Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Unitarity at the late time boundary of de Sitter

  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 04 June 2020
  • volume 2020, Article number: 41 (2020)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Unitarity at the late time boundary of de Sitter
Download PDF
  • Gizem Şengör  ORCID: orcid.org/0000-0002-3337-88491 &
  • Constantinos Skordis1 
  • 320 Accesses

  • 8 Citations

  • 1 Altmetric

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

The symmetry group of the de Sitter spacetime, accommodates fields of various masses and spin among its unitary irreducible representations. These unitary representations are labeled by the spin and the weight contribution to the scaling dimension and depending on the mass and spin of the field the weight may take either purely real or purely imaginary values. In this work, we construct the late time boundary operators for a massive scalar field propagating in de Sitter spacetime, in arbitrary dimensions. We show that contrary to the case of Anti de Sitter, purely imaginery weights also correspond to unitary operators, as well as the ones with real weight, and identify the corresponding unitary representations. We demonstrate that these operators correspond to the late time boundary operators and elucidate that all of them have positive definite norm.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. W. de Sitter, Einstein’s theory of gravitation and its astronomical consequences, Third Paper, Mon. Not. Roy. Astron. Soc. 78 (1917) 3 [INSPIRE].

  2. F. Beutler et al., The 6dF Galaxy Survey: Baryon Acoustic Oscillations and the Local Hubble Constant, Mon. Not. Roy. Astron. Soc. 416 (2011) 3017 [arXiv:1106.3366] [INSPIRE].

    Article  ADS  Google Scholar 

  3. A.J. Ross, L. Samushia, C. Howlett, W.J. Percival, A. Burden and M. Manera, The clustering of the SDSS DR7 main Galaxy sample — I. A 4 per cent distance measure at z = 0.15, Mon. Not. Roy. Astron. Soc. 449 (2015) 835 [arXiv:1409.3242] [INSPIRE].

  4. SDSS collaboration, Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples, Astron. Astrophys. 568 (2014) A22 [arXiv:1401.4064] [INSPIRE].

  5. J.E. Bautista et al., The SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations at redshift of 0.72 with the DR14 Luminous Red Galaxy Sample, Astrophys. J. 863 (2018) 110 [arXiv:1712.08064] [INSPIRE].

  6. D.M. Scolnic et al., The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample, Astrophys. J. 859 (2018) 101 [arXiv:1710.00845] [INSPIRE].

    Article  ADS  Google Scholar 

  7. Planck collaboration, Planck 2018 results. VI. Cosmological parameters, arXiv:1807.06209 [INSPIRE].

  8. DES collaboration, Cosmological Constraints from Multiple Probes in the Dark Energy Survey, Phys. Rev. Lett. 122 (2019) 171301 [arXiv:1811.02375] [INSPIRE].

  9. Planck collaboration, Planck 2018 results. X. Constraints on inflation, arXiv:1807.06211 [INSPIRE].

  10. A.G. Riess et al., New Parallaxes of Galactic Cepheids from Spatially Scanning the Hubble Space Telescope: Implications for the Hubble Constant, Astrophys. J. 855 (2018) 136 [arXiv:1801.01120] [INSPIRE].

    Article  ADS  Google Scholar 

  11. A.G. Riess, S. Casertano, W. Yuan, L.M. Macri and D. Scolnic, Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM, Astrophys. J. 876 (2019) 85 [arXiv:1903.07603] [INSPIRE].

    Article  ADS  Google Scholar 

  12. J. Colin, R. Mohayaee, M. Rameez and S. Sarkar, Evidence for anisotropy of cosmic acceleration, Astron. Astrophys. 631 (2019) L13 [arXiv:1808.04597] [INSPIRE].

    Article  ADS  Google Scholar 

  13. S. Joudaki et al., KiDS-450: Testing extensions to the standard cosmological model, Mon. Not. Roy. Astron. Soc. 471 (2017) 1259 [arXiv:1610.04606] [INSPIRE].

    Article  ADS  Google Scholar 

  14. P. Motloch and W. Hu, Tensions between direct measurements of the lens power spectrum from Planck data, Phys. Rev. D 97 (2018) 103536 [arXiv:1803.11526] [INSPIRE].

    ADS  Google Scholar 

  15. Planck collaboration, Planck 2013 results. XX. Cosmology from Sunyaev-Zeldovich cluster counts, Astron. Astrophys. 571 (2014) A20 [arXiv:1303.5080] [INSPIRE].

  16. Z. Sakr, S. Ilić, A. Blanchard, J. Bittar and W. Farah, Cluster counts: Calibration issue or new physics?, Astron. Astrophys. 620 (2018) A78 [arXiv:1803.11170] [INSPIRE].

  17. P. Creminelli, Conformal invariance of scalar perturbations in inflation, Phys. Rev. D 85 (2012) 041302 [arXiv:1108.0874] [INSPIRE].

  18. D. Baumann, C. Duaso Pueyo, A. Joyce, H. Lee and G.L. Pimentel, The Cosmological Bootstrap: Weight-Shifting Operators and Scalar Seeds, arXiv:1910.14051 [INSPIRE].

  19. M. Mirbabayi, Infrared dynamics of a light scalar field in de Sitter, arXiv:1911.00564 [INSPIRE].

  20. N.A. Chernikov and E.A. Tagirov, Quantum theory of scalar fields in de Sitter space-time, Ann. Inst. H. Poincare Phys. Theor. A 9 (1968) 109 [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  21. T.S. Bunch and P.C.W. Davies, Quantum Field Theory in de Sitter Space: Renormalization by Point Splitting, Proc. Roy. Soc. Lond. A 360 (1978) 117 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  22. M. Sasaki, T. Tanaka and K. Yamamoto, Euclidean vacuum mode functions for a scalar field on open de Sitter space, Phys. Rev. D 51 (1995) 2979 [gr-qc/9412025] [INSPIRE].

  23. E. Joung, J. Mourad and R. Parentani, Group theoretical approach to quantum fields in de Sitter space. I. The Principle series, JHEP 08 (2006) 082 [hep-th/0606119] [INSPIRE].

  24. E. Joung, J. Mourad and R. Parentani, Group theoretical approach to quantum fields in de Sitter space. II. The complementary and discrete series, JHEP 09 (2007) 030 [arXiv:0707.2907] [INSPIRE].

  25. D. Anninos, D.M. Hofman and J. Kruthoff, Charged Quantum Fields in AdS2 , SciPost Phys. 7 (2019) 054 [arXiv:1906.00924] [INSPIRE].

    Article  ADS  Google Scholar 

  26. M. Dehghani, Group theoretical interpretation of the modified gravity in de Sitter space, JHEP 03 (2016) 203 [arXiv:1601.03946] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. D. Karateev, P. Kravchuk and D. Simmons-Duffin, Harmonic Analysis and Mean Field Theory, JHEP 10 (2019) 217 [arXiv:1809.05111] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. Harish-Chandra, Harmonic analysis on semisimple lie groups, Bull. Am. Math. Soc. 76 (1970) 529.

  29. V.K. Dobrev, G. Mack, V.B. Petkova, S.G. Petrova and I.T. Todorov, Harmonic Analysis on the n-Dimensional Lorentz Group and Its Application to Conformal Quantum Field Theory, Lect. Notes Phys. 63 (1977) 1 [INSPIRE].

    Article  Google Scholar 

  30. T. Basile, X. Bekaert and N. Boulanger, Mixed-symmetry fields in de Sitter space: a group theoretical glance, JHEP 05 (2017) 081 [arXiv:1612.08166] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  31. X. Bekaert and N. Boulanger, The Unitary representations of the Poincaŕe group in any spacetime dimension, in 2nd Modave Summer School in Theoretical Physics, Modave, Belgium, 6–12 August 2006 (2006) [hep-th/0611263] [INSPIRE].

  32. J. Mickelsson and J. Niederle, Contractions of representations of de Sitter groups, Commun. Math. Phys. 27 (1972) 167 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  33. J.-P. Gazeau, Mass in de sitter and anti-de-sitter universes with regard to dark matter, Universe 6 (2020) 66 [INSPIRE].

    Article  ADS  Google Scholar 

  34. E. Huguet, J. Queva and J. Renaud, Massive scalar field on (A)dS space from a massless conformal field in ℝ6, arXiv:1606.07611 [INSPIRE].

  35. R. Monten, De Sitter Space and Holography, Ph.D. Thesis, Leuven U. (2017) [INSPIRE].

  36. D. Anninos, De Sitter Musings, Int. J. Mod. Phys. A 27 (2012) 1230013 [arXiv:1205.3855] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  37. N.D. Birrell and P.C.W. Davies, Quantum Fields in Curved Space, Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge, U.K. (1984), [DOI].

  38. D. Anninos, F. Denef, R. Monten and Z. Sun, Higher Spin de Sitter Hilbert Space, JHEP 10 (2019) 071 [arXiv:1711.10037] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  39. V. Gurarie, Logarithmic operators in conformal field theory, Nucl. Phys. B 410 (1993) 535 [hep-th/9303160] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  40. D. Grumiller, W. Riedler, J. Rosseel and T. Zojer, Holographic applications of logarithmic conformal field theories, J. Phys. A 46 (2013) 494002 [arXiv:1302.0280] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  41. T. Hirai, On infinitesimal operators of irreducible representations of the lorentz group of n-th order, Proc. Japan Acad. 38 (1962) 83.

    Article  MathSciNet  Google Scholar 

  42. T. Hirai, On irreducible representations of the lorentz group of n-th order, Proc. Japan Acad. 38 (1962) 258.

    Article  MathSciNet  Google Scholar 

  43. E.P. Wigner and J.J. translated by Griffin, Group theory and its application to the quantum mechanics of atomic spectra, Pure and applied physics, volume 5, Academic Press, New York, U.S.A. (1959).

  44. G. Warner, Harmonic Analysis on Semisimple Lie Groups 1, Springer-Verlag (1972) [DOI].

  45. S. Weinberg, The Quantum Theory of Fields, vol. 1, Cambridge University Press, (1995) [DOI].

  46. R. Raczka, N. Limić and J. Niederle, Discrete degenerate representations of noncompact rotation groups. I, J. Math. Phys. 7 (1966) 1861.

  47. A. Strominger, The dS/CFT correspondence, JHEP 10 (2001) 034 [hep-th/0106113] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  48. E. Witten, Quantum gravity in de Sitter space, in Strings 2001: Proceedings, Strings 2001 Conference, Tata Institute of Fundamental Research, Mumbai, India, 5–10 January 2001 (2001) [hep-th/0106109] [INSPIRE].

  49. J.M. Maldacena and A. Strominger, Statistical entropy of de Sitter space, JHEP 02 (1998) 014 [gr-qc/9801096] [INSPIRE].

  50. M.-I. Park, Statistical entropy of three-dimensional Kerr-de Sitter space, Phys. Lett. B 440 (1998) 275 [hep-th/9806119] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  51. M. Bañados, T. Brotz and M.E. Ortiz, Quantum three-dimensional de Sitter space, Phys. Rev. D 59 (1999) 046002 [hep-th/9807216] [INSPIRE].

  52. M.-I. Park, Symmetry algebras in Chern-Simons theories with boundary: Canonical approach, Nucl. Phys. B 544 (1999) 377 [hep-th/9811033] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  53. D. Anninos, T. Hartman and A. Strominger, Higher Spin Realization of the dS/CFT Correspondence, Class. Quant. Grav. 34 (2017) 015009 [arXiv:1108.5735] [INSPIRE].

  54. G.S. Ng and A. Strominger, State/Operator Correspondence in Higher-Spin dS/CFT, Class. Quant. Grav. 30 (2013) 104002 [arXiv:1204.1057] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  55. D. Anninos, F. Denef, G. Konstantinidis and E. Shaghoulian, Higher Spin de Sitter Holography from Functional Determinants, JHEP 02 (2014) 007 [arXiv:1305.6321] [INSPIRE].

    Article  ADS  Google Scholar 

  56. A. Strominger, Inflation and the dS/CFT correspondence, JHEP 11 (2001) 049 [hep-th/0110087] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  57. J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].

  58. J.P. van der Schaar, Inflationary perturbations from deformed CFT, JHEP 01 (2004) 070 [hep-th/0307271] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  59. R. Blumenhagen and E. Plauschinn, Introduction to conformal field theory: with applications to String theory, vol. 779, Springer (2009) [DOI].

  60. D. Anninos, T. Anous, D.Z. Freedman and G. Konstantinidis, Late-time Structure of the Bunch-Davies de Sitter Wavefunction, JCAP 11 (2015) 048 [arXiv:1406.5490] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

  1. CEICO, Institute of Physics of the Czech Academy of Sciences, Na Slovance 1999/2, 182 21, Praha 8, Czechia

    Gizem Şengör & Constantinos Skordis

Authors
  1. Gizem Şengör
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Constantinos Skordis
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Gizem Şengör.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 1912.09885

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şengör, G., Skordis, C. Unitarity at the late time boundary of de Sitter. J. High Energ. Phys. 2020, 41 (2020). https://doi.org/10.1007/JHEP06(2020)041

Download citation

  • Received: 20 March 2020

  • Accepted: 14 May 2020

  • Published: 04 June 2020

  • DOI: https://doi.org/10.1007/JHEP06(2020)041

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Classical Theories of Gravity
  • Models of Quantum Gravity
  • Space-Time Symmetries

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature