106.2505] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. A. Belavin, V. Belavin and M. Bershtein, Instantons and 2d Superconformal field theory, JHEP 09 (2011) 117 [arXiv:1106.4001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. G. Bonelli, K. Maruyoshi and A. Tanzini, Gauge Theories on ALE Space and Super Liouville Correlation Functions, Lett. Math. Phys. 101 (2012) 103 [arXiv:1107.4609] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. N. Wyllard, Coset conformal blocks and N = 2 gauge theories, arXiv:1109.4264 [INSPIRE].

  34. Y. Ito, Ramond sector of super Liouville theory from instantons on an ALE space, Nucl. Phys. B 861 (2012) 387 [arXiv:1110.2176] [INSPIRE].

    Article  ADS  Google Scholar 

  35. M.N. Alfimov and G.M. Tarnopolsky, Parafermionic Liouville field theory and instantons on ALE spaces, JHEP 02 (2012) 036 [arXiv:1110.5628] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. A. Belavin and B. Mukhametzhanov, N=1 superconformal blocks with Ramond fields from AGT correspondence, JHEP 01 (2013) 178 [arXiv:1210.7454] [INSPIRE].

    Article  ADS  Google Scholar 

  37. T. Nishioka and Y. Tachikawa, Central charges of para-Liouville and Toda theories from M-5-branes, Phys. Rev. D 84 (2011) 046009 [arXiv:1106.1172] [INSPIRE].

    ADS  Google Scholar 

  38. N. Proudfoot, Research Statement, http://pages.uoregon.edu/njp/research.pdf.

  39. H. Nakajima, Quiver Varieties and Branching, SIGMA 5 (2009) 3 [arXiv:0809.2605].

    MathSciNet  Google Scholar 

  40. S. Reffert, General Omega Deformations from Closed String Backgrounds, JHEP 04 (2012) 059 [arXiv:1108.0644] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. S. Hellerman, D. Orlando and S. Reffert, The Omega Deformation From String and M-theory, JHEP 07 (2012) 061 [arXiv:1204.4192] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. E.A. Bergshoeff, G.W. Gibbons and P.K. Townsend, Open M5-branes, Phys. Rev. Lett. 97 (2006) 231601 [hep-th/0607193] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. C. Vafa, Geometric origin of Montonen-Olive duality, Adv. Theor. Math. Phys. 1 (1998) 158 [hep-th/9707131] [INSPIRE].

    MathSciNet  Google Scholar 

  44. A. Hanany and B. Kol, On orientifolds, discrete torsion, branes and M-theory, JHEP 06 (2000) 013 [hep-th/0003025] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. A. Sen, A Note on enhanced gauge symmetries in M- and string-theory, JHEP 09 (1997) 001 [hep-th/9707123] [INSPIRE].

    Article  ADS  Google Scholar 

  46. S. Gukov and E. Witten, Gauge Theory, Ramification, And The Geometric Langlands Program, Curr. Dev. Math. 2006 (2008) 35 [hep-th/0612073] [INSPIRE].

    MathSciNet  Google Scholar 

  47. V.B. Mehta and C.S. Seshadri, Moduli of vector bundles on curves with parabolic structures, Math. Ann. 248 (1980) 205.

    Article  MathSciNet  MATH  Google Scholar 

  48. I. Biswas, Parabolic bundles as orbifold bundles, Duke Math. 88 (1997) 305.

    Article  MathSciNet  MATH  Google Scholar 

  49. R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, BPS quantization of the five-brane, Nucl. Phys. B 486 (1997) 89 [hep-th/9604055] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. A. Strominger, Open p-branes, Phys. Lett. B 383 (1996) 44 [hep-th/9512059] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  51. R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, BPS spectrum of the five-brane and black hole entropy, Nucl. Phys. B 486 (1997) 77 [hep-th/9603126] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. J.H. Schwarz, Selfdual superstring in six-dimensions, hep-th/9604171 [INSPIRE].

  53. R. Dijkgraaf, E.P. Verlinde and H.L. Verlinde, 5 − D black holes and matrix strings, Nucl. Phys. B 506 (1997) 121 [hep-th/9704018] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. O. Aharony, M. Berkooz, S. Kachru, N. Seiberg and E. Silverstein, Matrix description of interacting theories in six-dimensions, Adv. Theor. Math. Phys. 1 (1998) 148 [hep-th/9707079] [INSPIRE].

    MathSciNet  Google Scholar 

  55. P.S. Howe, N. Lambert and P.C. West, The Selfdual string soliton, Nucl. Phys. B 515 (1998) 203 [hep-th/9709014] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  56. R. Dijkgraaf, The Mathematics of five-branes, Doc. Math. J. DMV (1998) [hep-th/9810157] [INSPIRE].

    Google Scholar 

  57. Y. Tachikawa, On S-duality of 5d super Yang-Mills on S 1, JHEP 11 (2011) 123 [arXiv:1110.0531] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  58. M.R. Douglas, Branes within branes, hep-th/9512077 [INSPIRE].

  59. C. Johnson, D-branes, Cambridge Monographs on Mathematical Physics, Cambridge University Press, New York, U.S.A. (2003).

  60. S. Wu, S-duality in Vafa-Witten theory for non-simply laced gauge groups, JHEP 05 (2008) 009 [arXiv:0802.2047] [INSPIRE].

    Article  ADS  Google Scholar 

  61. E. Witten, Topological σ-models, Commun. Math. Phys. 118 (1988) 411 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. N. Hitchin, L 2 cohomology of hyperKähler quotients, Commun. Math. Phys. 211 (2000) 153 [math/9909002] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  63. P. Di Francesco, P. Mathieu and D. Senechal, Conformal Field Theory, Springer-Verlag, New York, U.S.A. (1999).

    Google Scholar 

  64. M. Goresky, L 2 -cohomology is Intersection Cohomology, http://www.math.ias.edu/ goresky/pdf/zucker.pdf.

  65. K. Hori et al., Mirror Symmetry, Clay Mathematics Monographs, Volume 1 (2003).

  66. C.P. Bachas, M.B. Green and A. Schwimmer, (8, 0) quantum mechanics and symmetry enhancement in type-Isuperstrings, JHEP 01 (1998) 006 [hep-th/9712086] [INSPIRE].

    Article  ADS  Google Scholar 

  67. L.-Y. Hung, Comments on I1-branes, JHEP 05 (2007) 076 [hep-th/0612207] [INSPIRE].

    Article  ADS  Google Scholar 

  68. M.B. Green, J.A. Harvey and G.W. Moore, I-brane inflow and anomalous couplings on D-branes, Class. Quant. Grav. 14 (1997) 47 [hep-th/9605033] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  69. E. Kiritsis, String Theory in a Nutshell, Princeton University Press (2007).

  70. V.G. Kac, Infinite Dimensional Lie Algebras, Third Edition, Cambridge University Press (1994).

  71. E.G. Gimon and J. Polchinski, Consistency conditions for orientifolds and d manifolds, Phys. Rev. D 54 (1996) 1667 [hep-th/9601038] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  72. N. Itzhaki, D. Kutasov and N. Seiberg, I-brane dynamics, JHEP 01 (2006) 119 [hep-th/0508025] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  73. K. Hasegawa, Spin Module Versions of Weyls Reciprocity Theorem for Classical Kac-Moody Lie Algebras - An Application to Branching Rule Duality, RIMS, Kyoto Univ. 25 (1989) 741.

  74. E. Witten, On Holomorphic factorization of WZW and coset models, Commun. Math. Phys. 144 (1992) 189 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  75. S.V. Ketov, Conformal Field Theory, World Scientific Press, Singapore (1997).

    Google Scholar 

  76. J. McKay, Graphs, singularities, and finite groups, Proc. Symp. Pure Math. 37 (1980) 183.

    Article  MathSciNet  Google Scholar 

  77. A. Braverman and M. Finkelberg, Pursuing the double affine Grassmannian II: Convolution, Adv. Math. 230 (2012) 414 [arXiv:0908.3390].

    Article  MathSciNet  MATH  Google Scholar 

  78. G. ’t Hooft, On the Phase Transition Towards Permanent Quark Confinement, Nucl. Phys. B 138 (1978) 1 [INSPIRE].

  79. G. ’t Hooft, A Property of Electric and Magnetic Flux in Nonabelian Gauge Theories, Nucl. Phys. B 153 (1979) 141 [INSPIRE].

  80. D.H. Collingwood and W.M. McGovern, Nilpotent Orbits in Semisimple Lie Algebra: An Introduction, Van Nostrand Reinhold Press (1993).

  81. A. Braverman, M. Finkelberg and D. Gaitsgory, Uhlenbeck spaces via affine Lie algebras, Prog. Math. 244 (2006) 17 [math.AG/0301176].

    Article  MathSciNet  Google Scholar 

  82. N. Nekrasov, Lectures on nonperturbative aspects of supersymmetric gauge theories, Class. Quant. Grav. 22 (2005) S77 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  83. M.-C. Tan, Equivariant Cohomology Of The Chiral de Rham Complex And The Half-Twisted Gauged σ-model, Adv. Theor. Math. Phys. 13 (2009) 897 [hep-th/0612164] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  84. P. Bouwknegt and K. Schoutens, W symmetry in conformal field theory, Phys. Rept. 223 (1993) 183 [hep-th/9210010] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  85. N. Nekrasov and S. Shadchin, ABCD of instantons, Commun. Math. Phys. 252 (2004) 359 [hep-th/0404225] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  86. V. Guillemin and S. Sternberg, Supersymmetry and Equivariant de Rham Theory, Springer (1999).

  87. M.F. Atiyah and R. Bott, The Moment map and equivariant cohomology, Topology 23 (1984) 1 [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  88. W. Lerche, Introduction to Seiberg-Witten theory and its stringy origin, Nucl. Phys. Proc. Suppl. 55B (1997) 83 [hep-th/9611190] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  89. J. de Boer and T. Tjin, Quantization and representation theory of finite W algebras, Commun. Math. Phys. 158 (1993) 485 [hep-th/9211109] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  90. J. de Boer and T. Tjin, The Relation between quantum \( \mathcal{W} \) -algebras and Lie algebras, Commun. Math. Phys. 160 (1994) 317 [hep-th/9302006] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  91. L. Feher, L. O’Raifeartaigh, P. Ruelle, I. Tsutsui and A. Wipf, On the general structure of Hamiltonian reductions of the WZNW theory, hep-th/9112068 [INSPIRE].

  92. D. Nemeschansky and N. Warner, Topological matter, integrable models and fusion rings, Nucl. Phys. B 380 (1992) 241 [hep-th/9110055] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  93. D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin Systems and the WKB Approximation, arXiv:0907.3987 [INSPIRE].

  94. J. Harnad, Tau functions, integrable systems, random matrices and random processes, BIRS Workshop on Quadrature Domains and Laplacian Growth in Modern Physics, Banff, July 15–20, 2007.

  95. P. Etingof, Whittaker functions on quantum groups and q-deformed Toda operators, math.QA/9901053.

  96. E.J. Martinec and N.P. Warner, Integrable systems and supersymmetric gauge theory, Nucl. Phys. B 459 (1996) 97 [hep-th/9509161] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  97. E. D’Hoker and D.H. Phong, Seiberg-Witten theory and Calogero-Moser systems, Prog. Theor. Phys. Suppl. 135 (1999) 75 [hep-th/9906027] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  98. R.Y. Donagi, Seiberg-Witten integrable systems, alg-geom/9705010 [INSPIRE].

  99. D. Nanopoulos and D. Xie, Hitchin Equation, Singularity and N = 2 Superconformal Field Theories, JHEP 03 (2010) 043 [arXiv:0911.1990] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  100. N. Nekrasov and E. Witten, The Omega Deformation, Branes, Integrability and Liouville Theory, JHEP 09 (2010) 092 [arXiv:1002.0888] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  101. B. Enriquez, V. Rubtsov, Hitchin systems, higher Gaudin operators and r-matrices, Math. Res. Lett. 3 (1996) 343 [alg-geom/9503010].

    MathSciNet  MATH  Google Scholar 

  102. K. Becker, M. Becker, J.H Schwarz. String Theory and M-theory: A Modern Introduction, Cambridge Monographs on Mathematical Physics, Cambridge University Press, New York, U.S.A. (2007).

  103. D. Tong, NS5-branes, T duality and world sheet instantons, JHEP 07 (2002) 013 [hep-th/0204186] [INSPIRE].

    Article  ADS  Google Scholar 

  104. M. Atiyah and N.J. Hitchin, Low-Energy Scattering of Nonabelian Monopoles, Phys. Lett. A 107 (1985) 21 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  105. M. Atiyah and N.J. Hitchin, Low-energy scattering of nonAbelian magnetic monopoles, Phil. Trans. Roy. Soc. Lond. A 315 (1985) 459 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  106. M. Atiyah and N.J. Hitchin, The Geometry and Dynamics of Magnetic Monopoles, Princeton Univ. Press (1988).

  107. N. Seiberg and E. Witten, Gauge dynamics and compactification to three-dimensions, hep-th/9607163 [INSPIRE].

  108. N. Seiberg, IR dynamics on branes and space-time geometry, Phys. Lett. B 384 (1996) 81 [hep-th/9606017] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  109. J. Polchinski, String Theory Vol 2: Superstring Theory and Beyond, Cambridge Monographs on Mathematical Physics, Cambridge University Press, New York, U.S.A. (2003).

  110. E. Witten, On holomorphic factorization of WZW and coset models, Comm. Math. Phys. 144 (1992) 189.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  111. B.L. Feigin and E. Frenkel, Quantization of the Drinfeld-Sokolov reduction, Phys. Lett. B 246 (1990) 75 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng-Chwan Tan.

Additional information

ArXiv ePrint: 1301.1977

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, MC. M-theoretic derivations of 4d-2d dualities: from a geometric Langlands duality for surfaces, to the AGT correspondence, to integrable systems. J. High Energ. Phys. 2013, 171 (2013). https://doi.org/10.1007/JHEP07(2013)171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2013)171

Keywords

Navigation