Abstract
The symmetry group of the de Sitter spacetime, accommodates fields of various masses and spin among its unitary irreducible representations. These unitary representations are labeled by the spin and the weight contribution to the scaling dimension and depending on the mass and spin of the field the weight may take either purely real or purely imaginary values. In this work, we construct the late time boundary operators for a massive scalar field propagating in de Sitter spacetime, in arbitrary dimensions. We show that contrary to the case of Anti de Sitter, purely imaginery weights also correspond to unitary operators, as well as the ones with real weight, and identify the corresponding unitary representations. We demonstrate that these operators correspond to the late time boundary operators and elucidate that all of them have positive definite norm.
References
W. de Sitter, Einstein’s theory of gravitation and its astronomical consequences, Third Paper, Mon. Not. Roy. Astron. Soc. 78 (1917) 3 [INSPIRE].
F. Beutler et al., The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant, Mon. Not. Roy. Astron. Soc. 416 (2011) 3017 [arXiv:1106.3366] [INSPIRE].
A.J. Ross, L. Samushia, C. Howlett, W.J. Percival, A. Burden and M. Manera, The clustering of the SDSS DR7 main Galaxy sample — I. A 4 per cent distance measure at z = 0.15, Mon. Not. Roy. Astron. Soc. 449 (2015) 835 [arXiv:1409.3242] [INSPIRE].
SDSS collaboration, Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples, Astron. Astrophys. 568 (2014) A22 [arXiv:1401.4064] [INSPIRE].
J.E. Bautista et al., The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations at redshift of 0.72 with the DR14 Luminous Red Galaxy Sample, Astrophys. J. 863 (2018) 110 [arXiv:1712.08064] [INSPIRE].
D.M. Scolnic et al., The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample, Astrophys. J. 859 (2018) 101 [arXiv:1710.00845] [INSPIRE].
Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].
DES collaboration, Cosmological Constraints from Multiple Probes in the Dark Energy Survey, Phys. Rev. Lett. 122 (2019) 171301 [arXiv:1811.02375] [INSPIRE].
Planck collaboration, Planck 2018 results. X. Constraints on inflation, arXiv:1807.06211 [INSPIRE].
A.G. Riess et al., New Parallaxes of Galactic Cepheids from Spatially Scanning the Hubble Space Telescope: Implications for the Hubble Constant, Astrophys. J. 855 (2018) 136 [arXiv:1801.01120] [INSPIRE].
A.G. Riess, S. Casertano, W. Yuan, L.M. Macri and D. Scolnic, Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM, Astrophys. J. 876 (2019) 85 [arXiv:1903.07603] [INSPIRE].
J. Colin, R. Mohayaee, M. Rameez and S. Sarkar, Evidence for anisotropy of cosmic acceleration, Astron. Astrophys. 631 (2019) L13 [arXiv:1808.04597] [INSPIRE].
S. Joudaki et al., KiDS-450: Testing extensions to the standard cosmological model, Mon. Not. Roy. Astron. Soc. 471 (2017) 1259 [arXiv:1610.04606] [INSPIRE].
P. Motloch and W. Hu, Tensions between direct measurements of the lens power spectrum from Planck data, Phys. Rev. D 97 (2018) 103536 [arXiv:1803.11526] [INSPIRE].
Planck collaboration, Planck 2013 results. XX. Cosmology from Sunyaev-Zeldovich cluster counts, Astron. Astrophys. 571 (2014) A20 [arXiv:1303.5080] [INSPIRE].
Z. Sakr, S. Ilić, A. Blanchard, J. Bittar and W. Farah, Cluster counts: Calibration issue or new physics?, Astron. Astrophys. 620 (2018) A78 [arXiv:1803.11170] [INSPIRE].
P. Creminelli, Conformal invariance of scalar perturbations in inflation, Phys. Rev. D 85 (2012) 041302 [arXiv:1108.0874] [INSPIRE].
D. Baumann, C. Duaso Pueyo, A. Joyce, H. Lee and G.L. Pimentel, The Cosmological Bootstrap: Weight-Shifting Operators and Scalar Seeds, arXiv:1910.14051 [INSPIRE].
M. Mirbabayi, Infrared dynamics of a light scalar field in de Sitter, arXiv:1911.00564 [INSPIRE].
N.A. Chernikov and E.A. Tagirov, Quantum theory of scalar fields in de Sitter space-time, Ann. Inst. H. Poincare Phys. Theor. A 9 (1968) 109 [INSPIRE].
T.S. Bunch and P.C.W. Davies, Quantum Field Theory in de Sitter Space: Renormalization by Point Splitting, Proc. Roy. Soc. Lond. A 360 (1978) 117 [INSPIRE].
M. Sasaki, T. Tanaka and K. Yamamoto, Euclidean vacuum mode functions for a scalar field on open de Sitter space, Phys. Rev. D 51 (1995) 2979 [gr-qc/9412025] [INSPIRE].
E. Joung, J. Mourad and R. Parentani, Group theoretical approach to quantum fields in de Sitter space. I. The Principle series, JHEP 08 (2006) 082 [hep-th/0606119] [INSPIRE].
E. Joung, J. Mourad and R. Parentani, Group theoretical approach to quantum fields in de Sitter space. II. The complementary and discrete series, JHEP 09 (2007) 030 [arXiv:0707.2907] [INSPIRE].
D. Anninos, D.M. Hofman and J. Kruthoff, Charged Quantum Fields in AdS2 , SciPost Phys. 7 (2019) 054 [arXiv:1906.00924] [INSPIRE].
M. Dehghani, Group theoretical interpretation of the modified gravity in de Sitter space, JHEP 03 (2016) 203 [arXiv:1601.03946] [INSPIRE].
D. Karateev, P. Kravchuk and D. Simmons-Duffin, Harmonic Analysis and Mean Field Theory, JHEP 10 (2019) 217 [arXiv:1809.05111] [INSPIRE].
Harish-Chandra, Harmonic analysis on semisimple lie groups, Bull. Am. Math. Soc. 76 (1970) 529.
V.K. Dobrev, G. Mack, V.B. Petkova, S.G. Petrova and I.T. Todorov, Harmonic Analysis on the n-Dimensional Lorentz Group and Its Application to Conformal Quantum Field Theory, Lect. Notes Phys. 63 (1977) 1 [INSPIRE].
T. Basile, X. Bekaert and N. Boulanger, Mixed-symmetry fields in de Sitter space: a group theoretical glance, JHEP 05 (2017) 081 [arXiv:1612.08166] [INSPIRE].
X. Bekaert and N. Boulanger, The Unitary representations of the Poincaŕe group in any spacetime dimension, in 2nd Modave Summer School in Theoretical Physics, Modave, Belgium, 6–12 August 2006 (2006) [hep-th/0611263] [INSPIRE].
J. Mickelsson and J. Niederle, Contractions of representations of de Sitter groups, Commun. Math. Phys. 27 (1972) 167 [INSPIRE].
J.-P. Gazeau, Mass in de sitter and anti-de-sitter universes with regard to dark matter, Universe 6 (2020) 66 [INSPIRE].
E. Huguet, J. Queva and J. Renaud, Massive scalar field on (A)dS space from a massless conformal field in ℝ6, arXiv:1606.07611 [INSPIRE].
R. Monten, De Sitter Space and Holography, Ph.D. Thesis, Leuven U. (2017) [INSPIRE].
D. Anninos, De Sitter Musings, Int. J. Mod. Phys. A 27 (2012) 1230013 [arXiv:1205.3855] [INSPIRE].
N.D. Birrell and P.C.W. Davies, Quantum Fields in Curved Space, Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge, U.K. (1984), [DOI].
D. Anninos, F. Denef, R. Monten and Z. Sun, Higher Spin de Sitter Hilbert Space, JHEP 10 (2019) 071 [arXiv:1711.10037] [INSPIRE].
V. Gurarie, Logarithmic operators in conformal field theory, Nucl. Phys. B 410 (1993) 535 [hep-th/9303160] [INSPIRE].
D. Grumiller, W. Riedler, J. Rosseel and T. Zojer, Holographic applications of logarithmic conformal field theories, J. Phys. A 46 (2013) 494002 [arXiv:1302.0280] [INSPIRE].
T. Hirai, On infinitesimal operators of irreducible representations of the lorentz group of n-th order, Proc. Japan Acad. 38 (1962) 83.
T. Hirai, On irreducible representations of the lorentz group of n-th order, Proc. Japan Acad. 38 (1962) 258.
E.P. Wigner and J.J. translated by Griffin, Group theory and its application to the quantum mechanics of atomic spectra, Pure and applied physics, volume 5, Academic Press, New York, U.S.A. (1959).
G. Warner, Harmonic Analysis on Semisimple Lie Groups 1, Springer-Verlag (1972) [DOI].
S. Weinberg, The Quantum Theory of Fields, vol. 1, Cambridge University Press, (1995) [DOI].
R. Raczka, N. Limić and J. Niederle, Discrete degenerate representations of noncompact rotation groups. I, J. Math. Phys. 7 (1966) 1861.
A. Strominger, The dS/CFT correspondence, JHEP 10 (2001) 034 [hep-th/0106113] [INSPIRE].
E. Witten, Quantum gravity in de Sitter space, in Strings 2001: Proceedings, Strings 2001 Conference, Tata Institute of Fundamental Research, Mumbai, India, 5–10 January 2001 (2001) [hep-th/0106109] [INSPIRE].
J.M. Maldacena and A. Strominger, Statistical entropy of de Sitter space, JHEP 02 (1998) 014 [gr-qc/9801096] [INSPIRE].
M.-I. Park, Statistical entropy of three-dimensional Kerr-de Sitter space, Phys. Lett. B 440 (1998) 275 [hep-th/9806119] [INSPIRE].
M. Bañados, T. Brotz and M.E. Ortiz, Quantum three-dimensional de Sitter space, Phys. Rev. D 59 (1999) 046002 [hep-th/9807216] [INSPIRE].
M.-I. Park, Symmetry algebras in Chern-Simons theories with boundary: Canonical approach, Nucl. Phys. B 544 (1999) 377 [hep-th/9811033] [INSPIRE].
D. Anninos, T. Hartman and A. Strominger, Higher Spin Realization of the dS/CFT Correspondence, Class. Quant. Grav. 34 (2017) 015009 [arXiv:1108.5735] [INSPIRE].
G.S. Ng and A. Strominger, State/Operator Correspondence in Higher-Spin dS/CFT, Class. Quant. Grav. 30 (2013) 104002 [arXiv:1204.1057] [INSPIRE].
D. Anninos, F. Denef, G. Konstantinidis and E. Shaghoulian, Higher Spin de Sitter Holography from Functional Determinants, JHEP 02 (2014) 007 [arXiv:1305.6321] [INSPIRE].
A. Strominger, Inflation and the dS/CFT correspondence, JHEP 11 (2001) 049 [hep-th/0110087] [INSPIRE].
J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].
J.P. van der Schaar, Inflationary perturbations from deformed CFT, JHEP 01 (2004) 070 [hep-th/0307271] [INSPIRE].
R. Blumenhagen and E. Plauschinn, Introduction to conformal field theory: with applications to String theory, vol. 779, Springer (2009) [DOI].
D. Anninos, T. Anous, D.Z. Freedman and G. Konstantinidis, Late-time Structure of the Bunch-Davies de Sitter Wavefunction, JCAP 11 (2015) 048 [arXiv:1406.5490] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 1912.09885
Rights and permissions
This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.
About this article
Cite this article
Şengör, G., Skordis, C. Unitarity at the late time boundary of de Sitter. J. High Energ. Phys. 2020, 41 (2020). https://doi.org/10.1007/JHEP06(2020)041
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP06(2020)041
Keywords
- Classical Theories of Gravity
- Models of Quantum Gravity
- Space-Time Symmetries