Skip to main content
Log in

Looking for new charged states at the LHC: signatures of magnetic and Rayleigh dark matter

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Magnetic and Rayleigh dark matter are models describing weak interactions of dark matter with electromagnetism through non-renormalizable operators of dimensions 5 and 7, respectively. Such operators motivate the existence of heavier states that couple to dark matter and are also charged under the electroweak interactions. The recent hints of a gamma-ray line in the Fermi data suggest that these states may be light enough to be produced at the LHC. We categorize such states according to their charges and decay modes, and we examine the corresponding LHC phenomenology. We emphasize unconstrained models that can be discovered in targeted searches at the upgraded LHC run, while also enumerating models excluded by current data. Generally, models with SUW (2)-singlet states or models where the charged states decay predominantly to tau leptons and/or gauge bosons are still viable. We propose searches to constrain such models and, in particular, find superior performance over existing proposals for multi-tau analyses. Finally, we note several scenarios, especially those dominated by tau final states, that cannot be probed even with 300/fb at LHC14, motivating the further refinement of tau-lepton searches to improve sensitivity to such final states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bagnasco, M. Dine and S.D. Thomas, Detecting technibaryon dark matter, Phys. Lett. B 320 (1994) 99 [hep-ph/9310290] [INSPIRE].

    ADS  Google Scholar 

  2. M. Pospelov and T. ter Veldhuis, Direct and indirect limits on the electromagnetic form-factors of WIMPs, Phys. Lett. B 480 (2000) 181 [hep-ph/0003010] [INSPIRE].

    ADS  Google Scholar 

  3. K. Sigurdson, M. Doran, A. Kurylov, R.R. Caldwell and M. Kamionkowski, Dark-matter electric and magnetic dipole moments, Phys. Rev. D 70 (2004) 083501 [Erratum ibid. D 73 (2006) 089903] [astro-ph/0406355] [INSPIRE].

  4. S. Gardner, Shedding Light on Dark Matter: a Faraday Rotation Experiment to Limit a Dark Magnetic Moment, Phys. Rev. D 79 (2009) 055007 [arXiv:0811.0967] [INSPIRE].

    ADS  Google Scholar 

  5. E. Masso, S. Mohanty and S. Rao, Dipolar Dark Matter, Phys. Rev. D 80 (2009) 036009 [arXiv:0906.1979] [INSPIRE].

    ADS  Google Scholar 

  6. W.S. Cho, J.-H. Huh, I.-W. Kim, J.E. Kim and B. Kyae, Constraining WIMP magnetic moment from CDMS II experiment, Phys. Lett. B 687 (2010) 6 [Erratum ibid. B 694 (2011) 496] [arXiv:1001.0579] [INSPIRE].

  7. H. An, S.-L. Chen, R.N. Mohapatra, S. Nussinov and Y. Zhang, Energy Dependence of Direct Detection Cross section for Asymmetric Mirror Dark Matter, Phys. Rev. D 82 (2010) 023533 [arXiv:1004.3296] [INSPIRE].

    ADS  Google Scholar 

  8. S.D. McDermott, H.-B. Yu and K.M. Zurek, Turning off the Lights: how Dark is Dark Matter?, Phys. Rev. D 83 (2011) 063509 [arXiv:1011.2907] [INSPIRE].

    ADS  Google Scholar 

  9. S. Chang, N. Weiner and I. Yavin, Magnetic Inelastic Dark Matter, Phys. Rev. D 82 (2010) 125011 [arXiv:1007.4200] [INSPIRE].

    ADS  Google Scholar 

  10. T. Banks, J.-F. Fortin and S. Thomas, Direct Detection of Dark Matter Electromagnetic Dipole Moments, arXiv:1007.5515 [INSPIRE].

  11. E. Del Nobile, C. Kouvaris, P. Panci, F. Sannino and J. Virkajarvi, Light Magnetic Dark Matter in Direct Detection Searches, JCAP 08 (2012) 010 [arXiv:1203.6652] [INSPIRE].

    Article  Google Scholar 

  12. J. Goodman et al., Gamma Ray Line Constraints on Effective Theories of Dark Matter, Nucl. Phys. B 844 (2011) 55 [arXiv:1009.0008] [INSPIRE].

    Article  ADS  Google Scholar 

  13. J. Goodman et al., Constraints on Light Majorana dark Matter from Colliders, Phys. Lett. B 695 (2011) 185 [arXiv:1005.1286] [INSPIRE].

    ADS  Google Scholar 

  14. J. Goodman et al., Constraints on Dark Matter from Colliders, Phys. Rev. D 82 (2010) 116010 [arXiv:1008.1783] [INSPIRE].

    ADS  Google Scholar 

  15. N. Weiner and I. Yavin, How Dark Are Majorana WIMPs? Signals from MiDM and Rayleigh Dark Matter, Phys. Rev. D 86 (2012) 075021 [arXiv:1206.2910] [INSPIRE].

    ADS  Google Scholar 

  16. LAT collaboration, M. Ackermann et al., Fermi LAT Search for Dark Matter in Gamma-ray Lines and the Inclusive Photon Spectrum, Phys. Rev. D 86 (2012) 022002 [arXiv:1205.2739] [INSPIRE].

  17. T. Bringmann, X. Huang, A. Ibarra, S. Vogl and C. Weniger, Fermi LAT Search for Internal Bremsstrahlung Signatures from Dark Matter Annihilation, JCAP 07 (2012) 054 [arXiv:1203.1312] [INSPIRE].

    Article  ADS  Google Scholar 

  18. C. Weniger, A Tentative Gamma-Ray Line from Dark Matter Annihilation at the Fermi Large Area Telescope, JCAP 08 (2012) 007 [arXiv:1204.2797] [INSPIRE].

    Article  ADS  Google Scholar 

  19. E. Tempel, A. Hektor and M. Raidal, Fermi 130 GeV gamma-ray excess and dark matter annihilation in sub-haloes and in the Galactic centre, JCAP 09 (2012) 032 [Addendum ibid. 1211 (2012) A01] [arXiv:1205.1045] [INSPIRE].

  20. M. Su and D.P. Finkbeiner, Strong Evidence for Gamma-ray Line Emission from the Inner Galaxy, arXiv:1206.1616 [INSPIRE].

  21. A. Hektor, M. Raidal and E. Tempel, Double gamma-ray lines from unassociated Fermi-LAT sources revisited, arXiv:1208.1996 [INSPIRE].

  22. A. Hektor, M. Raidal and E. Tempel, An evidence for indirect detection of dark matter from galaxy clusters in Fermi-LAT data, Astrophys. J. 762 (2013) L22 [arXiv:1207.4466] [INSPIRE].

    Article  ADS  Google Scholar 

  23. A. Hektor, M. Raidal and E. Tempel, Fermi-LAT gamma-ray signal from Earth Limb, systematic detector effects and their implications for the 130 GeV gamma-ray excess, arXiv:1209.4548 [INSPIRE].

  24. D. Whiteson, Disentangling Instrumental Features of the 130 GeV Fermi Line, JCAP 11 (2012) 008 [arXiv:1208.3677] [INSPIRE].

    Article  ADS  Google Scholar 

  25. D.P. Finkbeiner, M. Su and C. Weniger, Is the 130 GeV Line Real? A Search for Systematics in the Fermi-LAT Data, JCAP 01 (2013) 029 [arXiv:1209.4562] [INSPIRE].

    Article  ADS  Google Scholar 

  26. K. Rao and D. Whiteson, Where are the Fermi Lines Coming From?, JCAP 03 (2013) 035 [arXiv:1210.4934] [INSPIRE].

    Article  ADS  Google Scholar 

  27. W. Buchmüller and M. Garny, Decaying vs Annihilating Dark Matter in Light of a Tentative Gamma-Ray Line, JCAP 08 (2012) 035 [arXiv:1206.7056] [INSPIRE].

    Article  ADS  Google Scholar 

  28. T. Cohen, M. Lisanti, T.R. Slatyer and J.G. Wacker, Illuminating the 130 GeV Gamma Line with Continuum Photons, JHEP 10 (2012) 134 [arXiv:1207.0800] [INSPIRE].

    Article  ADS  Google Scholar 

  29. I. Cholis, M. Tavakoli and P. Ullio, Searching for the continuum spectrum photons correlated to the 130 GeV gamma-ray line, Phys. Rev. D 86 (2012) 083525 [arXiv:1207.1468] [INSPIRE].

    ADS  Google Scholar 

  30. S. Blanchet and J. Lavalle, Diffuse gamma-ray constraints on dark matter revisited. I: the impact of subhalos, JCAP 11 (2012) 021 [arXiv:1207.2476] [INSPIRE].

  31. M. Asano, T. Bringmann, G. Sigl and M. Vollmann, The 130 GeV gamma-ray line and generic dark matter model building constraints from continuum gamma rays, radio and antiproton data, Phys. Rev. D 87 (2013) 103509 [arXiv:1211.6739] [INSPIRE].

    ADS  Google Scholar 

  32. N. Weiner and I. Yavin, UV Completions of Magnetic Inelastic Dark Matter and RayDM for the Fermi Line(s), Phys. Rev. D 87 (2013) 023523 [arXiv:1209.1093] [INSPIRE].

    ADS  Google Scholar 

  33. E. Dudas, Y. Mambrini, S. Pokorski and A. Romagnoni, Extra U(1) as natural source of a monochromatic gamma ray line, JHEP 10 (2012) 123 [arXiv:1205.1520] [INSPIRE].

    Article  ADS  Google Scholar 

  34. J.M. Cline, 130 GeV dark matter and the Fermi gamma-ray line, Phys. Rev. D 86 (2012) 015016 [arXiv:1205.2688] [INSPIRE].

    ADS  Google Scholar 

  35. K.-Y. Choi and O. Seto, A Dirac right-handed sneutrino dark matter and its signature in the gamma-ray lines, Phys. Rev. D 86 (2012) 043515 [Erratum ibid. D 86 (2012) 089904] [arXiv:1205.3276] [INSPIRE].

  36. A. Rajaraman, T.M. Tait and D. Whiteson, Two Lines or Not Two Lines? That is the Question of Gamma Ray Spectra, JCAP 09 (2012) 003 [arXiv:1205.4723] [INSPIRE].

    Article  ADS  Google Scholar 

  37. M.R. Buckley and D. Hooper, Implications of a 130 GeV Gamma-Ray Line for Dark Matter, Phys. Rev. D 86 (2012) 043524 [arXiv:1205.6811] [INSPIRE].

    ADS  Google Scholar 

  38. D. Das, U. Ellwanger and P. Mitropoulos, A 130 GeV photon line from dark matter annihilation in the NMSSM, JCAP 08 (2012) 003 [arXiv:1206.2639] [INSPIRE].

    Article  ADS  Google Scholar 

  39. J.H. Heo and C. Kim, Dipole-interacting Fermionic Dark Matter in positron, antiproton and gamma-ray channels, Phys. Rev. D 87 (2013) 013007 [arXiv:1207.1341] [INSPIRE].

    ADS  Google Scholar 

  40. J.-C. Park and S.C. Park, Radiatively decaying scalar dark matter through U(1) mixings and the Fermi 130 GeV gamma-ray line, Phys. Lett. B 718 (2013) 1401 [arXiv:1207.4981] [INSPIRE].

    ADS  Google Scholar 

  41. S. Tulin, H.-B. Yu and K.M. Zurek, Three Exceptions for Thermal Dark Matter with Enhanced Annihilation to γγ, Phys. Rev. D 87 (2013) 036011 [arXiv:1208.0009] [INSPIRE].

    ADS  Google Scholar 

  42. J.M. Cline, A.R. Frey and G.D. Moore, Composite magnetic dark matter and the 130 GeV line, Phys. Rev. D 86 (2012) 115013 [arXiv:1208.2685] [INSPIRE].

    ADS  Google Scholar 

  43. Y. Bai and J. Shelton, Gamma Lines without a Continuum: Thermal Models for the Fermi-LAT 130 GeV Gamma Line, JHEP 12 (2012) 056 [arXiv:1208.4100] [INSPIRE].

    Article  ADS  Google Scholar 

  44. T. Bringmann and C. Weniger, Gamma Ray Signals from Dark Matter: Concepts, Status and Prospects, Phys. Dark Univ. 1 (2012) 194 [arXiv:1208.5481] [INSPIRE].

    Article  Google Scholar 

  45. L. Bergstrom, The 130 GeV Fingerprint of Right-Handed Neutrino Dark Matter, Phys. Rev. D 86 (2012) 103514 [arXiv:1208.6082] [INSPIRE].

    ADS  Google Scholar 

  46. J. Fan and M. Reece, A Simple Recipe for the 111 and 128 GeV Lines, arXiv:1209.1097 [INSPIRE].

  47. F. D’Eramo, M. McCullough and J. Thaler, Multiple Gamma Lines from Semi-Annihilation, JCAP 04 (2013) 030 [arXiv:1210.7817] [INSPIRE].

    Article  Google Scholar 

  48. A. Rajaraman, T.M. Tait and A.M. Wijangco, Effective Theories of Gamma-ray Lines from Dark Matter Annihilation, Phys. Dark Univ. 2 (2013) 17 [arXiv:1211.7061] [INSPIRE].

    Article  Google Scholar 

  49. J. Fan and M. Reece, Probing Charged Matter Through Higgs Diphoton Decay, Gamma Ray Lines and EDMs, JHEP 06 (2013) 004 [arXiv:1301.2597] [INSPIRE].

    Article  ADS  Google Scholar 

  50. H.M. Lee, M. Park and V. Sanz, Interplay between Fermi gamma-ray lines and collider searches, JHEP 03 (2013) 052 [arXiv:1212.5647] [INSPIRE].

    Article  ADS  Google Scholar 

  51. J. Kopp, E.T. Neil, R. Primulando and J. Zupan, From gamma ray line signals of dark matter to the LHC, Phys. Dark Univ. 2 (2013) 22 [arXiv:1301.1683] [INSPIRE].

    Article  Google Scholar 

  52. P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, Missing Energy Signatures of Dark Matter at the LHC, Phys. Rev. D 85 (2012) 056011 [arXiv:1109.4398] [INSPIRE].

    ADS  Google Scholar 

  53. DELPHI collaboration, P. Abreu et al., Search for charginos nearly mass - degenerate with the lightest neutralino, Eur. Phys. J. C 11 (1999) 1 [hep-ex/9903071] [INSPIRE].

  54. J.L. Feng, T. Moroi, L. Randall, M. Strassler and S.-f. Su, Discovering supersymmetry at the Tevatron in wino LSP scenarios, Phys. Rev. Lett. 83 (1999) 1731 [hep-ph/9904250] [INSPIRE].

  55. J.F. Gunion and S. Mrenna, A Study of SUSY signatures at the Tevatron in models with near mass degeneracy of the lightest chargino and neutralino, Phys. Rev. D 62 (2000) 015002 [hep-ph/9906270] [INSPIRE].

    ADS  Google Scholar 

  56. M. Ibe, T. Moroi and T. Yanagida, Possible Signals of Wino LSP at the Large Hadron Collider, Phys. Lett. B 644 (2007) 355 [hep-ph/0610277] [INSPIRE].

    ADS  Google Scholar 

  57. S. Asai, T. Moroi and T. Yanagida, Test of Anomaly Mediation at the LHC, Phys. Lett. B 664 (2008) 185 [arXiv:0802.3725] [INSPIRE].

    ADS  Google Scholar 

  58. P. Fileviez Perez, H.H. Patel, M. Ramsey-Musolf and K. Wang, Triplet Scalars and Dark Matter at the LHC, Phys. Rev. D 79 (2009) 055024 [arXiv:0811.3957] [INSPIRE].

    ADS  Google Scholar 

  59. M.R. Buckley, L. Randall and B. Shuve, LHC Searches for Non-Chiral Weakly Charged Multiplets, JHEP 05 (2011) 097 [arXiv:0909.4549] [INSPIRE].

    Article  ADS  Google Scholar 

  60. S. Kanemura, K. Tsumura and H. Yokoya, Multi-tau-lepton signatures at the LHC in the two Higgs doublet model, Phys. Rev. D 85 (2012) 095001 [arXiv:1111.6089] [INSPIRE].

    ADS  Google Scholar 

  61. L. Randall and R. Sundrum, Out of this world supersymmetry breaking, Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  62. G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets, JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].

    Article  ADS  Google Scholar 

  63. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    Article  ADS  Google Scholar 

  64. T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].

  65. J. Conway et al., PGS4Pretty Good Simulation on high energy collisions, http://www.physics.ucdavis.edu/˜conway/research/software/pgs/pgs4-general.htm (2012).

  66. D. Eriksson, J. Rathsman and O. Stal, 2HDMC: Two-Higgs-Doublet Model Calculator Physics and Manual, Comput. Phys. Commun. 181 (2010) 189 [arXiv:0902.0851] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  67. ATLAS collaboration, Search for Supersymmetry in Events with Large Missing Transverse Momentum, Jets and at Least One Tau Lepton in 7 TeV Proton-Proton Collision Data with the ATLAS Detector, Eur. Phys. J. C 72 (2012) 2215 [arXiv:1210.1314] [INSPIRE].

  68. E.W. Kolb and M.S. Turner, The Early universe, Front.Phys. 69 (1990) 1.

    MathSciNet  ADS  Google Scholar 

  69. XENON100 collaboration, E. Aprile et al., Dark Matter Results from 225 Live Days of XENON100 Data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].

  70. T. Han and R. Hempfling, Messenger sneutrinos as cold dark matter, Phys. Lett. B 415 (1997) 161 [hep-ph/9708264] [INSPIRE].

    ADS  Google Scholar 

  71. L.J. Hall, T. Moroi and H. Murayama, Sneutrino cold dark matter with lepton number violation, Phys. Lett. B 424 (1998) 305 [hep-ph/9712515] [INSPIRE].

    ADS  Google Scholar 

  72. D. Tucker-Smith and N. Weiner, Inelastic dark matter, Phys. Rev. D 64 (2001) 043502 [hep-ph/0101138] [INSPIRE].

    ADS  Google Scholar 

  73. ATLAS collaboration, Search for direct chargino production in anomaly-mediated supersymmetry breaking models based on a disappearing-track signature in pp collisions at \( \sqrt{s} \) = 7TeV with the ATLAS detector, JHEP 01 (2013) 131 [arXiv:1210.2852] [INSPIRE].

  74. P.J. Fox, R. Harnik, R. Primulando and C.-T. Yu, Taking a Razor to Dark Matter Parameter Space at the LHC, Phys. Rev. D 86 (2012) 015010 [arXiv:1203.1662] [INSPIRE].

    ADS  Google Scholar 

  75. A. Ali and D. London, Profiles of the unitarity triangle and CP-violating phases in the standard model and supersymmetric theories, Eur. Phys. J. C 9 (1999) 687 [hep-ph/9903535] [INSPIRE].

    ADS  Google Scholar 

  76. A. Buras, P. Gambino, M. Gorbahn, S. Jager and L. Silvestrini, Universal unitarity triangle and physics beyond the standard model, Phys. Lett. B 500 (2001) 161 [hep-ph/0007085] [INSPIRE].

    ADS  Google Scholar 

  77. G. D’Ambrosio, G. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: an Effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].

    Article  ADS  Google Scholar 

  78. ATLAS collaboration, Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in 13.0 fb-1 of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2012-154 (2012).

  79. CMS collaboration, Search for direct EWK production of SUSY particles in multilepton modes with 8 TeV data, CMS-PAS-SUS-12-022.

  80. Y. Andreev, S. Bityukov and N. Krasnikov, Sleptons at post-WMAP benchmark points at LHC(CMS), Phys. Atom. Nucl. 68 (2005) 340 [hep-ph/0402229] [INSPIRE].

    Article  ADS  Google Scholar 

  81. ATLAS collaboration, Search for anomalous production of prompt like-sign lepton pairs at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, JHEP 12 (2012) 007 [arXiv:1210.4538] [INSPIRE].

  82. CMS collaboration, A Search for Anomalous Production of Events with three or more leptons using 9.2fb 1, CMS-PAS-SUS-12-026.

  83. T. Blank and W. Hollik, Precision observables in SU(2) × U(1) models with an additional Higgs triplet, Nucl. Phys. B 514 (1998) 113 [hep-ph/9703392] [INSPIRE].

    Article  ADS  Google Scholar 

  84. M.-C. Chen, S. Dawson and T. Krupovnickas, Higgs triplets and limits from precision measurements, Phys. Rev. D 74 (2006) 035001 [hep-ph/0604102] [INSPIRE].

    ADS  Google Scholar 

  85. S.L. Glashow and S. Weinberg, Natural Conservation Laws for Neutral Currents, Phys. Rev. D 15 (1977) 1958 [INSPIRE].

    ADS  Google Scholar 

  86. F. Mahmoudi and O. Stal, Flavor constraints on the two-Higgs-doublet model with general Yukawa couplings, Phys. Rev. D 81 (2010) 035016 [arXiv:0907.1791] [INSPIRE].

    ADS  Google Scholar 

  87. N. Craig et al., Multi-Lepton Signals of Multiple Higgs Bosons, JHEP 02 (2013) 033 [arXiv:1210.0559] [INSPIRE].

    Article  ADS  Google Scholar 

  88. A.G. Holzner, Searches for charged Higgs bosons at LEP, hep-ex/0105045 [INSPIRE].

  89. LEP Higgs Working Group, ALEPH, DELPHI, L3, OPAL collaborations, Searches for the neutral Higgs bosons of the MSSM: preliminary combined results using LEP data collected at energies up to 209-GeV, hep-ex/0107030 [INSPIRE].

  90. ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the two photon decay channel with the ATLAS detector using 25fb−1 of proton-proton collision data, ATLAS-CONF-2013-012 (2013).

  91. A. Kusenko, Sterile neutrinos: the Dark side of the light fermions, Phys. Rept. 481 (2009) 1 [arXiv:0906.2968] [INSPIRE].

    Article  ADS  Google Scholar 

  92. P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, LEP Shines Light on Dark Matter, Phys. Rev. D 84 (2011) 014028 [arXiv:1103.0240] [INSPIRE].

    ADS  Google Scholar 

  93. Planck collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE].

  94. D. Curtin, P. Jaiswal and P. Meade, Charginos Hiding In Plain Sight, Phys. Rev. D 87 (2013) 031701 [arXiv:1206.6888] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itay Yavin.

Additional information

ArXiv ePrint: 1303.4404

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Shuve, B., Weiner, N. et al. Looking for new charged states at the LHC: signatures of magnetic and Rayleigh dark matter. J. High Energ. Phys. 2013, 144 (2013). https://doi.org/10.1007/JHEP07(2013)144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2013)144

Keywords

Navigation