Skip to main content
Log in

The next generation

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider the possibility of non-sequential generation(s) of Standard Modellike matter as a consequence of cancellation of global and gauge anomalies due to a new strongly interacting sector responsible for the electroweak symmetry breaking. We consider concrete models for the strong dynamics and outline several scenarios for the next generation. For these we provide analysis of the precision constraints as well as a discussion on collider signatures and implications for cosmology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Weinberg, Implications of dynamical symmetry breaking: an addendum, Phys. Rev. D 19 (1979) 1277 [SPIRES].

    ADS  Google Scholar 

  2. L. Susskind, Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory, Phys. Rev. D 20 (1979) 2619 [SPIRES].

    ADS  Google Scholar 

  3. C.T. Hill and E.H. Simmons, Strong dynamics and electroweak symmetry breaking, Phys. Rept. 381 (2003) 235 [hep-ph/0203079] [SPIRES].

    Article  ADS  Google Scholar 

  4. F. Sannino, Dynamical stabilization of the Fermi scale: phase diagram of strongly coupled theories for (minimal) walking technicolor and unparticles, arXiv:0804.0182 [SPIRES].

  5. F. Sannino, Conformal dynamics for TeV physics and cosmology, arXiv:0911.0931 [SPIRES].

  6. F. Sannino and K. Tuominen, Orientifold theory dynamics and symmetry breaking, Phys. Rev. D 71 (2005) 051901 [hep-ph/0405209] [SPIRES].

    ADS  Google Scholar 

  7. D.D. Dietrich, F. Sannino and K. Tuominen, Light composite Higgs from higher representations versus electroweak precision measurements: predictions for LHC, Phys. Rev. D 72 (2005) 055001 [hep-ph/0505059] [SPIRES].

    ADS  Google Scholar 

  8. D.D. Dietrich, F. Sannino and K. Tuominen, Light composite Higgs and precision electroweak measurements on the Z resonance: an update, Phys. Rev. D 73 (2006) 037701 [hep-ph/0510217] [SPIRES].

    ADS  Google Scholar 

  9. A. Doff and A.A. Natale, Scalar bosons in minimal and ultraminimal technicolor: masses, trilinear couplings and widths, arXiv:0912.1003 [SPIRES].

  10. A. Doff, A.A. Natale and P.S. Rodrigues da Silva, Light composite Higgs boson from the normalized Bethe-Salpeter equation, Phys. Rev. D 80 (2009) 055005 [arXiv:0905.2981] [SPIRES].

    ADS  Google Scholar 

  11. A. Belyaev et al., Technicolor walks at the LHC, Phys. Rev. D 79 (2009) 035006 [arXiv:0809.0793] [SPIRES].

    ADS  Google Scholar 

  12. R. Foadi, M.T. Frandsen and F. Sannino, Constraining Walking and custodial technicolor, Phys. Rev. D 77 (2008) 097702 [arXiv:0712.1948] [SPIRES].

    ADS  Google Scholar 

  13. R. Foadi, M.T. Frandsen, T.A. Ryttov and F. Sannino, Minimal walking technicolor: set up for collider physics, Phys. Rev. D 76 (2007) 055005 [arXiv:0706.1696] [SPIRES].

    ADS  Google Scholar 

  14. O. Antipin and K. Tuominen, Discriminating between technicolor and warped extra dimensional model via ppZZ channel, Phys. Rev. D 79 (2009) 075011 [arXiv:0901.4243] [SPIRES].

    ADS  Google Scholar 

  15. M.T. Frandsen, I. Masina and F. Sannino, Fourth lepton family is natural in technicolor, Phys. Rev. D 81 (2010) 035010 [arXiv:0905.1331] [SPIRES].

    ADS  Google Scholar 

  16. O. Antipin, M. Heikinheimo and K. Tuominen, Natural fourth generation of leptons, JHEP 10 (2009) 018 [arXiv:0905.0622] [SPIRES].

    Article  ADS  Google Scholar 

  17. R. Foadi, M.T. Frandsen and F. Sannino, Technicolor dark matter, Phys. Rev. D 80 (2009) 037702 [arXiv:0812.3406] [SPIRES].

    ADS  Google Scholar 

  18. S.B. Gudnason, C. Kouvaris and F. Sannino, Towards working technicolor: effective theories and dark matter, Phys. Rev. D 73 (2006) 115003 [hep-ph/0603014] [SPIRES].

    ADS  Google Scholar 

  19. S.B. Gudnason, C. Kouvaris and F. Sannino, Dark matter from new technicolor theories, Phys. Rev. D 74 (2006) 095008 [hep-ph/0608055] [SPIRES].

    ADS  Google Scholar 

  20. K. Kainulainen, K. Tuominen and J. Virkajarvi, The WIMP of a minimal technicolor theory, Phys. Rev. D 75 (2007) 085003 [hep-ph/0612247] [SPIRES].

    ADS  Google Scholar 

  21. C. Kouvaris, WIMP annihilation and cooling of neutron stars, Phys. Rev. D 77 (2008) 023006 [arXiv:0708.2362] [SPIRES].

    ADS  Google Scholar 

  22. M.Y. Khlopov and C. Kouvaris, Strong interactive massive particles from a strong coupled theory, Phys. Rev. D 77 (2008) 065002 [arXiv:0710.2189] [SPIRES].

    ADS  Google Scholar 

  23. M.Y. Khlopov and C. Kouvaris, Composite dark matter from a model with composite Higgs boson, Phys. Rev. D 78 (2008) 065040 [arXiv:0806.1191] [SPIRES].

    ADS  Google Scholar 

  24. C. Kouvaris, The dark side of strong coupled theories, Phys. Rev. D 78 (2008) 075024 [arXiv:0807.3124] [SPIRES].

    ADS  Google Scholar 

  25. K. Kainulainen, K. Tuominen and J. Virkajarvi, Superweakly interacting dark matter from the Minimal walking technicolor, JCAP 02 (2010) 029 [arXiv:0912.2295] [SPIRES].

    ADS  Google Scholar 

  26. E. Witten, An SU(2) anomaly, Phys. Lett. B 117 (1982) 324 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  27. P.H. Frampton, P.Q. Hung and M. Sher, Quarks and leptons beyond the third generation, Phys. Rept. 330 (2000) 263 [hep-ph/9903387] [SPIRES].

    Article  ADS  Google Scholar 

  28. B. Holdom, The discovery of the fourth family at the LHC: What if?, JHEP 08 (2006) 076 [hep-ph/0606146] [SPIRES].

    Article  ADS  Google Scholar 

  29. G.D. Kribs, T. Plehn, M. Spannowsky and T.M.P. Tait, Four generations and Higgs physics, Phys. Rev. D 76 (2007) 075016 [arXiv:0706.3718] [SPIRES].

    ADS  Google Scholar 

  30. K. Belotsky, D. Fargion, M. Khlopov, R. Konoplich and K. Shibaev, Invisible Higgs boson decay into massive neutrinos of 4th generation, Phys. Rev. D 68 (2003) 054027 [hep-ph/0210153] [SPIRES].

    ADS  Google Scholar 

  31. K. Belotsky et al., May heavy hadrons of the 4th generation be hidden in our universe while close to detection?, hep-ph/0411271 [SPIRES].

  32. K. Belotsky, M. Khlopov and K. Shibaev, Stable quarks of the 4th family?, arXiv:0806.1067 [SPIRES].

  33. M.A. Zubkov, Z 6 symmetry of the Standard Model and technicolor theory, Phys. Lett. B 674 (2009) 325 [arXiv:0707.0731] [SPIRES].

    ADS  Google Scholar 

  34. H.-J. He, N. Polonsky and S.-f. Su, Extra families, Higgs spectrum and oblique corrections, Phys. Rev. D 64 (2001) 053004 [hep-ph/0102144] [SPIRES].

    ADS  Google Scholar 

  35. T. Appelquist and F. Sannino, The physical spectrum of conformal SU(N) gauge theories, Phys. Rev. D 59 (1999) 067702 [hep-ph/9806409] [SPIRES].

    ADS  Google Scholar 

  36. ALEPH, DELPHI, L3, OPAL, SLD collaborations, LEP Electroweak Working Group and SLD Electroweak and Heavy Flavour Groups, Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [SPIRES];

    ADS  Google Scholar 

  37. T. Appelquist, M. Piai and R. Shrock, Fermion masses and mixing in extended technicolor models, Phys. Rev. D 69 (2004) 015002 [hep-ph/0308061] [SPIRES].

    ADS  Google Scholar 

  38. S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [SPIRES].

    Article  ADS  Google Scholar 

  39. N.B. Schmidt, S.A. Cetin, S. Istin and S. Sultansoy, The fourth Standart Model family and the competition in Standart Model Higgs Boson search at tevatron and LHC, Eur. Phys. J. C 66 (2010) 119 [arXiv:0908.2653] [SPIRES].

    Article  ADS  Google Scholar 

  40. V.D. Barger, R.J.N. Phillips and A. Soni, Possible neutrino - Quark signatures at e + e colliders, Phys. Rev. Lett. 57 (1986) 1518 [SPIRES].

    Article  ADS  Google Scholar 

  41. W.-S. Hou and R.G. Stuart, Flavor changing neutral currents involving heavy fermions: a general survey, Nucl. Phys. B 320 (1989) 277 [SPIRES].

    Article  ADS  Google Scholar 

  42. Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].

    ADS  Google Scholar 

  43. B. Holdom, t’ at the LHC: the physics of discovery, JHEP 03 (2007) 063 [hep-ph/0702037] [SPIRES].

    Article  ADS  Google Scholar 

  44. A. Soni, A.K. Alok, A. Giri, R. Mohanta and S. Nandi, The fourth family: a natural explanation for the observed pattern of anomalies in B CP asymmetries, Phys. Lett. B 683 (2010) 302 [arXiv:0807.1971] [SPIRES].

    ADS  Google Scholar 

  45. E.A. Andriyash, G.G. Ovanesyan and M.I. Vysotsky, The value of BK from the experimental data on CP-violation in K-mesons and up-to-date values of CKM matrix parameters, Phys. Atom. Nucl. 69 (2006) 286 [hep-ph/0502111] [SPIRES].

    Article  ADS  Google Scholar 

  46. A. Soni, A.K. Alok, A. Giri, R. Mohanta and S. Nandi, SM with four generations: selected implications for rare B and K decays, 1002.0595 [SPIRES].

  47. E. Gates and J. Terning, Negative contributions to S from Majorana particles, Phys. Rev. Lett. 67 (1991) 1840 [SPIRES].

    Article  ADS  Google Scholar 

  48. M. Sher and Y. Yuan, Cosmological bounds on the lifetime of a fourth generation charged lepton, Phys. Lett. B 285 (1992) 336 [SPIRES].

    ADS  Google Scholar 

  49. E. Holtmann, M. Kawasaki, K. Kohri and T. Moroi, Radiative decay of a long-lived particle and big-bang nucleosynthesis, Phys. Rev. D 60 (1999) 023506 [hep-ph/9805405] [SPIRES].

    ADS  Google Scholar 

  50. S.B. Gudnason, T.A. Ryttov and F. Sannino, Gauge coupling unification via a novel technicolor model, Phys. Rev. D 76 (2007) 015005 [hep-ph/0612230] [SPIRES].

    ADS  Google Scholar 

  51. A.J. Hietanen, K. Rummukainen and K. Tuominen, Evolution of the coupling constant in SU(2) lattice gauge theory with two adjoint fermions, Phys. Rev. D 80 (2009) 094504 [arXiv:0904.0864] [SPIRES].

    ADS  Google Scholar 

  52. L.-F. Li and F. Wu, Coupling constant unification in extensions of standard model, Int. J. Mod. Phys. A 19 (2004) 3217 [hep-ph/0304238] [SPIRES].

    ADS  Google Scholar 

  53. K. Kainulainen, K. Tuominen and J. Virkajarvi, Naturality, unification and dark matter, 1001.4936 [SPIRES].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matti Heikinheimo.

Additional information

ArXiv ePrint: 1002.1872v1

On leave of absence from Department of Physics, University of Jyväskylä.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antipin, O., Heikinheimo, M. & Tuominen, K. The next generation. J. High Energ. Phys. 2010, 52 (2010). https://doi.org/10.1007/JHEP07(2010)052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2010)052

Keywords

Navigation