Skip to main content
Log in

Light inflaton after LHC8 and WMAP9 results

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We update the allowed parameter space of the simple chaotic inflationary model with quartic potential and light inflaton [1] taking into account recent results from cosmology (CMB observations from SPT, ACT and WMAP) and from particle physics (LHC hints of the SM Higgs boson). The non-minimal (yet small) coupling to gravity of the inflaton becomes essential to fit the observational data. The inflaton has mass above 300 MeV and can be searched for at B-factories in B-meson two-body decays to kaon and inflaton. The inflaton lifetime depends on the model parameters, resulting in various inflaton signatures: either a missing energy, or a displaced vertex from the B-meson decay position, or a resonance in the Dalitz plot of a three particle decay. We also discuss the implementation of the inflaton model to the νMSM, where the inflaton can be responsible for production of the dark matter sterile neutrino in the early Universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Bezrukov and D. Gorbunov, Light inflaton hunters guide, JHEP 05 (2010) 010 [arXiv:0912.0390] [INSPIRE].

    Article  ADS  Google Scholar 

  2. A.A. Starobinsky, A new type of isotropic cosmological models without singularity, Phys. Lett. B 91 (1980) 99 [INSPIRE].

    ADS  Google Scholar 

  3. V.F. Mukhanov and G. Chibisov, Quantum fluctuation and nonsingular universe (in Russian), JETP Lett. 33 (1981) 532 [Pisma Zh. Eksp. Teor. Fiz. 33 (1981) 549] [INSPIRE].

  4. A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].

    ADS  Google Scholar 

  5. A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Phys. Lett. B 108 (1982) 389 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. A. Albrecht and P.J. Steinhardt, Cosmology for Grand Unified Theories with radiatively induced symmetry breaking, Phys. Rev. Lett. 48 (1982) 1220 [INSPIRE].

    Article  ADS  Google Scholar 

  7. M. Shaposhnikov and I. Tkachev, The νMSM, inflation and dark matter, Phys. Lett. B 639 (2006) 414 [hep-ph/0604236] [INSPIRE].

    ADS  Google Scholar 

  8. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

  9. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  10. K. Story et al., A measurement of the Cosmic Microwave Background damping tail from the 2500-square-degree SPT-SZ survey, arXiv:1210.7231 [INSPIRE].

  11. J.L. Sievers et al., The Atacama Cosmology Telescope: cosmological parameters from three seasons of data, arXiv:1301.0824 [INSPIRE].

  12. WMAP collaboration, G. Hinshaw et al., Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results, arXiv:1212.5226 [INSPIRE].

  13. T. Asaka, S. Blanchet and M. Shaposhnikov, The νMSM, dark matter and neutrino masses, Phys. Lett. B 631 (2005) 151 [hep-ph/0503065] [INSPIRE].

    ADS  Google Scholar 

  14. T. Asaka and M. Shaposhnikov, The νMSM, dark matter and baryon asymmetry of the universe, Phys. Lett. B 620 (2005) 17 [hep-ph/0505013] [INSPIRE].

    ADS  Google Scholar 

  15. D.I. Kaiser, Primordial spectral indices from generalized Einstein theories, Phys. Rev. D 52 (1995) 4295 [astro-ph/9408044] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  16. E. Komatsu and T. Futamase, Complete constraints on a nonminimally coupled chaotic inflationary scenario from the Cosmic Microwave Background, Phys. Rev. D 59 (1999) 064029 [astro-ph/9901127] [INSPIRE].

    ADS  Google Scholar 

  17. A.R. Liddle and D.H. Lyth, The cold dark matter density perturbation, Phys. Rept. 231 (1993) 1 [astro-ph/9303019] [INSPIRE].

    Article  ADS  Google Scholar 

  18. D.S. Gorbunov and V.A. Rubakov, Introduction to the theory of the early universe: cosmological perturbations and inflationary theory, World Scientific, Hackensack U.S.A. (2011).

    Book  Google Scholar 

  19. A.D. Linde, Chaotic inflation, Phys. Lett. B 129 (1983) 177 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  20. D. Salopek, Consequences of the COBE satellite for the inflationary scenario, Phys. Rev. Lett. 69 (1992) 3602 [INSPIRE].

    Article  ADS  Google Scholar 

  21. F. Bezrukov and M. Shaposhnikov, The Standard Model Higgs boson as the inflaton, Phys. Lett. B 659 (2008) 703 [arXiv:0710.3755] [INSPIRE].

    ADS  Google Scholar 

  22. A. Starobinsky, The perturbation spectrum evolving from a nonsingular initially de-Sitter cosmology and the microwave background anisotropy, Sov. Astron. Lett. 9 (1983) 302 [INSPIRE].

    ADS  Google Scholar 

  23. D. Gorbunov and A. Panin, Scalaron the mighty: producing dark matter and baryon asymmetry at reheating, Phys. Lett. B 700 (2011) 157 [arXiv:1009.2448] [INSPIRE].

    ADS  Google Scholar 

  24. F. Bezrukov, D. Gorbunov and M. Shaposhnikov, On initial conditions for the hot big bang, JCAP 06 (2009) 029 [arXiv:0812.3622] [INSPIRE].

    Article  ADS  Google Scholar 

  25. F. Bezrukov and D. Gorbunov, Distinguishing between R 2 -inflation and Higgs-inflation, Phys. Lett. B 713 (2012) 365 [arXiv:1111.4397] [INSPIRE].

    ADS  Google Scholar 

  26. D. Gorbunov and A. Tokareva, R 2 -inflation with conformal SM Higgs field, arXiv:1212.4466 [INSPIRE].

  27. A. Anisimov, Y. Bartocci and F.L. Bezrukov, Inflaton mass in the νMSM inflation, Phys. Lett. B 671 (2009) 211 [arXiv:0809.1097] [INSPIRE].

    ADS  Google Scholar 

  28. Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

  29. F. Bezrukov, M.Y. Kalmykov, B.A. Kniehl and M. Shaposhnikov, Higgs boson mass and new physics, JHEP 10 (2012) 140 [arXiv:1205.2893] [INSPIRE].

    Article  ADS  Google Scholar 

  30. G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098 [arXiv:1205.6497] [INSPIRE].

    Article  ADS  Google Scholar 

  31. S. Alekhin, A. Djouadi and S. Moch, The top quark and Higgs boson masses and the stability of the electroweak vacuum, Phys. Lett. B 716 (2012) 214 [arXiv:1207.0980] [INSPIRE].

    ADS  Google Scholar 

  32. A. Pilaftsis, CP violation and baryogenesis due to heavy Majorana neutrinos, Phys. Rev. D 56 (1997) 5431 [hep-ph/9707235] [INSPIRE].

    ADS  Google Scholar 

  33. D. Nickeler, M. Karlicky and M. Barta, Stationary stagnation point flows in the vicinity of a 2D magnetic null point: I. Systems with vanishing electric field and an X-type magnetic null point, Ann. Rev. Nucl. Part. Sci. 59 (2009) 191 [arXiv:0909.0836] [INSPIRE].

  34. L. Canetti, M. Drewes, T. Frossard and M. Shaposhnikov, Dark matter, baryogenesis and neutrino oscillations from right handed neutrinos, Phys. Rev. D 87 (2013) 093006 [arXiv:1208.4607] [INSPIRE].

    ADS  Google Scholar 

  35. A. Roy and M. Shaposhnikov, Resonant production of the sterile neutrino dark matter and fine-tunings in the νMSM, Phys. Rev. D 82 (2010) 056014 [arXiv:1006.4008] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Bezrukov.

Additional information

ArXiv ePrint: 1303.4395

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bezrukov, F., Gorbunov, D. Light inflaton after LHC8 and WMAP9 results. J. High Energ. Phys. 2013, 140 (2013). https://doi.org/10.1007/JHEP07(2013)140

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2013)140

Keywords

Navigation