Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
Correlation functions in finite temperature CFT and black hole singularities
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Holographic KMS relations at finite density

24 March 2021

R. Loganayagam, Krishnendu Ray, … Akhil Sivakumar

Thermal correlation functions in CFT and factorization

08 November 2021

D. Rodriguez-Gomez & J. G. Russo

A one-loop test of the near-AdS2/near-CFT1 correspondence

24 July 2020

Anthony M. Charles & Finn Larsen

On the universality of late-time correlators in semi-classical 2d CFTs

10 August 2018

Souvik Banerjee, Jan-Willem Bryan & Gideon Vos

Current-current deformations, conformal integrals and correlation functions

29 April 2020

Gaston Giribet & Matias Leoni

Late-time correlation functions in dS3/CFT2 correspondence

03 February 2023

Heng-Yu Chen, Shi Chen & Yasuaki Hikida

Gravitational Cardy limit and AdS black hole entropy

10 November 2020

Marina David, Jun Nian & Leopoldo A. Pando Zayas

Holographic boundary actions in AdS3/CFT2 revisited

27 October 2021

Kevin Nguyen

The Regge limit of AdS3 holographic correlators

06 November 2020

Stefano Giusto, Marcel R.R. Hughes & Rodolfo Russo

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 08 June 2021

Correlation functions in finite temperature CFT and black hole singularities

  • D. Rodriguez-Gomez1,2 &
  • J.G. Russo3,4 

Journal of High Energy Physics volume 2021, Article number: 48 (2021) Cite this article

  • 214 Accesses

  • 11 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We compute thermal 2-point correlation functions in the black brane AdS5 background dual to 4d CFT’s at finite temperature for operators of large scaling dimension. We find a formula that matches the expected structure of the OPE. It exhibits an exponentiation property, whose origin we explain. We also compute the first correction to the two-point function due to graviton emission, which encodes the proper time from the event horizon to the black hole singularity.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. S. El-Showk and K. Papadodimas, Emergent Spacetime and Holographic CFTs, JHEP 10 (2012) 106 [arXiv:1101.4163] [INSPIRE].

    Article  ADS  Google Scholar 

  2. L. Iliesiu, M. Koloğlu, R. Mahajan, E. Perlmutter and D. Simmons-Duffin, The Conformal Bootstrap at Finite Temperature, JHEP 10 (2018) 070 [arXiv:1802.10266] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. R. Karlsson, A. Parnachev and P. Tadić, Thermalization in large-N CFTs, arXiv:2102.04953 [INSPIRE].

  4. L.F. Alday, M. Koloğlu and A. Zhiboedov, Holographic Correlators at Finite Temperature, arXiv:2009.10062 [INSPIRE].

  5. A.L. Fitzpatrick and K.-W. Huang, Universal Lowest-Twist in CFTs from Holography, JHEP 08 (2019) 138 [arXiv:1903.05306] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. A.B. Zamolodchikov, Conformal symmetry in two-dimensions: an explicit recurrence formula for the conformal partial wave amplitude, Commun. Math. Phys. 96 (1984) 419 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Universality of Long-Distance AdS Physics from the CFT Bootstrap, JHEP 08 (2014) 145 [arXiv:1403.6829] [INSPIRE].

    Article  ADS  Google Scholar 

  8. M. Beşken, S. Datta and P. Kraus, Semi-classical Virasoro blocks: proof of exponentiation, JHEP 01 (2020) 109 [arXiv:1910.04169] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. A.L. Fitzpatrick, K.-W. Huang and D. Li, Probing universalities in d > 2 CFTs: from black holes to shockwaves, JHEP 11 (2019) 139 [arXiv:1907.10810] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. V. Balasubramanian and S.F. Ross, Holographic particle detection, Phys. Rev. D 61 (2000) 044007 [hep-th/9906226] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. J. Louko, D. Marolf and S.F. Ross, On geodesic propagators and black hole holography, Phys. Rev. D 62 (2000) 044041 [hep-th/0002111] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. P. Kraus, H. Ooguri and S. Shenker, Inside the horizon with AdS/CFT, Phys. Rev. D 67 (2003) 124022 [hep-th/0212277] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. L. Fidkowski, V. Hubeny, M. Kleban and S. Shenker, The black hole singularity in AdS/CFT, JHEP 02 (2004) 014 [hep-th/0306170] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Local bulk operators in AdS/CFT: A holographic description of the black hole interior, Phys. Rev. D 75 (2007) 106001 [Erratum ibid. 75 (2007) 129902] [hep-th/0612053] [INSPIRE].

  15. V. Balasubramanian et al., Holographic Thermalization, Phys. Rev. D 84 (2011) 026010 [arXiv:1103.2683] [INSPIRE].

    Article  ADS  Google Scholar 

  16. I. Heemskerk, D. Marolf, J. Polchinski and J. Sully, Bulk and Transhorizon Measurements in AdS/CFT, JHEP 10 (2012) 165 [arXiv:1201.3664] [INSPIRE].

    Article  ADS  Google Scholar 

  17. K. Papadodimas and S. Raju, An Infalling Observer in AdS/CFT, JHEP 10 (2013) 212 [arXiv:1211.6767] [INSPIRE].

    Article  ADS  Google Scholar 

  18. T. Hartman and J. Maldacena, Time Evolution of Entanglement Entropy from Black Hole Interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. A.L. Fitzpatrick, K.-W. Huang, D. Meltzer, E. Perlmutter and D. Simmons-Duffin, Model-dependence of minimal-twist OPEs in d > 2 holographic CFTs, JHEP 11 (2020) 060 [arXiv:2007.07382] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. M. Dodelson and H. Ooguri, Singularities of thermal correlators at strong coupling, Phys. Rev. D 103 (2021) 066018 [arXiv:2010.09734] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. M. Grinberg and J. Maldacena, Proper time to the black hole singularity from thermal one-point functions, JHEP 03 (2021) 131 [arXiv:2011.01004] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. S. Dobashi, H. Shimada and T. Yoneya, Holographic reformulation of string theory on AdS5 × S5 background in the PP wave limit, Nucl. Phys. B 665 (2003) 94 [hep-th/0209251] [INSPIRE].

    Article  ADS  Google Scholar 

  23. S. Dobashi and T. Yoneya, Resolving the holography in the plane-wave limit of AdS/CFT correspondence, Nucl. Phys. B 711 (2005) 3 [hep-th/0406225] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. R.A. Janik, P. Surowka and A. Wereszczynski, On correlation functions of operators dual to classical spinning string states, JHEP 05 (2010) 030 [arXiv:1002.4613] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. T. Klose and T. McLoughlin, A light-cone approach to three-point functions in AdS5 × S5 , JHEP 04 (2012) 080 [arXiv:1106.0495] [INSPIRE].

    Article  ADS  Google Scholar 

  26. E.I. Buchbinder and A.A. Tseytlin, Semiclassical correlators of three states with large S5 charges in string theory in AdS5 × S5 , Phys. Rev. D 85 (2012) 026001 [arXiv:1110.5621] [INSPIRE].

    Article  ADS  Google Scholar 

  27. J.A. Minahan, Holographic three-point functions for short operators, JHEP 07 (2012) 187 [arXiv:1206.3129] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. H. Osborn and A.C. Petkou, Implications of conformal invariance in field theories for general dimensions, Annals Phys. 231 (1994) 311 [hep-th/9307010] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. S.S. Gubser, I.R. Klebanov and A.A. Tseytlin, Coupling constant dependence in the thermodynamics of N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 534 (1998) 202 [hep-th/9805156] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. P. Kovtun and A. Ritz, Black holes and universality classes of critical points, Phys. Rev. Lett. 100 (2008) 171606 [arXiv:0801.2785] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. E. Witten, Anti-de Sitter space, thermal phase transition, and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  32. M. Kulaxizi, G.S. Ng and A. Parnachev, Subleading Eikonal, AdS/CFT and Double Stress Tensors, JHEP 10 (2019) 107 [arXiv:1907.00867] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. A. Núñez and A.O. Starinets, AdS/CFT correspondence, quasinormal modes, and thermal correlators in N = 4 SYM, Phys. Rev. D 67 (2003) 124013 [hep-th/0302026] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. I. Amado and C. Hoyos-Badajoz, AdS black holes as reflecting cavities, JHEP 09 (2008) 118 [arXiv:0807.2337] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. G. Arias-Tamargo, D. Rodriguez-Gomez and J.G. Russo, The large charge limit of scalar field theories and the Wilson-Fisher fixed point at 𝜖 = 0, JHEP 10 (2019) 201 [arXiv:1908.11347] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. G. Badel, G. Cuomo, A. Monin and R. Rattazzi, The 𝜖-expansion Meets Semiclassics, JHEP 11 (2019) 110 [arXiv:1909.01269] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. M. Watanabe, Accessing large global charge via the 𝜖-expansion, JHEP 04 (2021) 264 [arXiv:1909.01337] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. G. Arias-Tamargo, D. Rodriguez-Gomez and J.G. Russo, Correlation functions in scalar field theory at large charge, JHEP 01 (2020) 171 [arXiv:1912.01623] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. S. Hellerman, S. Maeda, D. Orlando, S. Reffert and M. Watanabe, Universal correlation functions in rank 1 SCFTs, JHEP 12 (2019) 047 [arXiv:1804.01535] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Physics, Universidad de Oviedo, C/ Federico García Lorca 18, 33007, Oviedo, Spain

    D. Rodriguez-Gomez

  2. Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA), C/ de la Independencia 13, 33004, Oviedo, Spain

    D. Rodriguez-Gomez

  3. Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys, 23, 08010, Barcelona, Spain

    J.G. Russo

  4. Departament de Física Cuántica i Astrofísica and Institut de Ciències del Cosmos, Universitat de Barcelona, Martí Franquès, 1, 08028, Barcelona, Spain

    J.G. Russo

Authors
  1. D. Rodriguez-Gomez
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. J.G. Russo
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to J.G. Russo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2102.11891

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rodriguez-Gomez, D., Russo, J. Correlation functions in finite temperature CFT and black hole singularities. J. High Energ. Phys. 2021, 48 (2021). https://doi.org/10.1007/JHEP06(2021)048

Download citation

  • Received: 05 March 2021

  • Accepted: 28 May 2021

  • Published: 08 June 2021

  • DOI: https://doi.org/10.1007/JHEP06(2021)048

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • AdS-CFT Correspondence
  • Black Holes in String Theory
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.