Skip to main content
Log in

A light-cone approach to three-point functions in AdS5 × S5

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We consider worldsheet correlation functions for strings in AdS5 × S5 using a light-cone gauge for the worldsheet theory. We compute the saddle-point approximation to three-point functions of BMN vertex operators, all with large charges, by explicitly finding the intersection of three euclidean BMN strings. We repeat this calculation for non-BPS circular winding strings extended along a great circle of the S5, though in this case the appropriate form of the vertex operator is uncertain. Furthermore, we compute the spectrum of fluctuations about euclidean BMN strings for generic boundary conditions, and show that the spectrum depends only on the total charge and not the details of the string configuration. We extend our considerations to include near-BMN vertex operators and through the evaluation of the string path integral make contact with the light-cone string field theory calculations of gauge theory three-point structure constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1133] [hep-th/9711200] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  2. E. D’Hoker, D.Z. Freedman and W. Skiba, Field theory tests for correlators in the AdS/CFT correspondence, Phys. Rev. D 59 (1999) 045008 [hep-th/9807098] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  3. E. D’Hoker, D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Extremal correlators in the AdS/CFT correspondence, hep-th/9908160 [INSPIRE].

  4. S. Lee, S. Minwalla, M. Rangamani and N. Seiberg, Three point functions of chiral operators in D = 4, N = 4 SYM at large-N , Adv. Theor. Math. Phys. 2 (1998) 697 [hep-th/9806074] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  5. A.M. Polyakov, Gauge fields and space-time, Int. J. Mod. Phys. A 17 S1 (2002) 119 [hep-th/0110196] [INSPIRE].

  6. A.A. Tseytlin, On semiclassical approximation and spinning string vertex operators in AdS 5 × S 5, Nucl. Phys. B 664 (2003) 247 [hep-th/0304139] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. E.I. Buchbinder, Energy-Spin Trajectories in AdS 5 × S 5 from Semiclassical Vertex Operators, JHEP 04 (2010) 107 [arXiv:1002.1716] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. E. Buchbinder and A. Tseytlin, On semiclassical approximation for correlators of closed string vertex operators in AdS/CFT, JHEP 08 (2010) 057 [arXiv:1005.4516] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. R. Roiban and A. Tseytlin, On semiclassical computation of 3-point functions of closed string vertex operators in AdS 5 xS 5, Phys. Rev. D 82 (2010) 106011 [arXiv:1008.4921] [INSPIRE].

    ADS  Google Scholar 

  10. R.A. Janik, P. Surowka and A. Wereszczynski, On correlation functions of operators dual to classical spinning string states, JHEP 05 (2010) 030 [arXiv:1002.4613] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. K. Zarembo, Holographic three-point functions of semiclassical states, JHEP 09 (2010) 030 [arXiv:1008.1059] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. M.S. Costa, R. Monteiro, J.E. Santos and D. Zoakos, On three-point correlation functions in the gauge/gravity duality, JHEP 11 (2010) 141 [arXiv:1008.1070] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. R. Hernandez, Three-point correlation functions from semiclassical circular strings, J. Phys. A 44 (2011) 085403 [arXiv:1011.0408] [INSPIRE].

    ADS  Google Scholar 

  14. S. Ryang, Correlators of Vertex Operators for Circular Strings with Winding Numbers in AdS 5 × S 5, JHEP 01 (2011) 092 [arXiv:1011.3573] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. G. Georgiou, Two and three-point correlators of operators dual to folded string solutions at strong coupling, JHEP 02 (2011) 046 [arXiv:1011.5181] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. J. Russo and A. Tseytlin, Large spin expansion of semiclassical 3-point correlators in AdS 5 × S 5, JHEP 02 (2011) 029 [arXiv:1012.2760] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. R. Hernandez, Three-point correlators for giant magnons, JHEP 05 (2011) 123 [arXiv:1104.1160] [INSPIRE].

    Article  ADS  Google Scholar 

  18. E. Buchbinder and A. Tseytlin, Semiclassical four-point functions in AdS 5 × S 5, JHEP 02 (2011) 072 [arXiv:1012.3740] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. D. Arnaudov, R. Rashkov and T. Vetsov, Three and four-point correlators of operators dual to folded string solutions in AdS 5 xS 5, Int. J. Mod. Phys. A 26 (2011) 3403 [arXiv:1103.6145] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  20. D. Bak, B. Chen and J.-B. Wu, Holographic Correlation Functions for Open Strings and Branes, JHEP 06 (2011) 014 [arXiv:1103.2024] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. C. Park and B.-H. Lee, Correlation functions of magnon and spike, Phys. Rev. D 83 (2011) 126004 [arXiv:1012.3293] [INSPIRE].

    ADS  Google Scholar 

  22. A. Bissi, C. Kristjansen, D. Young and K. Zoubos, Holographic three-point functions of giant gravitons, JHEP 06 (2011) 085 [arXiv:1103.4079] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. X. Bai, B.-H. Lee and C. Park, Correlation function of dyonic strings, Phys. Rev. D 84 (2011) 026009 [arXiv:1104.1896] [INSPIRE].

    ADS  Google Scholar 

  24. K. Zarembo, Open string fluctuations in AdS 5 × S 5 and operators with large R charge, Phys. Rev. D 66 (2002) 105021 [hep-th/0209095] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  25. L.F. Alday and A.A. Tseytlin, On strong-coupling correlation functions of circular Wilson loops and local operators, J. Phys. A 44 (2011) 395401 [arXiv:1105.1537] [INSPIRE].

    MathSciNet  Google Scholar 

  26. C. Ahn and P. Bozhilov, Three-point Correlation functions of Giant magnons with finite size, Phys. Lett. B 702 (2011) 286 [arXiv:1105.3084] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  27. B.-H. Lee and C. Park, Finite size effect on the magnons correlation functions, Phys. Rev. D 84 (2011) 086005 [arXiv:1105.3279] [INSPIRE].

    ADS  Google Scholar 

  28. D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N =4 super Yang-Mills, JHEP 04(2002)013 [hep-th/0202021] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. R. Metsaev, Type IIB Green-Schwarz superstring in plane wave Ramond-Ramond background, Nucl. Phys. B 625 (2002) 70 [hep-th/0112044] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. R. Metsaev and A.A. Tseytlin, Exactly solvable model of superstring in Ramond-Ramond plane wave background, Phys. Rev. D 65 (2002) 126004 [hep-th/0202109] [INSPIRE].

    ADS  Google Scholar 

  31. N. Beisert, BMN operators and superconformal symmetry, Nucl. Phys. B 659 (2003) 79 [hep-th/0211032] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. M. Spradlin and A. Volovich, Light cone string field theory in a plane wave, hep-th/0310033 [INSPIRE].

  33. R. Russo and A. Tanzini, The Duality between IIB string theory on PP wave and N = 4 SYM: A Status report, Class. Quant. Grav. 21 (2004) S1265 [hep-th/0401155] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. G. Arutyunov and S. Frolov, Foundations of the AdS 5 × S 5 Superstring. Part I, J. Phys. A A 42 (2009) 254003 [arXiv:0901.4937] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. N. Beisert et al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. A. Tseytlin, Review of AdS/CFT Integrability, Chapter II.1: Classical AdS5xS5 string solutions, Lett. Math. Phys. 99 (2012) 103 [arXiv:1012.3986] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. T. McLoughlin, Review of AdS/CFT Integrability, Chapter II.2: Quantum Strings in AdS5xS5, Lett. Math. Phys. 99 (2012) 127 [arXiv:1012.3987] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. M. Magro, Review of AdS/CFT Integrability, Chapter II.3: σ-model, Gauge Fixing, Lett. Math. Phys. 99 (2012) 149 [arXiv:1012.3988] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. K. Okuyama and L.-S. Tseng, Three-point functions in N = 4 SYM theory at one-loop, JHEP 08 (2004) 055 [hep-th/0404190] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. R. Roiban and A. Volovich, Yang-Mills correlation functions from integrable spin chains, JHEP 09 (2004) 032 [hep-th/0407140] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. L.F. Alday, J.R. David, E. Gava and K. Narain, Structure constants of planar N = 4 Yang-Mills at one loop, JHEP 09 (2005) 070 [hep-th/0502186] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  42. J. Escobedo, N. Gromov, A. Sever and P. Vieira, Tailoring Three-Point Functions and Integrability, JHEP 09 (2011) 028 [arXiv:1012.2475] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. J. Escobedo, N. Gromov, A. Sever and P. Vieira, Tailoring Three-Point Functions and Integrability II. Weak/strong coupling match, JHEP 09 (2011) 029 [arXiv:1104.5501] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. R. Metsaev, C.B. Thorn and A.A. Tseytlin, Light cone superstring in AdS space-time, Nucl. Phys. B 596 (2001) 151 [hep-th/0009171] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  45. A.A. Tseytlin, On limits of superstring in AdS 5 × S 5, Theor. Math. Phys. 133 (2002) 1376 [hep-th/0201112] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  46. S. Giombi, R. Ricci, R. Roiban, A. Tseytlin and C. Vergu, Quantum AdS 5 × S 5 superstring in the AdS light-cone gauge, JHEP 03 (2010) 003 [arXiv:0912.5105] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. S. Giombi, R. Ricci, R. Roiban, A. Tseytlin and C. Vergu, Generalized scaling function from light-cone gauge AdS 5 × S 5 superstring, JHEP 06 (2010) 060 [arXiv:1002.0018] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. S. Giombi, R. Ricci, R. Roiban and A. Tseytlin, Two-loop AdS 5 × S 5 superstring: testing asymptotic Bethe ansatz and finite size corrections, J. Phys. A 44 (2011) 045402 [arXiv:1010.4594] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  49. S. Giombi, R. Ricci, R. Roiban and A. Tseytlin, Quantum dispersion relations for excitations of long folded spinning superstring in AdS 5 × S 5, JHEP 01 (2011) 128 [arXiv:1011.2755] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  50. D.E. Berenstein, R. Corrado, W. Fischler and J.M. Maldacena, The Operator product expansion for Wilson loops and surfaces in the large-N limit, Phys. Rev. D 59 (1999) 105023 [hep-th/9809188] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  51. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  52. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  53. S. Dobashi, H. Shimada and T. Yoneya, Holographic reformulation of string theory on AdS 5 × S 5 background in the PP wave limit, Nucl. Phys. B 665 (2003) 94 [hep-th/0209251] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. T. Yoneya, What is holography in the plane wave limit of AdS 5 /SYM(4) correspondence?, Prog. Theor. Phys. Suppl. 152 (2004) 108 [hep-th/0304183] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  55. S. Dobashi and T. Yoneya, Resolving the holography in the plane-wave limit of AdS/CFT correspondence, Nucl. Phys. B 711 (2005) 3 [hep-th/0406225] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  56. S. Lee and R. Russo, Holographic cubic vertex in the pp-wave, Nucl. Phys. B 705 (2005) 296 [hep-th/0409261] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  57. H. Shimada, Holography at string field theory level: Conformal three point functions of BMN operators, Phys. Lett. B 647 (2007) 211 [hep-th/0410049] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  58. S. Frolov and A.A. Tseytlin, Multispin string solutions in AdS 5 × S 5, Nucl. Phys. B 668 (2003) 77 [hep-th/0304255] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. G. Arutyunov, J. Russo and A.A. Tseytlin, Spinning strings in AdS 5 × S 5 : New integrable system relations, Phys. Rev. D 69 (2004) 086009 [hep-th/0311004] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  60. J. Minahan, to appear.

  61. H. Liu and A.A. Tseytlin, Dilaton - fixed scalar correlators and AdS 5 × S 5 - SYM correspondence, JHEP 10 (1999) 003 [hep-th/9906151] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  62. E.I. Buchbinder and A.A. Tseytlin, unpublished.

  63. A.A. Tseytlin, Semiclassical quantization of superstrings: AdS 5 × S 5 and beyond, Int. J. Mod. Phys. A 18 (2003) 981 [hep-th/0209116] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  64. E. Buchbinder and A. Tseytlin, Semiclassical correlators of three states with large S 5 charges in string theory in AdS 5 × S 5, Phys. Rev. D 85 (2012) 026001 [arXiv:1110.5621] [INSPIRE].

    ADS  Google Scholar 

  65. M. Spradlin and A. Volovich, Superstring interactions in a pp-wave background, Phys. Rev. D 66 (2002) 086004 [hep-th/0204146] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  66. M. Spradlin and A. Volovich, Superstring interactions in a pp wave background. 2., JHEP 01 (2003) 036 [hep-th/0206073] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  67. A. Pankiewicz and B. Stefanski Jr., PP wave light cone superstring field theory, Nucl. Phys. B 657 (2003) 79 [hep-th/0210246] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  68. N. Beisert, The SU(2|2) dynamic S-matrix, Adv. Theor. Math. Phys. 12 (2008) 945 [hep-th/0511082] [INSPIRE].

    MathSciNet  Google Scholar 

  69. N. Beisert, The Analytic Bethe Ansatz for a Chain with Centrally Extended SU(2—2) Symmetry, J. Stat. Mech. 0701 (2007) P01017 [nlin/0610017].

    Article  MathSciNet  Google Scholar 

  70. G. Arutyunov, S. Frolov, J. Plefka and M. Zamaklar, The Off-shell Symmetry Algebra of the Light-cone AdS 5 × S 5 Superstring, J. Phys. A 40 (2007) 3583 [hep-th/0609157] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  71. T. Klose, T. McLoughlin, R. Roiban and K. Zarembo, Worldsheet scattering in AdS 5 × S 5, JHEP 03 (2007) 094 [hep-th/0611169] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  72. Y.-H. He, J.H. Schwarz, M. Spradlin and A. Volovich, Explicit formulas for Neumann coefficients in the plane wave geometry, Phys. Rev. D 67 (2003) 086005 [hep-th/0211198] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  73. J. Lucietti, S. Schäfer-Nameki and A. Sinha, On the plane wave cubic vertex, Phys. Rev. D 70 (2004) 026005 [hep-th/0402185] [INSPIRE].

    ADS  Google Scholar 

  74. S. Mandelstam, Interacting String Picture of the Neveu-Schwarz-Ramond Model, Nucl. Phys. B 69 (1974) 77 [INSPIRE].

    Article  ADS  Google Scholar 

  75. S. Mandelstam, Dual - Resonance Models, Phys. Rept. 13 (1974) 259 [INSPIRE].

    Article  ADS  Google Scholar 

  76. S. Mandelstam, Interacting string picture of the fermionic string, Prog. Theor. Phys. Suppl. 86 (1986) 163 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  77. M.B. Green and J.H. Schwarz, Superstring Interactions, Nucl. Phys. B 218 (1983) 43 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  78. M.B. Green, J.H. Schwarz and L. Brink, Superfield Theory of Type II Superstrings, Nucl. Phys. B 219 (1983) 437 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  79. A. Pankiewicz, More comments on superstring interactions in the pp wave background, JHEP 09 (2002) 056 [hep-th/0208209] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  80. A. Pankiewicz, An alternative formulation of light cone string field theory on the plane wave, JHEP 06 (2003) 047 [hep-th/0304232] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  81. C.-S. Chu, V.V. Khoze, M. Petrini, R. Russo and A. Tanzini, A note on string interaction on the pp wave background, Class. Quant. Grav. 21 (2004) 1999 [hep-th/0208148] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  82. C.-S. Chu, M. Petrini, R. Russo and A. Tanzini, String interactions and discrete symmetries of the pp wave background, Class. Quant. Grav. 20 (2003) S457 [hep-th/0211188] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  83. P. Di Vecchia, J.L. Petersen, M. Petrini, R. Russo and A. Tanzini, The three string vertex and the AdS/CFT duality in the PP wave limit, Class. Quant. Grav. 21 (2004) 2221 [hep-th/0304025] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  84. I. Kishimoto and S. Moriyama, An Algebraic Model for the SU(2|2) Light-Cone String Field Theory, JHEP 08 (2010) 013 [arXiv:1005.4719] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  85. G. Arutyunov, S. Frolov and M. Zamaklar, The Zamolodchikov-Faddeev algebra for AdS 5 × S 5 superstring, JHEP 04 (2007) 002 [hep-th/0612229] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  86. C.G. Callan Jr. et al., Quantizing string theory in AdS 5 × S 5 : Beyond the pp wave, Nucl. Phys. B 673 (2003) 3 [hep-th/0307032] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  87. C.G. Callan Jr., T. McLoughlin and I. Swanson, Holography beyond the Penrose limit, Nucl. Phys. B 694 (2004) 115 [hep-th/0404007] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  88. S. Frolov, J. Plefka and M. Zamaklar, The AdS 5 × S 5 superstring in light-cone gauge and its Bethe equations, J. Phys. A 39 (2006) 13037 [hep-th/0603008] [INSPIRE].

    MathSciNet  Google Scholar 

  89. N. Berkovits, Calculation of scattering amplitudes for the Neveu-Schwarz model using supersheet functional integration, Nucl. Phys. B 276 (1986) 650 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  90. N. Berkovits, Supersheet functional integration and the interacting Neveu-Schwarz string, Nucl. Phys. B 304 (1988) 537 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  91. N. Berkovits, The Heterotic Green-Schwarz superstring on an N = (2,0) superworldsheet, Nucl. Phys. B 379 (1992) 96 [hep-th/9201004] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  92. N.J. Berkovits and J.M. Maldacena, N = 2 superconformal description of superstring in Ramond-Ramond plane wave backgrounds, JHEP 10 (2002) 059 [hep-th/0208092] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  93. K. Peeters, J. Plefka and M. Zamaklar, Splitting spinning strings in AdS/CFT, JHEP 11 (2004) 054 [hep-th/0410275] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  94. K. Peeters, J. Plefka and M. Zamaklar, Splitting strings and chains, Fortsch. Phys. 53 (2005) 640 [hep-th/0501165] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  95. P.-Y. Casteill, R. Janik, A. Jarosz and C. Kristjansen, Quasilocality of joining/splitting strings from coherent states, JHEP 12 (2007) 069 [arXiv:0710.4166] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  96. E. Murchikova, Splitting of folded strings in AdS 3, Phys. Rev. D 84 (2011) 026002 [arXiv:1104.4804] [INSPIRE].

    ADS  Google Scholar 

  97. B. Vicedo, Splitting strings on integrable backgrounds, JHEP 11 (2011) 017 [arXiv:1105.3868] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  98. H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, World Scientific (2004).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tristan McLoughlin.

Additional information

ArXiv ePrint: 1106.0495

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klose, T., McLoughlin, T. A light-cone approach to three-point functions in AdS5 × S5 . J. High Energ. Phys. 2012, 80 (2012). https://doi.org/10.1007/JHEP04(2012)080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2012)080

Keywords

Navigation