Skip to main content
Log in

Threshold resummation effects in Higgs boson pair production at the LHC

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate the resummation effects in the Standard Model Higgs boson pair production through gluon-gluon fusion at the LHC with soft-collinear effective theory. We calculate the total cross section and the invariant mass distribution at Next-to-Next-to-Leading-Logarithmic level with π 2-enhanced terms resummed, which are matched to the QCD Next-to-Leading Order results. In the high order QCD predictions exact top quark mass effects are included in full form factors. Our results show that the resummation effects increase the Next-to-Leading Order results by about 20% ~ 30%, and the scale uncertainty is reduced to 8%, which leads to increased confidence on the theoretical predictions. The PDF+α s uncertainties are almost not changed after including resummation effects. We also study the sensitivities of the total cross section and the invariant mass distribution to the Higgs boson self-coupling. We find that the total cross section and the invariant mass distribution shape depend strongly on the Higgs boson self-coupling, and therefore it is possible to extract Higgs boson self-coupling from the total cross section and invariant mass distribution when the measurement precision increases at the LHC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. S. Kanemura, S. Kiyoura, Y. Okada, E. Senaha and C. Yuan, New physics effect on the Higgs selfcoupling, Phys. Lett. B 558 (2003) 157 [hep-ph/0211308] [INSPIRE].

    ADS  Google Scholar 

  4. E.N. Glover and J. van der Bij, Higgs boson pair production via gluon fusion, Nucl. Phys. B 309 (1988) 282 [INSPIRE].

    Article  ADS  Google Scholar 

  5. T. Plehn, M. Spira and P. Zerwas, Pair production of neutral Higgs particles in gluon-gluon collisions, Nucl. Phys. B 479 (1996) 46 [Erratum ibid. B 531 (1998) 655] [hep-ph/9603205] [INSPIRE].

  6. S. Dawson, S. Dittmaier and M. Spira, Neutral Higgs boson pair production at hadron colliders: QCD corrections, Phys. Rev. D 58 (1998) 115012 [hep-ph/9805244] [INSPIRE].

    ADS  Google Scholar 

  7. A. Djouadi, W. Kilian, M. Muhlleitner and P. Zerwas, Production of neutral Higgs boson pairs at LHC, Eur. Phys. J. C 10 (1999) 45 [hep-ph/9904287] [INSPIRE].

    Article  ADS  Google Scholar 

  8. J. Baglio, A. Djouadi, R. Gröber, M. Mühlleitner, J. Quevillon et al., The measurement of the Higgs self-coupling at the LHC: theoretical status, JHEP 04 (2013) 151 [arXiv:1212.5581] [INSPIRE].

    Article  ADS  Google Scholar 

  9. T. Binoth, S. Karg, N. Kauer and R. Ruckl, Multi-Higgs boson production in the Standard Model and beyond, Phys. Rev. D 74 (2006) 113008 [hep-ph/0608057] [INSPIRE].

    ADS  Google Scholar 

  10. U. Baur, T. Plehn and D.L. Rainwater, Measuring the Higgs boson self coupling at the LHC and finite top mass matrix elements, Phys. Rev. Lett. 89 (2002) 151801 [hep-ph/0206024] [INSPIRE].

    Article  ADS  Google Scholar 

  11. U. Baur, T. Plehn and D.L. Rainwater, Determining the Higgs boson selfcoupling at hadron colliders, Phys. Rev. D 67 (2003) 033003 [hep-ph/0211224] [INSPIRE].

    ADS  Google Scholar 

  12. U. Baur, T. Plehn and D.L. Rainwater, Examining the Higgs boson potential at lepton and hadron colliders: A Comparative analysis, Phys. Rev. D 68 (2003) 033001 [hep-ph/0304015] [INSPIRE].

    ADS  Google Scholar 

  13. U. Baur, T. Plehn and D.L. Rainwater, Probing the Higgs selfcoupling at hadron colliders using rare decays, Phys. Rev. D 69 (2004) 053004 [hep-ph/0310056] [INSPIRE].

    ADS  Google Scholar 

  14. M.J. Dolan, C. Englert and M. Spannowsky, Higgs self-coupling measurements at the LHC, JHEP 10 (2012) 112 [arXiv:1206.5001] [INSPIRE].

    Article  ADS  Google Scholar 

  15. A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson pair production at the LHC in the \( b\overline{b}{W^{+}}{W^{-}} \) channel, Phys. Rev. D 87 (2013) 011301 [arXiv:1209.1489] [INSPIRE].

    ADS  Google Scholar 

  16. M. Spira, A. Djouadi, D. Graudenz and P. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].

    Article  ADS  Google Scholar 

  17. http://people.web.psi.ch/spira/hpair.

  18. C.W. Bauer, S. Fleming and M.E. Luke, Summing Sudakov logarithms in BX in effective field theory, Phys. Rev. D 63 (2000) 014006 [hep-ph/0005275] [INSPIRE].

    ADS  Google Scholar 

  19. N.N. Nikolaev, W. Schafer and G. Schwiete, Coherent production of hard dijets on nuclei in QCD, Phys. Rev. D 63 (2001) 014020 [hep-ph/0009038] [INSPIRE].

    ADS  Google Scholar 

  20. C.W. Bauer and I.W. Stewart, Invariant operators in collinear effective theory, Phys. Lett. B 516 (2001) 134 [hep-ph/0107001] [INSPIRE].

    ADS  Google Scholar 

  21. C.W. Bauer, D. Pirjol and I.W. Stewart, Soft collinear factorization in effective field theory, Phys. Rev. D 65 (2002) 054022 [hep-ph/0109045] [INSPIRE].

    ADS  Google Scholar 

  22. T. Becher and M. Neubert, Threshold resummation in momentum space from effective field theory, Phys. Rev. Lett. 97 (2006) 082001 [hep-ph/0605050] [INSPIRE].

    Article  ADS  Google Scholar 

  23. A. Idilbi and X.-d. Ji, Threshold resummation for Drell-Yan process in soft-collinear effective theory, Phys. Rev. D 72 (2005) 054016 [hep-ph/0501006] [INSPIRE].

    ADS  Google Scholar 

  24. T. Becher, M. Neubert and G. Xu, Dynamical Threshold Enhancement and Resummation in Drell-Yan Production, JHEP 07 (2008) 030 [arXiv:0710.0680] [INSPIRE].

    Article  ADS  Google Scholar 

  25. V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Origin of the Large Perturbative Corrections to Higgs Production at Hadron Colliders, Phys. Rev. D 79 (2009) 033013 [arXiv:0808.3008] [INSPIRE].

    ADS  Google Scholar 

  26. V. Ahrens, T. Becher, M. Neubert and L.L. Yang, Renormalization-Group Improved Prediction for Higgs Production at Hadron Colliders, Eur. Phys. J. C 62 (2009) 333 [arXiv:0809.4283] [INSPIRE].

    Article  ADS  Google Scholar 

  27. S. Mantry and F. Petriello, Factorization and Resummation of Higgs Boson Differential Distributions in Soft-Collinear Effective Theory, Phys. Rev. D 81 (2010) 093007 [arXiv:0911.4135] [INSPIRE].

    ADS  Google Scholar 

  28. H.X. Zhu, C.S. Li, J.J. Zhang, H. Zhang and Z. Li, Threshold Resummation Effects in Neutral Higgs Boson Production by Bottom Quark Fusion at the CERN Large Hadron Collider, Phys. Rev. D 79 (2009) 113005 [arXiv:0903.5047] [INSPIRE].

    ADS  Google Scholar 

  29. A. Idilbi, C. Kim and T. Mehen, Factorization and resummation for single color-octet scalar production at the LHC, Phys. Rev. D 79 (2009) 114016 [arXiv:0903.3668] [INSPIRE].

    ADS  Google Scholar 

  30. L.L. Yang, C.S. Li, Y. Gao and J.J. Liu, Threshold resummation effects in direct top quark production at hadron colliders, Phys. Rev. D 73 (2006) 074017 [hep-ph/0601180] [INSPIRE].

    ADS  Google Scholar 

  31. H.X. Zhu, C.S. Li, J. Wang and J.J. Zhang, Factorization and resummation of s-channel single top quark production, JHEP 02 (2011) 099 [arXiv:1006.0681] [INSPIRE].

    Article  ADS  Google Scholar 

  32. C. Anastasiou, L.J. Dixon, K. Melnikov and F. Petriello, Dilepton rapidity distribution in the Drell-Yan process at NNLO in QCD, Phys. Rev. Lett. 91 (2003) 182002 [hep-ph/0306192] [INSPIRE].

    Article  ADS  Google Scholar 

  33. V. Ahrens, M. Neubert and L. Vernazza, Structure of Infrared Singularities of Gauge-Theory Amplitudes at Three and Four Loops, JHEP 09 (2012) 138 [arXiv:1208.4847] [INSPIRE].

    Article  ADS  Google Scholar 

  34. I. Korchemskaya and G. Korchemsky, On lightlike Wilson loops, Phys. Lett. B 287 (1992) 169 [INSPIRE].

    ADS  Google Scholar 

  35. M. Whalley, D. Bourilkov and R. Group, The Les Houches accord PDFs (LHAPDF) and LHAGLUE, hep-ph/0508110 [INSPIRE].

  36. A. Martin, W. Stirling, R. Thorne and G. Watt, Uncertainties on α s in global PDF analyses and implications for predicted hadronic cross sections, Eur. Phys. J. C 64 (2009) 653 [arXiv:0905.3531] [INSPIRE].

    Article  ADS  Google Scholar 

  37. A. van Hameren, OneLOop: For the evaluation of one-loop scalar functions, Comput. Phys. Commun. 182 (2011) 2427 [arXiv:1007.4716] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  38. J. Grigo, J. Hoff, K. Melnikov and M. Steinhauser, On the Higgs boson pair production at the LHC, arXiv:1305.7340 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Sheng Li.

Additional information

ArXiv ePrint: 1301.1245

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao, D.Y., Li, C.S., Li, H.T. et al. Threshold resummation effects in Higgs boson pair production at the LHC. J. High Energ. Phys. 2013, 169 (2013). https://doi.org/10.1007/JHEP07(2013)169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2013)169

Keywords

Navigation