Skip to main content
Log in

Light Higgs and vector-like quarks without prejudice

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Light vector-like quarks with non-renormalizable couplings to the Higgs are a common feature of models trying to address the electroweak (EW) hierarchy problem by treating the Higgs as a pseudo-goldstone boson of a global (approximate) symmetry. We systematically investigate the implications of the leading dimension five operators on Higgs phenomenology in presence of dynamical up- and down-type weak singlet as well as weak doublet vector-like quarks. After taking into account constraints from precision EW and flavour observables we show that contrary to the renormalizable models, significant modifications of Higgs properties are still possible and could shed light on the role of vector-like quarks in solutions to the EW hierarchy problem. We also briefly discuss implications of higher dimensional operators for direct vector-like quark searches at the LHC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. M. Papucci, J.T. Ruderman and A. Weiler, Natural SUSY endures, JHEP 09 (2012) 035 [arXiv:1110.6926] [INSPIRE].

    Article  ADS  Google Scholar 

  4. N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. Lett. B 513 (2001) 232 [hep-ph/0105239] [INSPIRE].

    ADS  Google Scholar 

  5. N. Arkani-Hamed, A.G. Cohen, T. Gregoire and J.G. Wacker, Phenomenology of electroweak symmetry breaking from theory space, JHEP 08 (2002) 020 [hep-ph/0202089] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. N. Arkani-Hamed et al., The minimal moose for a little Higgs, JHEP 08 (2002) 021 [hep-ph/0206020] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. M. Perelstein, M.E. Peskin and A. Pierce, Top quarks and electroweak symmetry breaking in little Higgs models, Phys. Rev. D 69 (2004) 075002 [hep-ph/0310039] [INSPIRE].

    ADS  Google Scholar 

  8. T. Han, H.E. Logan, B. McElrath and L.-T. Wang, Phenomenology of the little Higgs model, Phys. Rev. D 67 (2003) 095004 [hep-ph/0301040] [INSPIRE].

    ADS  Google Scholar 

  9. R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev. D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].

    ADS  Google Scholar 

  10. C. Anastasiou, E. Furlan and J. Santiago, Realistic composite Higgs models, Phys. Rev. D 79 (2009) 075003 [arXiv:0901.2117] [INSPIRE].

    ADS  Google Scholar 

  11. O. Matsedonskyi, G. Panico and A. Wulzer, Light top partners for a light composite Higgs, JHEP 01 (2013) 164 [arXiv:1204.6333] [INSPIRE].

    Article  ADS  Google Scholar 

  12. G. Panico, M. Redi, A. Tesi and A. Wulzer, On the tuning and the mass of the composite Higgs, JHEP 03 (2013) 051 [arXiv:1210.7114] [INSPIRE].

    Article  ADS  Google Scholar 

  13. M. Redi and A. Tesi, Implications of a light Higgs in composite models, JHEP 10 (2012) 166 [arXiv:1205.0232] [INSPIRE].

    Article  ADS  Google Scholar 

  14. L. Vecchi, The natural composite Higgs, arXiv:1304.4579 [INSPIRE].

  15. G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].

    Article  ADS  Google Scholar 

  16. R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner and M. Spira, Effective Lagrangian for a light Higgs-like scalar, arXiv:1303.3876 [INSPIRE].

  17. A. Azatov and J. Galloway, Light custodians and Higgs physics in composite models, Phys. Rev. D 85 (2012) 055013 [arXiv:1110.5646] [INSPIRE].

    ADS  Google Scholar 

  18. J. Berger, J. Hubisz and M. Perelstein, A fermionic top partner: naturalness and the LHC, JHEP 07 (2012) 016 [arXiv:1205.0013] [INSPIRE].

    Article  ADS  Google Scholar 

  19. A. Carmona and F. Goertz, Custodial leptons and Higgs decays, arXiv:1301.5856 [INSPIRE].

  20. J.A. Aguilar-Saavedra, Effects of mixing with quark singlets, Phys. Rev. D 67 (2003) 035003 [Erratum ibid. D 69 (2004) 099901] [hep-ph/0210112] [INSPIRE].

    ADS  Google Scholar 

  21. R.J. Dowdall, C.T.H. Davies, G.P. Lepage and C. McNeile, V us from π and K decay constants in full lattice QCD with physical u, d, s and c quarks, arXiv:1303.1670 [INSPIRE].

  22. Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  23. A.J. Buras, K. Gemmler and G. Isidori, Quark flavour mixing with right-handed currents: an effective theory approach, Nucl. Phys. B 843 (2011) 107 [arXiv:1007.1993] [INSPIRE].

    Article  ADS  Google Scholar 

  24. E. Golowich, J. Hewett, S. Pakvasa and A.A. Petrov, Implications of D 0 - \( {{\overline{\mathrm{D}}}^0} \) mixing for new physics, Phys. Rev. D 76 (2007) 095009 [arXiv:0705.3650] [INSPIRE].

    ADS  Google Scholar 

  25. Heavy Flavor Averaging Group collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron and tau-lepton properties as of early 2012, arXiv:1207.1158 [INSPIRE].

  26. B. Grzadkowski and M. Misiak, Anomalous Wtb coupling effects in the weak radiative B-meson decay, Phys. Rev. D 78 (2008) 077501 [Erratum ibid. D 84 (2011) 059903] [arXiv:0802.1413] [INSPIRE].

    ADS  Google Scholar 

  27. J. Drobnak, S. Fajfer and J.F. Kamenik, Interplay of tbW decay and B q meson mixing in minimal flavor violating models, Phys. Lett. B 701 (2011) 234 [arXiv:1102.4347] [INSPIRE].

    ADS  Google Scholar 

  28. J.F. Kamenik, M. Papucci and A. Weiler, Constraining the dipole moments of the top quark, Phys. Rev. D 85 (2012) 071501 [arXiv:1107.3143] [INSPIRE].

    ADS  Google Scholar 

  29. J. Drobnak, S. Fajfer and J.F. Kamenik, Probing anomalous tWb interactions with rare B decays, Nucl. Phys. B 855 (2012) 82 [arXiv:1109.2357] [INSPIRE].

    Article  ADS  Google Scholar 

  30. C. Zhang, N. Greiner and S. Willenbrock, Constraints on non-standard top quark couplings, Phys. Rev. D 86 (2012) 014024 [arXiv:1201.6670] [INSPIRE].

    ADS  Google Scholar 

  31. T.P. Cheng and M. Sher, Mass matrix ansatz and flavor nonconservation in models with multiple Higgs doublets, Phys. Rev. D 35 (1987) 3484 [INSPIRE].

    ADS  Google Scholar 

  32. G. Blankenburg, J. Ellis and G. Isidori, Flavour-changing decays of a 125 GeV Higgs-like particle, Phys. Lett. B 712 (2012) 386 [arXiv:1202.5704] [INSPIRE].

    ADS  Google Scholar 

  33. R. Harnik, J. Kopp and J. Zupan, Flavor violating Higgs decays, JHEP 03 (2013) 026 [arXiv:1209.1397] [INSPIRE].

    Article  ADS  Google Scholar 

  34. ATLAS collaboration, Combined coupling measurements of the Higgs-like boson with the ATLAS detector using up to 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-034 (2013).

  35. CMS collaboration, Combination of standard model Higgs boson searches and measurements of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-12-045 (2012).

  36. A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].

    Article  ADS  Google Scholar 

  37. R.D. Ball, M. Bonvini, S. Forte, S. Marzani and G. Ridolfi, Higgs production in gluon fusion beyond NNLO, Nucl. Phys. B 874 (2013) 746 [arXiv:1303.3590] [INSPIRE].

    Article  Google Scholar 

  38. Tevatron New Physics Higgs Working Group, CDF and D0 collaborations, Updated combination of CDF and D0 searches for standard model Higgs boson production with up to 10.0 fb −1 of data, arXiv:1207.0449 [INSPIRE].

  39. A. Djouadi, W. Kilian, M. Muhlleitner and P.M. Zerwas, Production of neutral Higgs boson pairs at LHC, Eur. Phys. J. C 10 (1999) 45 [hep-ph/9904287] [INSPIRE].

    Article  ADS  Google Scholar 

  40. A. Djouadi, The anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].

    Article  ADS  Google Scholar 

  41. G. Cacciapaglia, A. Deandrea, G.D. La Rochelle and J.-B. Flament, Higgs couplings beyond the standard model, JHEP 03 (2013) 029 [arXiv:1210.8120] [INSPIRE].

    Article  ADS  Google Scholar 

  42. G. Bélanger, B. Dumont, U. Ellwanger, J.F. Gunion and S. Kraml, Higgs couplings at the end of 2012, JHEP 02 (2013) 053 [arXiv:1212.5244] [INSPIRE].

    Article  Google Scholar 

  43. ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the four lepton decay channel with the ATLAS detector using 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-013 (2013).

  44. ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the WW (∗)ℓνℓν decay channel with the ATLAS detector using 25fb −1 of proton-proton collision data, ATLAS-CONF-2013-030 (2013).

  45. ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the two photon decay channel with the ATLAS detector using 25 fb −1 of proton-proton collision data, ATLAS-CONF-2013-012 (2013).

  46. CMS collaboration, Evidence for a particle decaying to W + W in the fully leptonic final state in a standard model Higgs boson search in pp collisions at the LHC, CMS-PAS-HIG-13-003 (2013).

  47. CMS collaboration, Properties of the Higgs-like boson in the decay H to ZZ to 4l in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-13-002 (2013).

  48. C. Ochando, Study of Higgs production in bosonic decay channels at CMS, talk given at the Rencontres de Moriond. QCD and High Energy Interactions, La Thuile Italy, 9–16 Mar 2013.

  49. CMS collaboration, Search for the standard-model Higgs boson decaying to tau pairs in proton-proton collisions at \( \sqrt{s}=7 \) and 8 TeV, CMS-PAS-HIG-13-004 (2013).

  50. M. Chen, Combination and interpretation of Scalar Boson search results from CMS, talk given at the Rencontres de Moriond. EW Interactions and Unified Theories, La Thuile Italy, 2–9 Mar 2013.

  51. V. Dutta, Study of BEH production in fermionic decay channels in CMS, talk given at the Rencontres de Moriond. EW Interactions and Unified Theories, La Thuile Italy, 2–9 Mar 2013.

  52. C. Delaunay, C. Grojean and G. Perez, Modified Higgs physics from composite light flavors, arXiv:1303.5701 [INSPIRE].

  53. J. Kearney, A. Pierce and N. Weiner, Vectorlike fermions and Higgs couplings, Phys. Rev. D 86 (2012) 113005 [arXiv:1207.7062] [INSPIRE].

    ADS  Google Scholar 

  54. G. Moreau, Constraining extra-fermion(s) from the Higgs boson data, Phys. Rev. D 87 (2013) 015027 [arXiv:1210.3977] [INSPIRE].

    ADS  Google Scholar 

  55. S. Dawson and E. Furlan, A Higgs conundrum with vector fermions, Phys. Rev. D 86 (2012) 015021 [arXiv:1205.4733] [INSPIRE].

    ADS  Google Scholar 

  56. ATLAS collaboration, Search for heavy top-like quarks decaying to a Higgs boson and a top quark in the lepton plus jets final state in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2013-018 (2013).

  57. D. Carmi, A. Falkowski, E. Kuflik and T. Volansky, Interpreting LHC Higgs results from natural new physics perspective, JHEP 07 (2012) 136 [arXiv:1202.3144] [INSPIRE].

    Article  ADS  Google Scholar 

  58. F. Garberson and T. Golling, Generalization of exotic quark searches, arXiv:1301.4454 [INSPIRE].

  59. ATLAS collaboration, Search for pair-produced heavy quarks decaying to Wq in the two-lepton channel at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. D 86 (2012) 012007 [arXiv:1202.3389] [INSPIRE].

    ADS  Google Scholar 

  60. N. Bonne and G. Moreau, Reproducing the Higgs boson data with vector-like quarks, Phys. Lett. B 717 (2012) 409 [arXiv:1206.3360] [INSPIRE].

    ADS  Google Scholar 

  61. A. Azatov et al., Higgs boson production via vector-like top-partner decays: diphoton or multilepton plus multijets channels at the LHC, Phys. Rev. D 85 (2012) 115022 [arXiv:1204.0455] [INSPIRE].

    ADS  Google Scholar 

  62. CMS collaboration, Measurement of the ratio B(tWb)/B(tW q), CMS-PAS-TOP-12-035 (2013).

  63. N. Kidonakis, Next-to-next-to-leading-order collinear and soft gluon corrections for t-channel single top quark production, Phys. Rev. D 83 (2011) 091503 [arXiv:1103.2792] [INSPIRE].

    ADS  Google Scholar 

  64. ATLAS collaboration, Measurement of the t-channel single top-quark production cross section in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Lett. B 717 (2012) 330 [arXiv:1205.3130] [INSPIRE].

    Google Scholar 

  65. CMS collaboration, Measurement of the single-top-quark t-channel cross section in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 12 (2012) 035 [arXiv:1209.4533] [INSPIRE].

    ADS  Google Scholar 

  66. ATLAS collaboration, A search for flavour changing neutral currents in top-quark decays in pp collision data collected with the ATLAS detector at \( \sqrt{s}=7 \) TeV, JHEP 09 (2012) 139 [arXiv:1206.0257] [INSPIRE].

    ADS  Google Scholar 

  67. J.A. Aguilar-Saavedra, Single top quark production at LHC with anomalous Wtb couplings, Nucl. Phys. B 804 (2008) 160 [arXiv:0803.3810] [INSPIRE].

    Article  ADS  Google Scholar 

  68. M. Fischer, S. Groote, J.G. Korner and M.C. Mauser, Longitudinal, transverse plus and transverse minus W bosons in unpolarized top quark decays at O(α s ), Phys. Rev. D 63 (2001) 031501 [hep-ph/0011075] [INSPIRE].

    ADS  Google Scholar 

  69. J. Drobnak, S. Fajfer and J.F. Kamenik, New physics in tbW decay at next-to-leading order in QCD, Phys. Rev. D 82 (2010) 114008 [arXiv:1010.2402] [INSPIRE].

    ADS  Google Scholar 

  70. ATLAS collaboration, Measurement of the W boson polarization in top quark decays with the ATLAS detector, JHEP 06 (2012) 088 [arXiv:1205.2484] [INSPIRE].

    ADS  Google Scholar 

  71. G. D’Ambrosio, G. Isidori and J. Portoles, Short-distance information from B(K L μ + μ ), Phys. Lett. B 423 (1998) 385 [hep-ph/9708326] [INSPIRE].

  72. G. Isidori and R. Unterdorfer, On the short-distance constraints from K L,S μ + μ , JHEP 01 (2004) 009 [hep-ph/0311084] [INSPIRE].

    Article  ADS  Google Scholar 

  73. T. Inami and C. Lim, Effects of superheavy quarks and leptons in low-energy weak processes K L \( \mu \overline{\mu} \) , K +π + ν \( \overline{v} \) and K 0\( {{\overline{K}}^0} \), Prog. Theor. Phys. 65 (1981) 297 [Erratum ibid. 65 (1981) 1772] [INSPIRE].

    Article  ADS  Google Scholar 

  74. A.J. Buras, J. Girrbach, D. Guadagnoli and G. Isidori, On the standard model prediction for BR(B s,d μ + μ ), Eur. Phys. J. C 72 (2012) 2172 [arXiv:1208.0934] [INSPIRE].

    ADS  Google Scholar 

  75. J. Laiho, E. Lunghi and R.S. Van de Water, Lattice QCD inputs to the CKM unitarity triangle analysis, Phys. Rev. D 81 (2010) 034503 [arXiv:0910.2928] [INSPIRE].

    ADS  Google Scholar 

  76. C.M. Bouchard et al., Neutral B mixing from 2 + 1 flavor lattice-QCD: the standard model and beyond, PoS(Lattice 2011)274 [arXiv:1112.5642] [INSPIRE].

  77. A. Lenz et al., Anatomy of new physics in B- B mixing, Phys. Rev. D 83 (2011) 036004 [arXiv:1008.1593] [INSPIRE].

    ADS  Google Scholar 

  78. A. Crivellin and L. Mercolli, BX d γ and constraints on new physics, Phys. Rev. D 84 (2011) 114005 [arXiv:1106.5499] [INSPIRE].

    ADS  Google Scholar 

  79. BaBar collaboration, P. del Amo Sanchez et al., Study of BXγ decays and determination of |V td /V ts |, Phys. Rev. D 82 (2010) 051101 [arXiv:1005.4087] [INSPIRE].

    ADS  Google Scholar 

  80. W. Wang, bsγ and bdγ (B factories), arXiv:1102.1925 [INSPIRE].

  81. LHCb collaboration, First evidence for the decay \( B_s^0 \)μ + μ , Phys. Rev. Lett. 110 (2013) 021801 [arXiv:1211.2674] [INSPIRE].

    Article  Google Scholar 

  82. G.C. Branco, L. Lavoura and J.P. Silva, CP violation, Int. Ser. Monogr. Phys. 103 (1999) 1 [INSPIRE].

    Google Scholar 

  83. U. Haisch and S. Westhoff, Massive color-octet bosons: bounds on effects in top-quark pair production, JHEP 08 (2011) 088 [arXiv:1106.0529] [INSPIRE].

    Article  ADS  Google Scholar 

  84. M.I. Gresham, I.-W. Kim, S. Tulin and K.M. Zurek, Confronting top AFB with parity violation constraints, Phys. Rev. D 86 (2012) 034029 [arXiv:1203.1320] [INSPIRE].

    ADS  Google Scholar 

  85. V.A. Dzuba, J.C. Berengut, V.V. Flambaum and B. Roberts, Revisiting parity non-conservation in cesium, Phys. Rev. Lett. 109 (2012) 203003 [arXiv:1207.5864] [INSPIRE].

    Article  ADS  Google Scholar 

  86. ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group and SLD Heavy Flavour Group collaborations, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].

    ADS  Google Scholar 

  87. M. Baak et al., The electroweak fit of the standard model after the discovery of a new boson at the LHC, Eur. Phys. J. C 72 (2012) 2205 [arXiv:1209.2716] [INSPIRE].

    ADS  Google Scholar 

  88. P. Bamert, C.P. Burgess, J.M. Cline, D. London and E. Nardi, R b and new physics: a comprehensive analysis, Phys. Rev. D 54 (1996) 4275 [hep-ph/9602438] [INSPIRE].

    ADS  Google Scholar 

  89. L. Lavoura and J.P. Silva, The oblique corrections from vector-like singlet and doublet quarks, Phys. Rev. D 47 (1993) 2046 [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jernej F. Kamenik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fajfer, S., Greljo, A., Kamenik, J.F. et al. Light Higgs and vector-like quarks without prejudice. J. High Energ. Phys. 2013, 155 (2013). https://doi.org/10.1007/JHEP07(2013)155

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2013)155

Keywords

Navigation