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1 Introduction

The de Sitter spacetime [1] is one of the maximally symmetric solutions to the vacuum

Einstein equations in the presence of a positive cosmological constant. Over the last forty

years or so it has acquired particular significance in cosmology. The latest cosmological

observations [2–9] indicate that our Universe is well described by the inflationary ΛCDM

model. While several tensions between various data sets have been noted [10–16], the

ΛCDM model remains the simplest model that can accommodate the majority of observa-

tions. Taken at face value, this model points to two eras where the de Sitter spacetime is

relevant: the past de Sitter phase which may be considered as a limit of most inflationary

models and future de Sitter phase that the universe will eventually enter, that is the era

of dark energy.

The de Sitter (dS) manifold describes a spacetime whose spatially flat sections expand

in an accelerated fashion with time. In terms of global coordinates the spatial hypersurfaces

are 3-spheres that grow with time. Hence, the de Sitter manifold sets a good background

for the study of inflationary and dark energy eras. For instance the propelling observable

quantities in inflationary studies are inflationary correlators and the characteristics of these

correlators can give insight into the type of fields and their interactions present during

inflation. It is possible to catalog expected forms for these correlators in the presence of

heavy mediator particles by considering the restrictions due to the conformal symmetries

the de Sitter background posses [17]. See [18] for a recent example that elaborates this

discussion to the level of a cosmological bootstrap mechanism by focusing on the four-

point function of conformally coupled and massless scalars in de Sitter where interactions

are mediated by exchange of massive and non-zero spin particles.

The superhorizon scale and correspondingly the late time limit behavior of de Sitter

correlators is of particular interest. Recently, in [19] the behavior of the scalar perturbation

correlator on superhorizon scales has been recast in the static patch of de Sitter in order to

investigate how long it takes for a perturbed state, considered as an excited state, to relax

back to the equilibrium state defined as the vacuum wavefunction in global de Sitter. It is

shown that in the late time limit, this process is a Markovian evolution, which means the

evolution does not depend on the history of the process for slowroll potentials.
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An analysis of quantized fields on de Sitter, on one hand involves field equations

derived from an action principle, the vacuum state, the Hilbert space and the Green func-

tions [20–22]. On the other hand one can start by considering the unitary irreducible

representations of the symmetry group associated with de Sitter and construct local fields

from these representations. To list a few examples from earlier work where group theoret-

ical approaches have been eluminating, the uniqueness of the de Sitter invariant vacuum

state have been recognized to be less ambiguous in a group theoretical approach in two-

dimensional de Sitter [23, 24]. Superradiance has been restudied with a group theoretical

approach to near horizon geometry of charged rotating black holes for gaining more in-

sight [25]. In these works the principal series representations of two-dimensional de Sitter

and two-dimensional Anti de Sitter (AdS) respectively, play an important role. In the

context of modified gravity, the tensor perturbations have been identified to belong to the

discrete series representations of four-dimensional de Sitter [26]. Last but not least is an

example from Mean Field Theory, where the operator product expansion coefficients are

obtained via group theory methods [27].

In this work, our main concern is the relation between the irreducible representations

of the de Sitter symmetry group and the late time behavior of massive scalar fields φ of

mass m on de Sitter. Our aim is to demonstrate that all of the representations involved

are unitary.

The Killing vectors of de Sitter generate symmetries each of which is a subgroup

of the group SO(2h + 1, 1) where h is a half-integer. Therefore the symmetry group of

2h+ 1-dimensional de Sitter, from now on denoted as dS2h+1, is the group SO(2h+ 1, 1).

This group also happens to be the conformal group of 2h dimensional Euclidean space.

Considering the metric, the connection between the 2h dimensional Euclidean space and

dS2h+1 becomes explicit under an early or late time limit. Historically, the representation

theory of SO(2h + 1, 1) has been heavily studied by Harish-Chandra [28]. The unitary

irreducible representations of SO(2h+ 1, 1) are labeled and categorized by their spin ` and

weight c of their scaling dimension ∆ = h + c. The categories are referred to as principal

series, complementary series, exceptional series and discrete series. In this work we focus

on the principal and complementary series.

The fact that the scaling dimension is decomposed into ∆ = h+ c is not a coincidence.

Indeed, for the group O(d + 1, 1) the quantity d
2 is the half sum of the restricted positive

roots. In the convention of [29] it is denoted by d
2 ≡ h and the scaling dimension for any

spin is decomposed in this way. Here, we also work with the notation h and c in order

to emphasize the role of the scaling weight c in the categorization of unitary irreducible

representations. Depending on the mass m of the field, the weight c can be either purely

real or purely imaginery. To put it more explicitly, letting H be the Hubble constant of

de Sitter, light fields with mass m2

H2 < h2 correspond to real weight c representations while

heavy fields whose mass are in the range m2

H2 > h2, have imaginary weight c (and hence

complex scaling dimension ∆).

For comparison, the manner in which the unitary irreducible representations of the

other maximally symmetric spacetimes are classified is different than that of de Sitter
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spacetime. In the case of Anti de Sitter spacetime where the relevant group is SO(2h, 2),

imaginary scaling weight does not arise among unitary irreducible representations and

therefore there is no distinction between light and heavy fields [30].1 In contrast, we dis-

cuss below that light fields on de Sitter belong to the complementary series representations

while heavy fields belong to principal series representations. The work [30], which is com-

plementary to ours, is a good reference for readers interested in comparing the unitary

representations of Anti de Sitter with those of de Sitter. We note that their aims are very

different than ours and thus they follow a different approach. There, the authors studied

the behavior of fields of any spin on (A)dS under a specific limit in which (A)dS spacetimes

approach Minkowski by focussing on the characters of unitary irreducible representations

of the de Sitter group. Moreover, [30] demand that the fields involved are well-behaved at

the late time boundary and this fixes their boundary conditions.

In the case of Minkowski spacetime, as nicely reviewed in [31], the induced uni-

tary irreducible representations of the Poincaré group, ISO(2h, 1), are classified into mas-

sive,massless, tachyonic and zero momentum representations. The massless representations

divide further into two categories of helicity representations and infinite (continuous spin)

representations. The tachyonic representations are unitary, however, they are not causal

and hence they are not considered physical. The zero momentum and the tachyonic rep-

resentations in 2h + 1 dimensions correspond to the unitary representations of one lower

dimensional de Sitter space dS2h and two lower dimensional de Sitter dS2h−1 respectively.

There also exist limits between certain de Sitter representations and Poincaré repre-

sentations. For instance [32] show the İnönü-Wigner contraction of the principles series

representations of de Sitter to positive mass representations of Poincare. Also see [33] and

references there in for a summary of further discussion on limits between the representations

of de Sitter and Poincaré and Anti de Sitter and Poincaré groups. For more geometrically

oriented readers, we also note the reference [34] where they derive the Klein-Gordon equa-

tion for massive classical fields on de Sitter and Anti-de Sitter from a geometric point of

view. They point out that as a consequence of geometry the scalar field is a homogeneous

function where the scaling dimension is also the degree of homogeneity.

This work is organised as follows. In section 2 we consider massive scalar fields

φ of mass m propagating in de Sitter spacetime and determine their behaviour in the

late time limit. It is well known that in the late time limit the field takes the form

of φ(~x, η)→ η∆O∆(~x) and our aim in that section is to explicitly identify the operators

O∆(~x). We carefully take the late time limit of the bulk solution and identify O∆ in mo-

mentum space, in terms of creation and annihilation operators a†~q and a~q of state with

momentum ~q. As we present in section 2, for such a scalar field solution, ∆ depends on the

mass of the field and dimensions of spacetime (see [35] for the transformation properties

of O∆ under SO(2h + 1, 1)). These operators are the first result of the paper, and are

summarized in table 2.

Before demonstrating the unitarity of the boundary operators, we follow the indepth

monograph [29] on the group SO(2h + 1, 1) in section 3, in order to review the group

1In the reference [25] principal series representations of AdS2 arise because of the charge of the field.
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properties and irreducible representations. This technical section also works to introduce

the notation. In short, the unitary irreducible representations are denoted as χ = {`, c}
and are realized by functions f(~x), whose properties are specified in section 3.2.1. These

functions are in correspondence with the boundary operators O∆.

In section 4 we use the inner product of [29] applied to the irreducible representations of

de Sitter and review the conditions on the weights for these representations to be unitary.

Contrary to intuition the inner product for the operators with imaginery weight is less

subtle than that for operators with real weight. The definition of a unitary inner product

for representations with real weight involves a so-called intertwining operator.

The subtleties of the inner product are presented for both real and imaginary weights

in section 5, by making use of the boundary operators identified in section 2. There, we

demonstrate the unitarity of the boundary operators, which is the main goal of the paper.

The boundary operators we obtain are given in momentum space but the form ∆ = h+ c

for the scaling dimension holds in position space. In section 6 we confirm that our operators

indeed have the expected scaling dimension and demonstrate how the intertwining operator

leads to a shadow transformation. We conclude in section 7 where we give a summary of our

results, have a short discussion regarding the notion of unitarity on de Sitter and consider

possible future directions.

In appendix A we present some properties of the de Sitter group SO(2h + 1, 1), in

appendix B we present details regarding the normalization of the intertwining operator

from [29] and in appendix C we give a concrete example of a shadow transformation.

We use a mostly positive signature convention and throughout this article we use the

convention that Greek indices take values in the range 0 . . . 2h+ 1, uppercase Latin indices

in the range 1 . . . 2h+ 1 and lowercase Latin in the range 1 . . . 2h.

2 Late time behavior and boundary operators

2.1 Scalar fields

There is a large variety of coordinate systems one can use to describe de Sitter (see [36]),

each of which has its own merits or shortcomings. For our purposes, we use the planar

coordinates, covering only half of the de Sitter manifold, for which the de Sitter metric

takes the form

ds2 =
−dη2 + d~x2

H2η2
, (2.1)

where η is the conformal time. In these coordinates the action of a massive scalar field

propagating on a 2h+ 1 dimensional de Sitter manifold, takes the form

S =

∫
d2h+1x

√
−g
[
−1

2
gµν∂µφ∂νφ−

1

2
m2φ2

]
(2.2)

=
1

2

∫
d2h+1x

(Hη)2h+1

{
H2η2

[
φ′2 −

(
~∇φ
)2
]
−m2φ2

}
, (2.3)

where a prime denotes differentiation w.r.t. η, and leads to the following equation of motion

φ′′ − 2h− 1

η
φ′ − ~∇2φ+

m2

H2η2
φ = 0. (2.4)
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It is more convenient to expand the field φ(~x, η) in terms of its Fourier modes as follows

φ(~x, η) =

∫
d2hq

(2π)2h

[
φq(η)a~q e

i~q·~x + φ∗q(η)a†~q e
−i~q·~x

]
, (2.5)

where in quantizing the field the coefficients a~q and a†~q obey[
a~q, a

†
~q′

]
= (2π)2hδ2h(~q − ~q ′). (2.6)

The equation of motion for the mode functions φq(η) then reads

φ′′q −
2h− 1

η
φ′q +

(
q2 +

m2

H2η2

)
φq = 0. (2.7)

Equation (2.7) is in fact Bessel’s equation in disguise and this becomes more apparent if

one defines φq(η) ≡ ηhϕ(qη) and u ≡ qη. Then equation (2.7) turns into

d2

du2
ϕ(u) +

1

u

d

du
ϕ(u) +

[
1 +

(
m2

H2
− h2

)
1

u2

]
ϕ(u) = 0, (2.8)

whose solutions are the Bessel functions of the first and second kind, Jν(qη) and Yν(qη)

with

ν2 = h2 − m2

H2
. (2.9)

The solution for the mode functions φq(η) that approaches the Bunch-Davies vacuum

solution at early times |η| → ∞ is

φq(η) = |η|hH(1)
ν (q|η|) (2.10)

with H(1)(q|η|) = Jν(q|η|) + iYν(q|η|), the Hankel function of the first kind. Thus the full

solution for the scalar field in the bulk is

φ(~x, η) =

∫
d2hq

(2π)2h

[
|η|hH(1)

ν (q|η|)a~qei~q·~x + |η|hH∗(1)
ν (q|η|)a†~qe

−i~q·~x
]

(2.11)

which is normalized2 with respect to the Klein-Gordon inner product [37].

At late times as qη → 0, the spatial dependence in equation (2.7) is negligible, and the

late time solution approaches the following form

lim
η→0

φ(~x, η) = O∆(x)η∆ where ∆ = h± ν. (2.12)

On one hand, it is the term O∆(x) that can be recognized as an operator of dimension

∆ at the late time boundary of de Sitter and there is expected to be a corresponding

CFT current of dimension 2h−∆ in the dual Euclidean CFT. On the other hand O∆(x)

is an irreducible representation of SO(2h + 1, 1). We review the properties of irreducible

2From dimensional analysis one can see that the normalization of φ(~x, η) will involve Hh−1/2. In the

rest of the manuscript we drop this factor of H and any other numerical factors such as π in the overall nor-

malization.
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representations in section 3 and demonstrate how they are categorized in section 4. In this

section we show how to read-off O∆(x) for different mass ranges.

By definition, the scaling dimension ∆ is decomposed into two parts as follows

∆ = h+ c. (2.13)

This decomposition emphasizes the contribution of the dimensionality of spacetime by h

and the contribution of the properties of the field, namely spin and mass, by the weight c.

Comparing (2.12) with (2.13) we see that

c ≡ ν. (2.14)

In the coming sections we will see that c being real or purely imaginery plays an important

role in the treatment of the corresponding boundary operators. As a first step let us

determine what the late time boundary operators are.

The decomposition of the scaling dimension into these two specific parts has to do with

the properties of O(d+ 1, 1). For the group O(d+ 1, 1), h is the half sum of the restricted

positive roots [29]. The parameter c, which will be referred to as the scaling weight from

now on, is in general related to both the mass and spin of the field under consideration.

The irreducible representations are labeled by their spin l, and the weight c of the scaling

dimension ∆ = h+ c. We will work with the notation h and c to emphasize the role of the

scaling weight c in the categorization of unitary irreducible representations.

2.2 Light scalars with mass m2

H2 = (2h)2−1
4

Conformally coupled scalar fields on dS3 and dS4 have masses m2

H2 |dS3 = 3
4 and m2

H2 |dS4 = 2

respectively, which satisfy the condition

m2

H2
=

(2h)2 − 1

4
where ν = ±1

2
. (2.15)

These fields also accommodate the scalar sector of Vasiliev Higher Spin gravity on de Sitter.

In this case, the Hankel functions have a very simple form to work with

H
(1)

± 1
2

(q|η|) ' e−iqη√
q|η

. (2.16)

The only difference between ν = +1
2 and ν = −1

2 is an overall numerical coefficient which

can be dismissed for our purposes. Thus we have the following mode functions

φq(η) = η∆− e
−iqη
√

2q
with ∆− = h− 1

2
for

m2

H2
= h2 − 1

4
, (2.17)

in this case.

At this point we would like to read off the expression for the boundary operators O∆

by matching the late time limit of the general solution

φ(~x, η) =

∫
d2hq

(2π)2h

η∆−
√

2q

[
a~qe
−iqη+i~q·~x + a†~qe

iqη−i~q·~x
]
, (2.18)
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to the expected form of (2.12). Following the procedure outlined in [38] for the case of

Vasiliev scalar on dS4, rewriting (2.18) as

φ(~x, η) =

∫
d2hq

(2π)2h

η∆

√
2q

[f1(q) cos(qη) + f2(q) sin(qη)] ei~q·~x (2.19)

makes it easier to take the late time limit. We can achieve this by sending ~q → −~q in the

second term of (2.18). In this limit d3q → d3q, ~q·~x→ −~q·~x, q → q and a†~q → a†−~q, leading to

φ(~x, η) =

∫
d2hq

(2π)2h

η∆

√
2q

[
a~qe
−iqη + a†−~qe

iqη
]
ei~q·~x. (2.20)

Lastly, expanding the exponential functions in terms of sines and cosines gives

φ(~x, η) =

∫
d2hq

(2π)2h

η∆−
√

2q

[(
a~q + a†−~q

)
cos(qη)− i

(
a~q − a†−~q

)
sin(qη)

]
ei~q·~x, (2.21)

hence,

f1(q) = a~q + a†−~q (2.22a)

f2(q) = −i
(
a~q − a†−~q

)
(2.22b)

The family of solutions with ν = ±1
2 are related to each other by ∆+ = ∆−+1 = ∆+1.

Since cos(qη) → 1 and sin(qη) → qη as η → 0, the format (2.19) in the late time limit

becomes

lim
η→0

φ(~x, η) =

∫
d2hq

(2π)2h

[
η∆− f1(q)√

2q
+ η∆+

√
q

2
f2(q)

]
ei~q·~x

!
=

∫
d2hq

(2π)2h

[
η∆−α(~q) + η∆+β(~q)

]
ei~q·~x. (2.23)

By equations (2.22) and (2.23) we can read off that for scalar fields whose mass satisfy the

relation m2

H2 = h2 − 1
4 , the boundary operators are

α(~q) =
a~q + a†−~q√

2q
(2.24a)

β(~q) = −i
√
q

2

(
a~q − a†−~q

)
. (2.24b)

irrespective of the dimension 2h. This matches the operators considered in [38] up to an

overall minus sign and a normalization convention. Hence forth, we use the notation that

the lower weight operator is denoted by α and the higher weight by β.

2.3 Light scalars in general

Notice that since

c ≡ ν =

√
h2 − m2

H2
, (2.25)

– 7 –
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the weight c can be real or purely imaginary depending on the mass of the scalar. For light

scalars with masses in the range
m2

H2
< h2, (2.26)

the weight c is a real number and the previous case of m2

H2 = h2 − 1
4 is in fact contained in

this range as a special case. We now discuss light fields more generally. Depending on the

value of ν, i.e. whether it is positive or negative or integer, the late time limit of Bessel

functions for obtaining the boundary operators needs to be taken with some care.

When Re(ν) > 0 or when ν = −1
2 ,−

3
2 ,−

5
2 in the limit q|η| → 0 the Bessel functions

behave as

lim
q|η|→0

Jν(q|η|)→ 1

Γ(ν + 1)

(
q|η|
2

)ν
, (2.27a)

lim
q|η|→0

Yν(q|η|)→ −Γ(ν)

π

(
q|η|
2

)−ν
. (2.27b)

Comparing the asymptotic behaviors of Jν(q|η|) and Yν(q|η|), as the argument tends to

zero the branch with the negative exponent will dominate over the branch with the pos-

itive exponent. Hence, in practice lim
z→0

H
(1)
ν (z) ∼ z−|ν|. But this practical expression will

involve only one of the two boundary operators, the one with the lower scaling dimen-

sion ∆ = h− |ν|. As we want to be knowledgeable of both operators we take instead the

limiting form as3

lim
q|η|→0

H(1)
ν (q|η|)→ 1

Γ(ν + 1)

(
q|η|
2

)ν
− iΓ(ν)

π

(
q|η|
2

)−ν
. (2.28)

With this asymptotic behavior, the general solution (2.11) when ν > 0 or when

ν = −1
2 ,−

3
2 , . . ., in the late time limit turns into

lim
z→0

φ(~x, η) =

∫
d2hq

(2π)2h

{
|η|h−ν

[
−iΓ(ν)

π

(q
2

)−ν (
a~q − a†−~q

)]

+ |η|h+ν

[
1

Γ(ν + 1)

(q
2

)ν (
a~q + a†−~q

)]}
ei~q·~x (2.29)

There is some subtlety in reading off the boundary operators from (2.29), depending on

what ν is being considered. Keeping in mind that so far our notation has been such that

the operator with the bigger scaling dimension is denoted as β and the one with the smaller

dimension as α, ∆β > ∆α, we consider the late time solution (2.29) in two branches.

2.3.1 The branch when ν > 0

When ν > 0 the exponents are ordered as

h− ν < h+ ν. (2.30)

3In what follows, our main concern will be the q-dependence and the a~q, a
†
~q structure in the late time

behavior, rather than the numerical factors.
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Thus we identify the boundary operators as

αI(~q) = −iΓ(ν)

π

(q
2

)−ν (
a~q − a†−~q

)
with ∆I

α = h− ν, (2.31a)

βI(~q) =
1

Γ(ν + 1)

(q
2

)ν (
a~q + a†−~q

)
with ∆I

β = h+ ν. (2.31b)

2.3.2 The branch when ν = −2n+1
2

In this branch ν = −1
2 ,−

3
2 , etc., and the exponents are ordered as

h− ν = h+
2n+ 1

2
> h+ ν = h− 2n+ 1

2
. (2.32)

Thus, for ν = −2n+1
2 where n = 0, 1, 2, etc., the identification of the boundary operators

are as

αII(~q) =
1

Γ(1−2n
2 )

(q
2

)− 2n+1
2
(
a~q + a†−~q

)
with ∆II

α = h− 2n+ 1

2
, (2.33a)

βII(~q) = −i
Γ(−2n+1

2 )

π

(q
2

) 2n+1
2
(
a~q − a†−~q

)
with ∆II

β = h+
2n+ 1

2
. (2.33b)

The special case of scalar fields with mass m2

H2 = h2− 1
4 presented in section 2.2 belongs

to this branch with ν = −1
2 . Indeed letting n = 0, so that Γ

(
−1

2

)
= −2

√
π and Γ

(
3
2

)
=
√
π

2

equations (2.33) give

αII(~q) =

√
2

πq

(
a~q + a†−~q

)
(2.34a)

βII(~q) = i

√
2q

π

(
a~q − a†−~q

)
. (2.34b)

These expressions match the previous solutions presented in (2.24) for this case, up to a

factor of two and a minus sign in the case of βII . They also match the solutions of [38],

again up to numerical factors.

2.3.3 The connection between the two branches

We have so far split the light scalar operators into two branches in order to better classify

the lower and higher dimensional operators. Among the first branch operators, the ones

that arise for ν = 2n+1
2 will have scaling dimensions h± 2n+1

2 . These scaling dimensions also

come up in the operators of the second branch, suggesting a possible connection between

the two branches. Indeed, such a connection exists. At a first glance one would expect to

be able to establish a connection between αI and αII or βI and βII . However, a detailed

study which we reserve for the appendix C shows that the β operators of one branch are

related to the α operators of the other branch by a shadow transformation. This relation

is schematically depicted in figure 1. The shadow transformation is an important concept

which we introduce in more detail in section 4.2.
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𝛼𝐼(𝑞) 

𝛽𝐼(𝑞) 𝛽𝐼𝐼(𝑞) 

𝛼𝐼𝐼(𝑞) 

Branch 1 solutions Branch 2 solutions 

Figure 1. The shadow transformation takes the branch 2 light field solutions to the branch 1

solutions.

2.4 The case m2

H2 = h2

This is a special case for which ν = 0 suggesting that there should be only one operator

with scaling dimension ∆ = h. The analytic expression for the small argument limit of

H
(1)
0 is

H
(1)
0 (z) ≈ 1 +

2i

π
ln(z) +O(z)2, (2.35)

so that (2.11) leads to

lim
q|η|→0

φ(~x, η)→
∫

d2hq

(2π)2h
|η|h

[
a~q + a†−~q +

2i

π
ln(q|η|)

(
a~q − a†−~q

)]
ei~q·~x (2.36)

We observe that the first piece is finite and we deduce that the boundary operator is

αν=0(q) = a~q + a†−~q with ∆ν=0 = h (2.37)

The 2nd piece is logarithmically divergent as η → 0. We speculate that one possibility

is to impose the additional condition a†q = a−q which removes the divergence. Otherwise,

if the log is kept, it likely leads to a second solution which does not fall into the tem-

plate (2.12). This merging of solutions have been noted to be associated with approach to

critical behavior. In the context of AdS/CFT, it has been noticed that such solutions from

the gravity side correspond to logarithmic CFT’s, see [39] for an introduction of logCFT’s

based on linear second order differential equations at a critical point and [40] for further

generalizations.4

2.5 Heavy scalars

For scalar fields with mass in the range m2

H2 > h2, the parameter ν is purely imaginery,

ν = iρ. With such a parameter, the Bessel equation (2.8) becomes

d2

du2
ϕ(u) +

1

u

d

du
ϕ(u) +

(
1 +

ρ2

u2

)
ϕ(u) = 0 (2.38)

4We thank Joris Raeymaekers for pointing out the connection with logCFT’s.
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where we previously defined φq(η) ≡ ηhϕ(qη) and u ≡ qη. The solutions to (2.38) are the

functions J̃ρ(u) and Ỹρ(u), who are related to the solutions Jν(u) and Yν(u) of (2.8) as

follows

J̃ρ(u) = sech
(πρ

2

)
Re [Jiρ(u)] (2.39a)

Ỹρ(u) = sech
(πρ

2

)
Re [Yiρ(u)] (2.39b)

where ρ ∈ R, and u ∈ (0,∞). The limiting form of these functions are as follows

lim
u→0

J̃ρ '
√

2

πρ
cos
(
ρ ln

(u
2

)
− γρ

)
(2.40a)

lim
u→0

Ỹρ(u) '
√

2

πρ
sin
(
ρ ln

(u
2

)
− γρ

)
(2.40b)

where the coefficient γρ is defined by

Γ(1 + iρ) =

(
πρ

sinh(πρ)

)1/2

eiγρ . (2.41)

In this case the solution that satisfies the Bunch-Davies initial condition is

φ(~x, η) =

∫
d2hq

(2π)2h
ηh
[
H̃(1)
ρ (q|η|)a~q ei~q·~x + H̃(1)∗

ρ (q|η|)a†~q e
−i~q·~x

]
, (2.42)

where

H̃(1)
ρ (q|η|) = J̃ρ(q|η|) + iỸρ(q|η|). (2.43)

Our goal is now to put (2.42) into the template given by (2.23) by taking the late time

limit. For this purpose we set again ~q → −~q in (2.42). The late time limit of the Hankel

function works as follows

lim
q|η|→0

H̃(1)
ρ = lim

q|η|→0
J̃ρ(q|η|) + i lim

q|η|→0
Ỹρ(q|η|) (2.44a)

=

√
2

πρ

{√
tanh

(πρ
2

)
cos

[
ρ ln

(
q|η|
2

)
− γρ

]
(2.44b)

+ i

√
coth

(πρ
2

)
sin

[
ρ ln

(
q|η|
2

)
− γρ

] }
.

By noting that ρ = −iν while cos(iθ) = cosh(θ) and sin(iθ) = i sinh(θ), the trigono-

metric functions can be turned into hyperbolic functions which act to take the inverse of

the natural logarithm. Thus one can rewrite the trigonometric functions as

cos

[
ρ ln

(
q|η|
2

)
− γρ

]
=

cos γρ
2

[(
q|η|
2

)ν
+

(
q|η|
2

)−ν]

− isin γρ
2

[(
q|η|
2

)ν
−
(
q|η|
2

)−ν]
(2.45a)

sin

[
ρ ln

(
q|η|
2

)
− γρ

]
= −icos γρ

2

[(
q|η|
2

)ν
−
(
q|η|
2

)−ν]

− sin γρ
2

[(
q|η|
2

)ν
+

(
q|η|
2

)−ν]
. (2.45b)

– 11 –



J
H
E
P
0
6
(
2
0
2
0
)
0
4
1

Plugging equations (2.45) into (2.44) one obtains

lim
q|η|→0

H̃(1)
ρ (q|η|) = cρ

[(
q|η|
2

)ν
+

(
q|η|
2

)−ν]
+ dρ

[(
q|η|
2

)ν
−
(
q|η|
2

)−ν]
, (2.46)

where the complex coefficients cρ and dρ are defined as

cρ ≡
√

2

πρ

[√
tanh

(πρ
2

)cos γρ
2
− i
√

coth
(πρ

2

)sin γρ
2

]
, (2.47a)

dρ ≡
√

2

πρ

[√
coth

(πρ
2

)cos γρ
2
− i
√

tanh
(πρ

2

)sin γρ
2

]
. (2.47b)

With everything put together and noting that ν∗ = −ν, the late time limit for φ(~x, η) gives

lim
q|η|→0

φ(~x, η) =

∫
d2hq

(2π)2h

{
ηh+ν

[(
(cρ + dρ)a~q + (c∗ρ − d∗ρ)a

†
−~q

)(q
2

)ν]
(2.48a)

+ ηh−ν
[(

(cρ − dρ)a~q + (c∗ρ + d∗ρ)a
†
−~q

)(q
2

)−ν]}
. (2.48b)

Matching (2.48) to (2.12) we can read off that for ν = iρ and ρ > 0

α(~q) =
[
(cρ − dρ) a~q +

(
c∗ρ + d∗ρ

)
a†−~q

] (q
2

)−ν
where ∆− = h− ν, (2.49a)

β(~q) =
[
(cρ + dρ) a~q +

(
c∗ρ − d∗ρ

)
a†−~q

] (q
2

)ν
where ∆+ = h+ ν. (2.49b)

3 Elements and elementary representations of G = SO(2h+ 1, 1)

The main purpose of this section is to introduce how the elementary representations of

SO(2h+ 1, 1) can be realized, and set the notation. With this in mind we summarise some

general results from [29] that serve as a starting point for the following sections. Further

details are left for the appendix A.

3.1 Group elements of SO(2h+ 1, 1)

The group G = SO(2h+1, 1), with h a half-integer, is composed of all linear transformations

on the real 2h+ 2-dimensional vector space that leave the quadratic form

ξ2 = ξηξ = ξ1
2 + . . .+ ξ2h+1

2 − ξ0
2 where ηµν = diag(−1, 1, . . . , 1), (3.1)

invariant. The elements g of the group G = SO(2h+ 1, 1) satisfy

gT ηg = η, det g = 1, g0
0 ≥ 1, (3.2)

and the generators X of the corresponding Lie algebra obey

XT η + ηX = 0. (3.3)
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N = 2h+ 1, 2h ∈ Z elements generators
irreducible

representation

Group G = SO(2h+ 1, 1) g Xµν µ, ν = 0, 1, . . . , 2h+ 1 χ = [l, c]

K = SO(2h+ 1) k

maximal compact

subgroup
XAB A,B = 1, . . . , 2h+ 1

A = SO(1, 1)

noncompact

dilatations
a D = X2h+1 0 |a|−h−c = |a|−∆

Subgroups M = SO(2h)

Euclidean Lorentz

Group
m Xij i, j = 1, . . . , 2h Dl(m)

N Special Conformal

Transformations
n Ci = Xi0 −Xi2h+1

Ñ Translations ñ Ti = Xi0 +Xi2h+1

H Cartan subgroup

Table 1. The subgroups of SO(2h+ 1, 1).

As a specific example we list the Killing vectors for the case h = 3/2 (so that N = 4) that

is of specific interest for cosmological applications, in appendix A.2.

The group SO(2h+1, 1) is composed of six subgroups: the maximal compact subgroup

K = SO(2h + 1), the Euclidean Lorentz group M = SO(2h), the group N of special con-

formal transformations, the group Ñ of translations, the group A = SO(1, 1) of dilatations

and the Cartan subgroup H. We list these subgroups, typical element notation, generators

and irreducible representations of some of them, as relevant in to this work, in table 1.

Any element g ∈ G can be decomposed in terms of elements of these subgroups as noted

in the appendix A.3. The subgroup P = NAM is called the parabolic subgroup and plays

a central role in the induced representations that we present in the next subsection.

The quadratic Casimir of SO(2h+ 1, 1) is

Ω = −1

2
X2
ij +D2 + 2hD + CiTi (3.4)

= `(`+ 2h− 2) + c2 − h2, (3.5)

which depends on the spin ` and scaling weights h and c. Accordingly the irreducible

representations are labeled by, ` the label for irreducible representations D`(m) of the

subgroup M = SO(2h), h which depends on the dimensionality of G, i.e. dim(G) = 2h+ 1,

and weight c which can be either real or purely imaginary.

3.2 Induced (elementary) representations

In this subsection we present the induced elementary representations of SO(2h + 1, 1) by

the parabolic subgroup P = NAM , following [29]. In general, a representation of a group

G into a vector space V is a map from G to the group of automorphisms aut(V ) of V , that
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is Π : G → aut(V ). An element g ∈ G is mapped to an element Πg ∈ aut(V ) with the

requirement that the map is a homomorphism, that is for an5 element v ∈ V

ΠgΠg′v = Πgg′v ∀ g, g′ ∈ G. (3.6)

In constructing the representations of SO(2h + 1, 1) induced by P = NAM , we start

from the unitary induced representations of M and A denoted by D`(m) and |a|−(h+c)

respectively, where m ∈ M and a ∈ A are generic elements of M and A. Taking these

together, the unitary induced representations of P are simply |a|−h−cD`(m). Then the

representations of SO(2h+ 1, 1) induced by P are labeled by the pair

χ = {`, c} (3.7)

where the spin ` labels the M representations and the scaling weight c labels the A repre-

sentations and are constructed as follows.

We start from the Hilbert space V` which realizes the unitary representations of M and

consider V`-valued infinitely differentiable functions f on G, that is f : G→ V`, f(g) ∈ V`.
The functions f live on the space Cχ, i.e. f ∈ Cχ and are required to satisfy the so called

covariance condition

f(gnam) = |a|h+cD`(m)−1f(g). (3.8)

We now construct the representations of G induced by P by taking the space aut(Cχ) of

automorphisms of Cχ and considering the maps Iχ : G→ aut(Cχ), such that Iχg ∈ aut(Cχ)

defined by

(Iχg f)(g′) = f(g−1g′) ∀ g, g′ ∈ G, f ∈ Cχ. (3.9)

It is straightforward to show that Iχg obey (3.6).

For comparison, by the Iwasawa decomposition mentioned in appendix A, g = kna

and in the absence of m, the covariance condition of Cχ reads

f(kna) = |a|h+cf(k). (3.10)

This condition defines a space of covariant functions on K,

C(K,V`) = {f(k) : K → V`; f(kna) = |a|h+cf(k)}, (3.11)

5As an example, consider the d-dimensional Hilbert space H = Cd of complex vectors endowed with the

usual inner product. Consider also the set of homogeneous polynomials of degree `, denoted by P` : H → C.

For p ∈ P`, and z ∈ H we have p(z) = pI1...I`zI1 . . . zI` where the indices Im with m = 1 . . . ` take values in

the integer set 1 . . . d (summation is understood with repeated indices) and pI1...I` ∈ C. These polynomials

act as operators on H and it may be easily shown that P` is a vector space over C. If we now consider the

group G = GL(d,C) acting on Cd, and we define the map g → Πg for any g ∈ G through the left action

(Πgp)(z) = p(g−1z) ∀ p ∈ P`, z ∈ H, g ∈ G

then Πg[(Πg′p)](z) = (Πg′p)(g
−1z) = p(g′

−1
g−1z) = p[(gg′)−1z] = (Πgg′p)(z) so that (3.6) is satisfied and

Πg is a representation of G in P`.
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where each space Cχ can be identified with a space C(K,V`). A given irreducible represen-

tation χ of G is related to a unique irreducible representation of K.6 Finally the compact

picture realization of the elementary representation, denoted as Ĩχ is(
Ĩχg f
)

(k) = |a|h+cf(kg). (3.12)

From the M -invariant scalar product 〈, 〉 on V`, one can define a K-invariant scalar product

(, ) on C(K,V`) via

(f1, f2) =

∫
K
dk〈f1(k), f2(k)〉 (3.13)

where dk is the normalized Haar measure on K.

The possibility to restrict the definition of representations on function space Cχ to the

compact subspace K suggests that the integral over the compact space will stay finite,

leading to a finite inner product which in turn can be recognized as a finite probability

rate.

3.2.1 Connection to functions over the Euclidean space R2h

How do the representations realized by functions f ∈ Cχ acting on G, relate to functions

f : R2h → V ` that act on the ~x-space R2h? There is a unique correspondence between

the elements of Euclidean space ~x ∈ R2h, and the elements ñ ∈ Ñ of the subgroup of

translations such that the functions over R2h match the functions over Ñ via

f(~x) = f(ñ~x). (3.14)

Here ñ~x denotes the specific element of Ñ that corresponds to the specific element ~x ∈ R2h.

Now ñ ∈ Ñ is also related to any g ∈ G, by the Bruhat decomposition g = ñnam.

Considering the representations Iχ defined by (3.9) and setting g′ = ñx leads to

(Iχg f)(ñ~x) = f(g−1ñ~x) (3.15)

The element ~xg ∈ R2h corresponding to a group element g ∈ G is defined as

g−1ñ~x = ñ~xgn
−1a−1m−1, (3.16)

so that (3.15) becomes

(Iχg f)(ñ~x) = f
(
ñxgn

−1a−1m−1
)
. (3.17)

Plugging g = ñ~xgn
−1a−1m−1 into the covariance condition (3.8) leads to

f(ñ~xgn
−1a−1m−1) = |a|−h−cD`(m)f(ñ~xg) (3.18)

Now, the set of functions f form the space Cχ, that is f ∈ Cχ and with the identifica-

tion (3.14), one arrives at

(Tχg f)(~x) = |a|−h−cD`(m)f(~xg) (3.19)

which defines the representations Tχ : G→ R2h with Tχg ∈ aut(Cχ) of G in R2h.

6We refer the readers interested more on this matter to sections 2.A and 3.A of [29].
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To summarize, we discussed how the elementary representations χ = {`, c} are realized

by infinitely differentiable covariant functions f ∈ Cχ and further discussed their properties.

Considering the realization of the representations as functions on the Euclidean space R2h,

they are denoted by f(~xg) and form the function space Cχ. The connection between

f(~xg) and f(g) is established through their values on the elements of the subgroup of

translations Ñ , via (3.14). We recognize the functions f(~xg) as the operators α and β

identified throughout section 2 in momentum space. that capture the late time behavior

of scalar fields of diverse masses on de Sitter space.

4 Unitary representations of SO(2h+ 1, 1)

4.1 Unitarity and the principal series representations

Now we turn our attention to the R2h realization of the representations, Tχg . The unitarity

of Tχg implies the existence of a bilinear form on Cχ whose structure is preserved by the

representation Tχ ⊗ Tχ of G. That is ∀ f1, f2 ∈ Cχ if

(f1, f2) =

∫
〈f1(~x), f2(~x)〉d2hx (4.1)

then (
Tχg f1, T

χ
g f2

)
=

∫
〈f1(~xg), f2(~xg)〉d2hxg. (4.2)

In return unitary representations lead to positive definite probabilities because the scalar

product between two states is understood as a probability rate and the scalar product on

the right hand side of (4.2) is positive definite by definition. Following [29] let us work out

the condition that this definition brings about for the representations.

The elementary representation χ = {`, c} is realized on R2h via (3.19). The bilinear

product works as (
Tχg f1, T

χ
g f2

)
=

∫
〈Tχg f1, T

χ
g f2〉d2hx. (4.3)

The right hand side can be expanded by (3.19) as

r.h.s. =

∫
〈|a|−h−cD`(m)f1(~xg), |a|−h−cD`(m)f2(~xg)〉d2hx. (4.4)

Since 〈Au,Bv〉 = 〈u,A†Bv〉 for arbitrary linear operators A,B,

r.h.s. =

∫
〈f1(~xg),

[
|a|−h−cD`(m)

]†
|a|−h−cD`(m)f2(~xg)〉d2hx (4.5)

=

∫
|a|−2h−c∗−c〈f1(xg), D

`(m)
†
D`(m)f2(xg)〉d2hx (4.6)

where we used the fact that h ∈ R and that a being an element of dilatations is simply

a scale factor and can be taken out of the inner product. As D`(m) is an element of
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SO(2h) then D`(m)
†

= D`(m)
T

and more over D`(m)
T
D`(m) = I is the identity element.

Therefore

r.h.s. =

∫
〈f1(xg), f2(xg)〉|a|−(c∗+c)|a|−2hd2hx. (4.7)

The connection between ~x and ~xg involves the action of special conformal transformations,

dilatations and rotations via (3.16). Among all these transformations only the Jacobian of

dilatations is nontrivial and gives

|a|−2hd2hx = d2hxg, (4.8)

so that we arrive at ∫
〈f1(xg), f2(xg)〉|a|−(c∗+c)dxg. (4.9)

This matches (4.2) provided c∗ = −c, that is if c is purely imaginary c = iρ.

The function space Cχ can be completed into a Hilbert space Hχ by equipping it

with the scalar product (4.2). From now on the representation Tχ for χ = {`, iρ} is

identified with its extension to a unitary representation of G in Hχ. This family of unitary

representations, constructed via the scalar product (4.2), are called the “(unitary) principal

series representations” and they are irreducible [41, 42].

The heavy scalars, that is, with masses m2

H2 > h2 accommodate boundary operators

with purely imaginary weight among the late time solutions of section 2. Therefore the

operators (2.49a) and (2.49b) belong to the principal series representations.

4.2 Real weight c and the complementary series

We now turn to the case where the weight c is a real number. Remember that the subtlety

was that the volume element in (4.9) contains the factor |a|−(c∗+c) which is non-vanishing

for real c. Yet if there exists an operator A such that f̃(x) = [Af ](x) has c̃ = −c for each

f(~x) of weight c, then the inner product (f,Af) will involve |a|−(c+c̃) = |a|−(c−c) and lead

to a unitary representation. Such an operator A indeed exists. It is defined via similarity

transformations [43] and is referred to as an intertwining operator in early works [29], or

[Af ](x) is referred to as the shadow transformation in more recent works [38]. Below we

explore how the shadow transformation is expressed and how it works.

4.2.1 Definition of the intertwining operator

We are interested in the character of a representation Πg defined simply by its trace Tr Πg.

A theorem stated in the first paragraph of section 4.A. of [29] (with reference to [44]) states

that every K-finite unitary representation of G is determined uniquely by the character

of the representation, up to equivalence. Any irreducible representation ` of SO(2h + 1)

is equivalent to its mirror image ˜̀, where for χ = {`, c} its mirror image is an O(d)

transformation that includes reflections S such that

S2 = STS = 1, detS = 1 (4.10)

and act on D` the irreducible representations of SO(d) as

DS`(Λ) ≡ D`(SΛS−1), (4.11)
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leading to χ̃ = {˜̀,−c}.7 For ` = (`1, . . . , `[h]) the mirror image corresponds to
˜̀=

(
(−1)2(h−[h])`1, `2, . . . , `[h]

)
, where [h] denotes the integer value of h rounded down,

e.g. [3/2] = 1. For a scalar representation ` = (0, . . . , 0) and hence ˜̀= `.8

Thus, at this point we have gained awareness of the equivalence of representations

χ = {`, c} and χ̃ = {˜̀,−c}. For two equivalent representations T and T ′ acting on Hχ and

H′χ respectively, there exist a continuous linear map9

A : Cχ → C′χ such that ATg = T ′gA for all g ∈ G. (4.12)

This linear map A is called the intertwining operator. Strictly speaking, the relation (4.12)

on its own guarantees partial equivalence. For equivalent representations, such as the χ

and χ̃ of interest, A also has a continuous inverse. Since the intertwining map A, relates a

representation χ with weight c to a representation χ̃ with weight c̃ = −c, the action of this

map guarantees that (f,Af) gives a unitary inner product. In other words while (f, f) is

not unitary, the inner product (f, f̃), where f̃ = Af , is.

Consider now f̃ ∈ Cχ̃ on G as defined in the previous section. This realizes the IR

χ̃ = {˜̀, c̃} = {˜̀,−c} and hence satisfies the covariance condition

f̃(gnam) = |a|h+c̃D
˜̀
(m)−1f̃(g)

= |a|h−cD ˜̀
(m)−1f̃(g). (4.13)

The intertwining operator Aχ is a map

Aχ : Cχ̃ → Cχ which is well defined and analytic for Re(c) < 0, (4.14)

and is expressed as [29] (
Aχf̃

)
(g) =

∫
Ñ
f̃(gwñx)d2hx (4.15)

=

∫
Ñ
f̃(gwkx)

d2hx

(1 + x2)h−c
(4.16)

where x2 = |~x|2 and where w is an element of the Weyl group W = M ′/M where M ′ ∼=
O(2h) is the normalizer of A in K, i.e. the set of elements m′ ∈ K such that m′am′−1 ∈
A, ∀a ∈ A.

7The proof of this relation is given in Corollary 3.3 of [29].
8The notation ` = (`1, . . . , `[h]) denotes the highest weight representation of the group M = SO(2h)

where the integer part of h, [h] denotes the rank of the group. The labels `i have a hierchical order. This

order is determined by the odd or even dimensionality of the group. Emphasizing the rank of the group

• for SO(2[h]) the ordering is |`1| ≤ `2 ≤ . . . ≤ `[h]
• for SO(2[h] + 1) the ordering is 0 ≤ `1 ≤ `2 ≤ . . . ≤ `[h]

As an example in the case of dS4 we have h = 3/2 and M = SO(3) which has rank [h] = 1. Thus since 3

is odd the highest weight representation is ` = (`1) where `1 ≥ 0. In the case of dS5 we have h = 2 and

M = SO(4) which has rank [h] = 2. Then, since 4 is even the highest weight representation in this case is

` = (`1, `2) where |`1| ≤ `2.
9In general, representations related to each other by a similarity transformation, which is what equa-

tion (4.12) is, are called equivalent and because the trace is not effected by the similarity transformation,

equivalent representations have the same trace.
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The inverse map is given by

Aχ̃ : Cχ → Cχ̃ which is well defined and analytic for Re(c) > 0, (4.17)

and in comparison with equation (4.14) it can be defined as

[Aχ̃f](g) =

∫
Ñ
f(gwkx)

d2hx

(1 + x2)h+c
where f ∈ Cχ. (4.18)

Among the representations ` of M , those who are equivalent to their mirror represen-

tations10 ˜̀ = `, make up a special case that can be extended to representations of

SO(2h+ 1, 1). For this special case the equivalence map between {`,−c} and {˜̀,−c}
can be defined by

I(Is) : C{˜̀,−c} → C{`,−c} such that [I(Is)f] = D`(Is)f(g) (4.19)

where Is(x1...2h−1, x2h) = (−x1...2h−1, x2h) is the reflection. Then the normalized intertwin-

ing operators are denoted by Gχ : Cχ̃ → Cχ and Gχ̃ : Cχ → Cχ̃ and are given as

Gχ : Cχ̃ → Cχ where Gχ = γχAχI(Is) (4.20)

Gχ̃ : Cχ → Cχ̃ where Gχ̃ = γχ̃I(Is)Aχ̃. (4.21)

Here γχ is a normalization factor that is to be determined so that the normalized inter-

twining operators obey the normalization condition

GχGχ̃ = 1 = Gχ̃Gχ. (4.22)

There is some subtlety in obtaining Gχ from Aχ of equation (4.16) via equation (4.20),

due to the equivalence map I (Is). Leaving the details to appendix B, we quote the result

of [29] for the normalized intertwining operator, as it acts on real space functions, for the

irreducible representations of SO(2h+1, 1). The normalized Gχ acts on functions f̃ ∈ Cχ̃ as[
Gχf̃

]
(~x) =

∫
Gχ(~x− ~y)f̃(~y )d2hy (4.23)

=

∫
γχ

|~x− ~y|2(h+c)
D`(r(~x− ~y))f̃(~y )d2hy (4.24)

where r(~x− ~y) = m(R, ~x− ~y) is an O(2h) transformation and R is conformal inversion.

Via the normalized intertwining operator Gχ, an inner product that respects unitarity

can be constructed for the representations with real c as follows

(f1, Gχ̃f2) =

∫ ∫
〈f1(~x1), Gχ̃(~x12)f2(~x2)〉d2hx1d

2hx2, (4.25)

where ~x12 = ~x1 − ~x2. The form Gχ̃f2 is Hermitian.

10Even though the mirror image representation ˜̀is equivalent to the original representation `, the matrices

D
˜̀

and D` are different except for the case ` = 0.
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4.2.2 Normalization of the intertwining operator

The normalization condition (4.22) GχGχ̃ = 1 = Gχ̃Gχ, does not uniquely determine the

normalization factor γχ. In past works, four conventions for choosing γχ have been used,

each of which is useful for a different purpose (ie. the convenient choice of γχ for Wightman

positivity which is appropriate for Minkowski spacetime is different than the choice that is

employed for the derivation of operator product expansion in quantum field theory). Here

we quote the result of [29] on the appropriate normalization for the positivity of the scalar

product (f1, G
+
χ f2) where in momentum space

G+
χ (q) =

(
q2

2

)c∑̀
s=0

K`s(c)Π
`s(q), (4.26)

and refer the reader to section 5.C of [29] for further details. Here ` = 0, 1, 2, . . . denotes

the spin of the representation under consideration. The coefficient K`s(c) is defined as

K`s(c) = (−1)`−s
Γ(h+ c+ s− 1)Γ(c+ 2− h− s)
Γ(h+ c+ `− 1)Γ(c+ 2− h− `)

, (4.27)

and Π`s(q) are SO(2h− 1)q projection operators that map V`(2h) onto the subspace Vs(2h−1),

where SO(2h− 1)q is the stability group of q with respect to which the harmonic analysis

is carried out and the Vs(2h−1) is the space of SO(2h − 1) symmetric, traceless tensors of

rank s ≤ `. In general these operators can be written in terms of zonal spherical functions

C
h− 3

2
s (z1, z2) of SO(2h− 1),11

Π`s(q; z1, z2) = A`s(−1)s

(
(qz1)(qz2)

q2

2

)`
C
h− 3

2
s (ω) (4.28)

where A`s is a normalization constant which guarantees that

Π`s(q)Π`s′(q) = δss′Π
`s(q), (4.29)

and ω = cos θ = 1 − q2(z1z2)
(qz1)(qz2) . The case of 2h = 3, which is relevant for dS4 is special. In

this case

Π`s
(2h=3)(q, z1, z2) = (−1)s

2`!

(`− s)!(`+ s)!

Γ(`+ 1
2)

Γ(1
2)

(
(qz1)(qz2)

q2

2

)`
cos(sθ). (4.30)

For a scalar field on dS4, K00 = Π00 = 1 is the only term that contributes to the sum

in (4.26).

In summary, quoting the theorem 5.1 of [29], the inner product(
f1, G

+
χ f2

)
=

∫ ∫
〈f1(x1), G+

χ (x12)f2(x2)〉d~x1d~x2 (4.31)

=

∫
〈f1(q), G+

χ (q)f2(q)〉 d
2hq

(2π)2h
, (4.32)

11For the definition of these functions we refer the reader to the appendix A.2 of [29].
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which is defined on Cχ̃ ×Cχ̃ with the intertwining operator G+
χ given by (4.26) is positive

definite for

` = 0 − h < c < h (h ≥ 1), (4.33a)

` = 1, 2, . . . 1− h < c < h− 1 (h > 1). (4.33b)

The unitary representations χ and χ̃ of G = SO(2h+ 1, 1) in the domain (4.33) are equiv-

alent, and they differ only in the sign of c. Among the representations of this domain, the

ones with c 6= 0 are called the “ complementary series” of type I unitary representations

of G = SO(2h+ 1, 1).

Among the late time solutions studied in section 2, we saw that light scalars, defined

to be in the range
m2

H2
< h2, (4.34)

have real weight c. Therefore the boundary operators (2.24) that correspond to scalars with

mass m2

H2 = h2− 1
4 , and the boundary operators (2.31) and (2.33) that capture light scalars

in more generality, are among the complementary series representations of SO(2h + 1, 1).

The operators (2.24) correspond to representations with c = ±1
2 , the operators (2.31) have

c = ν = |
√
h2 − m2

H2 |, and the operators (2.33) have c = ±2n+1
2 with n = 0, 1, 2, . . . .

5 The positive definite norm and unitarity

Now that we understand the necessity of the intertwining operator, how it works and that

we have some expressions for the late time boundary operators at hand, we are ready to

check that these operators have positive definite norm and they are unitary representations

of SO(2h+ 1, 1).

5.1 Example case: conformally coupled scalar field on dS4

Now let us check the positive definiteness of the norm of the operators associated with a

conformally coupled scalar field on dS4, whose mass is m2 = 2H2. For this case, since

ν2 = h2 − m2

H2 = 1
4 , ∆ = h + ν = 3

2 ±
1
2 and in accordance with equation (2.12), the late

time solution for this field is of the form

φ(η, ~x) = α(~x)η∆α + β(~x)η∆β . (5.1)

Here the operator α has scaling dimension

∆α =
3

2
−
√

9

4
− m2

H2
= 1 which means cα = −1

2
(5.2)

and the operator β has

∆β =
3

2
+

√
9

4
− m2

H2
= 2 which means cβ =

1

2
. (5.3)
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Of course there is also the possibility to use the shadow transforms of these operators

with

∆̃α = 3−∆α = 2, c̃α =
1

2
, (5.4)

∆̃β = 3−∆β = 1, c̃β = −1

2
. (5.5)

As was obtained in section 2.2

α(~q) =
1√
2q

(
a~q + a†−~q

)
, (5.6)

β(~q) = −i
√
q

2

(
a~q − a†−~q

)
. (5.7)

We are interested in the normalization of α(~x) and β(~x). Since all of these operators

have real c, in doing this exercise we will see the necessity of the intertwining operator in

calculating the norm.

Remember that there exists two types of intertwining operators Gχ and Gχ̃, where

each is well defined over a different range that depends on the sign of c, and act on a

different function space

Gχ : Cχ̃ → Cχ, for c < 0, (5.8)

Gχ̃ : Cχ → Cχ̃, for c > 0. (5.9)

So the first step for calculating the norm relies on deciding which of the intertwining

operators act on the operator of interest. Considering our operators associated with the

late time boundary, we have two families, cα = −1
2 and cβ = 1

2 .

The family cα = −1
2 contains{

cα = −1

2

}
= {α(~x) ∈ Cχ}. (5.10)

Since for this family Re(cα) < 0, the well defined intertwining operator that first comes to

mind is G+
χ ,

G+
{0,c}(q) =

(
q2

2

)c
(5.11)

which acts on α̃ ∈ Cχ̃. But we have the expression for α ∈ Cχ, not for α̃. On the other

hand, we know that the intertwining operator

Gχ̃ : Cχ → Cχ̃, where G+
{0,c̃}(q) =

(
q2

2

)c̃
(5.12)

can act on the operator α(~q). It is straight forward to see that, for a scalar field

K00(c) = K00(c̃) = 1 and hence equation (4.26) with c replaced by c̃ gives (5.12). For

the case at hand

G+

{0,− 1̃
2
}
(q) =

(
q2

2

) 1
2

= G+
{0, 1

2
}, (5.13)
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and its action gives the shadow operator α̃(q) ∈ Cχ̃

α̃(~q) = G+
{0, 1

2
}α(~q)

=
q√
2

1√
2q

(
a~q + a†−~q

)
=

√
q

2

(
a~q + a†−~q

)
. (5.14)

Hence the well defined inner product for the cα = −1
2 family is(

α,G+

{0,− 1̃
2
}
α

)
= (α, α̃) . (5.15)

Making use of (5.6) and the Bunch-Davies vacuum state |0〉 which is annihilated by the

operator a such that a|0〉 = 0, we can define the ket

|α(~q)〉 = α(~q)|0〉

=
1√
2q

(
a~q + a†−~q

)
|0〉

=
1√
2q
| − ~q〉. (5.16)

Similarly

|α̃(~q)〉 =

√
q

2
| − ~q〉. (5.17)

Defining the volume of momentum eigenstates Ω by

Ω ≡
∫

d2hq

(2π)2h
〈~q|~q〉 (5.18)

we can compute the “densitized” inner product

1

Ω

(
α,G+

{0,− 1̃
2
}
α

)
=

1

Ω
(α, α̃)

=
1

Ω

∫
d2hq

(2π)2h

1√
2q
〈−q|

√
q

2
| − q〉

=
1

2
√

2
(5.19)

which is positive definite. As there is no extra q-dependence in (α, α̃), α is normalized up

to the normalization of momentum eigenstates.12

For the family cβ = 1
2 {

cβ =
1

2

}
= {β(x) ∈ Cχ} (5.20)

12Note that had we not used the intertwining operator, the “densitized” inner product

1

Ω
(α, α) =

1

Ω

∫
d2hq

(2π)2h
1√
2q
〈−q| − q〉 1√

2q

would be divergent.
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the weight is positive, i.e. cβ > 0. The appropriate intertwining operator for the shadow

transformation is G+
{0,c̃}(q) and the well defined inner product is(

β,G+

{0, 1̃
2
}
β

)
with G+

{0, 1̃
2
}
(q) =

√
2

q
. (5.21)

The shadow transformed operator here is

β̃ = G+

{0, 1̃
2
}
(q)β(~q)

= −i
√

2

q

√
q

2

(
a~q − a†−~q

)
= − i
√
q

(
a~q − a†−~q

)
(5.22)

We can define a ket associated with β as we did earlier on

|β(~q)〉 = i

√
q

2
| − ~q〉 (5.23a)

|β̃(~q)〉 =
i
√
q
| − ~q〉. (5.23b)

Finally the inner product is

1

Ω

(
β,G+

{0, 1̃
2
}
β

)
=

1

Ω

∫
d2hq

(2π)(2h)
〈β(~q)|β̃(~q)〉

=
1

Ω

∫
d2hq

(2π)(2h)
(−i)

√
q

2
〈−~q| − ~q〉 i√

q

=
1√
2

(5.24)

which is positive definite.

In summary, for operators with real weight c, positive definite norms require the use of

the intertwining operator. In return, the presence of the intertwining operator guarantees

the unitarity of the representation. The form of the intertwining operator is sensitive to the

sign of the real part of the weight c. In addition one must pay attention to which function

space the intertwining operator acts on, as G+
{`,c} and G+

{˜̀,c̃} act on different function spaces.

Lastly, note that everything in this calculation is determined by c. Although we considered

conformally coupled scalars on dS4 here, our results would be the same for dS3. On dS3

the form for the operators αdS3(q) and βdS3(q) would not change, it would still be that

cdS3
α = −1

2 = cα and cdS3
β = 1

2 = cβ . The discussion in the choice of intertwining operators,

and their form would stay the same as well.13 Only the total dimension would change,

since for this case h = 1, giving ∆dS3
α = 1 + cα = 1

2 and ∆dS3
β = 1 + cβ = 3

2 .

13In the definition of the intertwining operator (see (4.26)) Kls(c) and Πls(q) have implicit h-dependence.

For scalars, l = 0 and K00(c) = 1 for all h. The form of Πls(q) is in general dictated by h, but Π00(q) = 1

for both cases of h = 3
2

and h = 1. This is why the discussion for conformally coupled scalars on dS3

parallels that of dS4.
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5.2 Example case: mass m2

H2 = h2

This special case with c = ν = 0 has the single boundary operator

αν=0(q) ∼ a~q + a†−~q with ∆ν=0 = h. (5.25)

As this operator has no q-dependence, the intertwining operator is trivial

G+
{0,0}(q) = 1. (5.26)

This means the boundary operator αν=0 is equal to its shadow

αν=0(q) = α̃ν=0 and ∆ν=0 = ∆̃ν=0 = h. (5.27)

It also means that the finite scalar product resembles that of a principal series representa-

tion and is simply (αν=0, αν=0).

5.3 Example case: a heavy scalar on dS4

As was discussed in section 4.3, the heavy fields fall in the principal series representations

and for the boundary operators of section 4.3, with c = ν = iρ, there is no need to include

any intertwining operators. The coordinate momenta q-dependence of these boundary

operators have the form |α〉 ∼ qν = qiρ. Hence 〈α| ∼ qν
∗

= q−iρ which guarantees the q-

dependence of the integrand, 〈α|α〉, cancels itself automatically, leaving only the integration

over a Dirac delta function.

More explicitly, as was found in equation (2.49b) one of the boundary operators is

β(~q) =
[
(cρ + dρ) a~q +

(
c∗ρ − d∗ρ

)
a†−~q

] (q
2

)ν
where ∆+ = h+ ν. (5.28)

The corresponding ket for this operator is

|β(~q)〉 =
(q

2

)ν (
c∗ρ − d∗ρ

)
| − ~q〉. (5.29)

With

〈β(~q)| =
(q

2

)−ν
(cρ − dρ) 〈−~q| (5.30)

the product 〈β(~q)|β(~q)〉 is

〈β(~q)|β(~q)〉 =
(q

2

)−ν
(cρ − dρ) 〈−~q| − ~q〉

(q
2

)ν (
c∗ρ − d∗ρ

)
= |cρ − dρ|2〈−~q| − ~q〉 (5.31)

Plugging this into the expression for the inner product leads to

1

Ω
(β, β) =

1

Ω

∫
d2hq

(2π)2h
〈β(~q)|β(~q)〉

= |cρ − dρ|2 (5.32)

which is positive definite.
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Lastly the second boundary operator for a heavy field is by (2.49a)

α(~q) =
(

(cρ − dρ)a~q + (c∗ρ + d∗ρ)a
†
−~q

)
(2k)−ν where ∆− =

d

2
− ν. (5.33)

For this case

|α(~q)〉 =
(q

2

)−ν (
c∗ρ + d∗ρ

)
| − ~q〉, (5.34)

so that

〈α(~q)|α(~q)〉 = |cρ + dρ|2〈−~q| − ~q〉, (5.35)

leading to the inner product

1

Ω
(α, α) =

1

Ω

∫
d2hq

(2π)2h
〈α(~q)|α(~q)〉

= |cρ + dρ|2 (5.36)

which is once again positive definite.

6 The connection between the intertwining operator and the shadow

transformation

The intertwining operator G+
χ is crucial for the unitarity of the complementary series

representations. We have seen its definition and how it acts in momentum space above

with some examples. We have mentioned that the action of the interwining operator

on a representation gives the shadow transformation. Here we would like to explicitly

demonstrate that this is so.

6.1 The relationship between the scaling dimensions

The effect of shadow transformation is that it transforms an operator with scaling dimension

∆ into an operator with scaling dimension ∆̃ where the old and the new dimensions are

related as

∆ + ∆̃ = 2h, (6.1)

in 2h spatial dimensions. The dimension ∆ here is the scaling dimension of an operator as

written in position space

O∆(~x) ∼ |~x|−∆, (6.2)

yet so far we have the operators explicitly written in momentum space. As summarized in

table 2, schematically our operators in momentum space have the form

O∆(~q) = qc
[
Aa~q +Ba†−~q

]
(6.3)

where A,B are some coefficients and c is a complex number. For the complementary series

representations c is real and can be positive or negative. Let us first confirm that this form

indeed gives the scaling dimension ∆ = h + c for O∆(~x). The position and momentum

space operators are related to each other by a Fourier transform

O∆(~x) =

∫
d2hq

(2π)2h
O∆(~q)ei~q·~x. (6.4)
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It is not so easy to perform this integration but it is easy to read off the scaling dimension. As

~x→ λ~x,

~q → q

λ
(6.5)

using the commutation relation [a~q, a
†
~q′ ] = (2π)2hδ(2h)(~q − ~q′) and the scaling property

δ(2h)(λ~q) = δ(~q)
|λ|2h , it can be seen that the ladder operators scale as

aλ−1~q = λha~q

a†
λ−1~q

= λha†~q. (6.6)

With these scaling relations, the form (6.3) scales as

O∆(λ−1~q) =
(
λ−1

)c−hO∆(~q). (6.7)

To obtain the scaling dimension for O∆(~x), let’s rescale (6.4)

O∆(λ~x) =

∫
λ−2h d2hq

(2π)2h
O∆(λ−1~q)ei

~q
λ
·λ~x

=

∫
λ−2h d2hq

(2π)2h
λh−cO∆(~q)ei~q·~x

= λ−(h+c)

∫
d2hq

(2π)2h
O∆(~q)ei~q·~x

O∆(λ~x) = λ−(h+c)O∆(~x). (6.8)

Thus indeed the operators of table 2 written in q-space correspond to operators with scaling

dimensions ∆ = h+ c in x-space.

6.2 Shadow transformation in momentum space

Using the expression for the intertwining operator in momentum space we will now obtain

the scaling dimension of the intertwined operator Õ∆̃ = GχO∆(~q) and check if this indeed

satisfies the requirement (6.1) for a shadow transformation.

Firstly, remember the subtlety in the definition of the intertwining operators, Gχ
and Gχ̃

Gχ : Cχ̃ → Cχ, for c < 0, (6.9)

Gχ̃ : Cχ → Cχ̃, for c > 0. (6.10)

Either Gχ or Gχ̃ is well defined for a given representation with weight c. The comple-

mentary series operators α(~q) with ∆α = h − ν and β∆(~q) with ∆β = h + ν where

ν ≡ |
√
h2 − m2

H2 | belong to Cχ and their intertwined versions α̃(~q), β̃(~q) with ∆̃α and

∆̃β respectively belong to Cχ̃. Since the operators α(~q) have c = −ν < 0, the well defined

intertwining operator for them is Gχ. That means the well defined transformation is

α(q) = Gχα̃(~q) with G+
χ={0,c}(q) =

(
q2

2

)c
=

(
q2

2

)−ν
. (6.11)
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On the other hand the operators β(~q) have c = ν > 0 and thus the well defined intertwining

operator for them is Gχ leading to the transformation

β̃(~q) = Gχ̃(q)β(~q) with G+
χ̃={0,c̃}(q) =

(
q2

2

)c̃=−c
=

(
q2

2

)−ν
. (6.12)

We will study these two transformations individually to first obtain Õ∆̃(~q) and then read

off the scaling dimension by scaling the position space operator

Õ∆̃(~x) =

∫
d2hq

(2π)2h
Õ∆̃(~q)ei~q·~x. (6.13)

For the operators α(~q) = q−ν
[
Aa~q +Ba†−~q

]
with ∆α = h− ν, the transformation

α(q) = Gχα̃(~q)

q−ν
[
Aa~q +Ba†−~q

]
=

(
q2

2

)−ν
α̃(~q) (6.14)

can be used to read off the corresponding operator in Cχ̃, which is

α̃(~q) =
(q

2

)ν [
Aa~q +Ba†−~q

]
. (6.15)

This operator scales as

α̃(λ−1~q) = λh−να̃(~q). (6.16)

In position space,

α̃(λ~x) = λ−(h+ν)α̃(~x). (6.17)

This implies that the scaling dimension for the intertwined operator α̃(~x) is ∆̃α = h+ ν.

The scaling dimension ∆α = h−ν of α(~x) and the scaling dimension after intertwining,

∆̃α of α̃(~x) = h+ν, satisfy the relation ∆+∆̃ = 2h. Therefore the operators α(~x) and α̃(~x)

related to each other by an intertwining operato are shadow transformations of each other.

For the operators β(~q) = qν
[
Aa~q +Ba†−~q

]
with ∆β = h+ν it is more straight forward

to obtain the intertwined operator

β̃(~q) = Gχ̃(q)β(~q) with G+
χ̃={0,ν̃}(q) =

(
q2

2

)−ν
β̃(~q) = (2q)−ν

[
Aa~q +Ba†−~q

]
, (6.18)

which rescales as β̃(λ−1~q) = λh+ν β̃(~q). In position space this scaling implies

β̃(λ~x) = λ−(h−ν)β̃(~x). (6.19)

Thus for the operator β(~x) with ∆β = h + ν, its intertwined version β̃(~x) has the scaling

dimension ∆̃β = h− ν. Again ∆β + ∆̃β = 2h and thus β and β̃ are shadow transforms of

each other. Hence the intertwining operation works as the shadow transformation.
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Category Boundary operators O∆ ∆

Re(ν) > 0

αI(~q) = − i
πΓ(ν)

(
a~q − a†−~q

) ( q
2

)−ν
, ∆I

α = h− ν

Complementary βI(~q) = 1
Γ(ν+1)

(
a~q + a†−~q

) ( q
2

)ν
, ∆I

β = h+ ν

m2

H2 < h2

Series ν = −2j+1
2 where j = 0, 1, . . .

αII(~q) = 1
Γ( 1−2j

2
)

(
a~q + a†−~q

) ( q
2

)− 2j+1
2 , ∆II

α = h− 2j+1
2

βII(~q) = − i
πΓ(−2j+1

2 )
(
a~q − a†−~q

) ( q
2

) 2j+1
2 , ∆II

β = h+ 2j+1
2

αII(~q) ∼ β̃I , αI(q) ∼ β̃II(q)
m2

H2 = h2 αν=0(q) = a~q + a†−~q ∆ν=0 = h

Principal ν = 0

Series m2

H2 > h2, α(~q) =
[
(cρ − dρ)a~q + (c∗ρ + d∗ρ)a

†
−~q

] ( q
2

)−iρ
, ∆− = h− iρ

ν = iρ β(~q) =
[
(cρ + dρ)a~q + (c∗ρ − d∗ρ)a

†
−~q

] ( q
2

)iρ
, ∆+ = h+ iρ

Table 2. Late time boundary operators. We have categorized the solutions among Complementary

Series into two branches, and these branches are related to each other by a shadow transformation,

denoted by a tilde. In the table ν2 = h2 − m2

H2 where by ν and ρ we denote the positive root.

The scaling weight for the operators on the de Sitter late time boundary are: for α, cα = −ν and

Re(cα) < 0 while for β, cβ = +ν and Re(cβ) > 0.

7 Conclusions and outlook

In this section we give a summary of our results and then point out possible considerations

which we leave for future work. We end with a discussion comparing the notion of unitarity

we have considered here for fields on de Sitter and the notion of (non)-unitarity in the

dS/CFT literature.

7.1 Summary of results

In this work we identified the late time behavior of scalar fields on de Sitter in arbitrary

dimensions in terms of the unitary irreducible representations of the de Sitter symmetry

group. One of the results in the representation theory of groups is that, symmetries are

represented either by unitary and linear operators [43] or by anti-unitary and anti-linear

operators [45]. Here, by studying the principal and complementary series representations

of the de Sitter group SO(2h + 1, 1), we have discussed that light and heavy scalar fields

at the late time boundary of de Sitter with Bunch-Davies initial conditions are all realized

by unitary representations. The boundary operators, identified throughout the text for

different mass ranges, are summarized in table 2.
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The operators in table 2 belong to the Hilbert space which is composed of the function

space Cχ, that is, the space of functions that obey the covariance condition (3.8), and is

equipped with the K-invariant scalar product, reviewed in section 3. Most of our efforts

were in investigating the properties of this scalar product throughout sections 4 and 5. The

subtle difference between the two categories was that the well defined scalar product was

straightforward for Principal Series representations but involved an intertwining operator

for Complementary Series representations.

As introduced in section 4.2, the finite scalar product for Complementary Series rep-

resentations is defined as, (α,G+
{`,c̃}α) where G+

{`,c̃} is called the intertwining operator. We

demonstrated its use in section 5.1. Moreover, the action of the intertwining operator was

recognized as a shadow transformation in section 6, by considering its effect on the scaling

dimension. For reference, conformally coupled scalars belong to this category with c = ±1
2 .

The scaling weight c carries the information about the coordinate momentum depen-

dence of the operator. Accordingly c determines the ~q-dependence of the intertwining

operator as well. For the case of c = 0 the inner product doesn’t involve any extra q-

dependence. Therefore no intertwining operators are necessary for this case, or in other

words the role of the intertwining operator is reduced to an overall constant, and hence

this operator belongs to the Principal Series representations.

7.2 Considerations for future work

The principal and complementary series representations we discussed here are constructed

with respect to the homogeneous space G/NAM . It is important to stress that the prin-

cipal and complementary series representations are not highest weight representations.14

It is possible to create other homogeneous spaces by taking the quotient with different

subgroups. In addition to the representations we have discussed, the group SO(2h + 1, 1)

contains a third class of irreducible unitary representations, called the discrete series rep-

resentations, which are constructed with respect to, for example, the homogeneous space

G/K [46]. The discrete series representations are an example of highest weight repre-

sentations. Another category of highest weight representations are the exceptional series

representations. We leave the study of these later two classes for a future work.

Based on our analysis, one would expect that massless scalars with c = ±h to be a part

of Complementary Series representations. However, the authors of [30] identify massless

scalars as part of the exceptional series and so we also leave the categorization of this case

for future work.

We note some possible generalizations of the work presented here. For instance, the

results here can be generalized to other spins by considering the appropriate spin dependent

14The subgroup K = SO(2h+1) is a compact Lie group and finite dimensional irreducible representations

of a compact lie group are completely characterized by their highest weight, `, which is the largest eigenvalue

of the Lie algebra element that generates rotations along the z-axis. Out of the irreducible representations

which are induced by the compact subgroup, the ones that have the highest weight ` = (0, . . . , 0, `) are

referred to as type I representations. Moreover, there is a connection between the representations of M =

SO(2h), which concern us more, and the type I representations of the compact subgroup K = SO(2h+ 1).

The connection is that type I representations of SO(2h+1) are only decomposed into type I representations

of SO(2h).
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coefficient K`s(c) and projection operator Π`s(q) defined by (4.28) in section 4.2. Another

possibility involves interactions more intricate than a simple mass term. Then the mode

functions would involve something other than the Hankel functions and in that case, one

would need to consider the late time limit of the corresponding function, leading to different

operators than the ones in table 2.

Recently, the representations of SO(2h+ 1, 1) have gained attention in the context of

the dS/CFT proposal. This proposal was initially introduced by studying the early time

boundary of de Sitter [47] and considerations of the construction of a quantum Hilbert

space for asymptotically de Sitter spacetimes [48]. Prior to the dS/CFT proposal, there

exist calculations of entropy for asymptotically dS3 spacetimes [49–51] which demonstrate

that the dS3 entropy corresponds to that of a CFT. These works also identify a correspond-

ing Virasoro algebra and specify its classical central charge by considering the asymptotic

algebra for diffeomorphism invariance in [50] and by making use of the Sugawara construc-

tion in [49, 51]. In all these works the key point relies on the fact that Einstein gravity

in three dimensions with a positive cosmological constant is equivalent to Chern-Simons

theory. Along this line, in [52] a Chern-Simons2+1/CFT1 correspondance is obtained by

showing that the Dirac algebra of the Noether charge for gauge invariance of Chern-Simons

theory corresponds to a Kac-Moody algebra and the Dirac algebra of the Noether charge

for diffeomorphism invariance of Chern-Simons theory corresponds to a Virasoro algebra

with central charge. Since then, efforts of describing more concrete realizations of the

dS/CFT [53–55] led to the recent work of [38], where Higher Spin Fields on de Sitter were

associated to a bosonic O(2N ) vector model with 2N fields Q, at the late time boundary

of de Sitter and the Hilbert Space and the partition function for correlators of this model

were constructed. The Higher Spin theory on de Sitter only accommodates conformally

coupled fields of section 2.2, among its scalar sector. From a low energy effective field

theory point of view, one should be able to consider all cases mentioned in section 2 as all

these fields are allowed by the symmetries of de Sitter. This raises the question: can there

be other realizations of the dS/CFT proposal, or is there some condition which forbids the

scalars in the other cases of section 2?

Shortly after the dS/CFT proposal, it was noticed that this formalism could be de-

veloped into a new way of calculating inflationary correlators, by including deformation

operators to the CFT [56–58]. We hope to address such issues in a future work.

7.3 Notions of unitarity on dS and in dS/CFT literature

The operators listed in table 2 are the boundary operators from a bulk perspective, as they

were obtained by considering the late time limit of solutions in de Sitter. The connection

between these boundary operators and the CFT operators is not that they are the same

but that they are expected to be related to each other in terms of their scaling dimensions

and correlation functions.

The boundary operators from the bulk de Sitter solutions have positive definite norm

and are therefore unitary as we have discussed. The unitarity of the CFT operators is a
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different matter altogether.15 Unitarity defined as states having a positive definite norm

applies both to Quantum Field Theory on de Sitter and to Conformal Field Theories. One

subtle difference is that in the case of a Conformal Field Theory the positive definite norm

restricts scaling dimensions to be real. Comparing dS/CFT with AdS/CFT, the boundary

in the case of AdS is at spatial infinity along one of the spatial directions, therefore it

is a Lorentzian surface and the corresponding CFT is Lorentzian. In the case of dS, the

boundary is reached through the late time limit, and thus, it is a Euclidean surface as well

as the corresponding CFT. While unitarity is a crucial property for Lorentzian CFT’s, it

is not a necessary condition for Euclidean CFT’s [59].

The earlier example of dS/CFT, the Euclidean Sp(N ) CFT initially proposed as the

dual to Vasiliev Higher Spin gravity on dS4 was noted to be non-unitary [53, 54]. An explicit

calculation in [54] shows that the CFT operators have negative norm. The more recent

bosonic O(2N ) vector model, referred to as the Q-model and proposed as a microscopic

description for Vasiliev gravity on de Sitter, is noted to have a Hilbert space of positive

definite operators [38]. The single trace primaries in that proposal correspond to the

shadows of the higher weight de Sitter boundary operators, β̃I where I here involves the

spin label as well. The authors point out, however, that it seems hard to reconstruct the

other boundary operators αI and that normalizable perturbative single particle states on

the bulk QFT do not correspond to normalizable states if they are to be interpreted as

states on the Q-model Hilbert Space for spin higher than zero.

A detailed study on the relation between the bulk correlation functions under the late

time limit to the CFT correlation functions have been presented in [57, 60] via calculating

the wavefunction in various cases. These discussions show that the late time limit of the

wavefunction can be taken as an approximation of the CFT partition function from which

the CFT correlators can be computed. Moreover both works show that the wavefunction of

de Sitter and Euclidean Anti de Sitter, and hence the correlation functions, are related to

each other by an analytic continuation. Here we studied the classification of the boundary

fields obtained from the bulk fields on de Sitter, on their own right. This can be seen

as a complementary approach to transferring results from Anti de Sitter to de Sitter via

analytic continuation. We hope this study will serve as a first step towards a group the-

oretical approach of fields of general spin on de Sitter which may eventually add to the

existing frameworks for studying perturbations during epochs of inflation or dark energy

domination.
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A Further properties of the group SO(2h+ 1, 1)

In section 3, following [29] we summarized the notation for group elements of SO(2h+1, 1),

and the properties of its irreducible representations. Here we list some further properties

of SO(2h + 1, 1), such as how the generators of its Lie algebra can be realized, common

decomposition of its group elements g in terms of the elements of the subgroups and the

irreducibility of its elementary representations. For further details and more properties we

refer the reader to [29].

A.1 The defining properties of group SO(N , 1)

As was mentioned in section 3, the group SO(N , 1), also denoted as SO(2h + 1, 1), is the

set of all linear transformations on the real N + 1-dimensional vector space, which leave

the quadratic form,

ξ2 = ξηξ = ξ1
2 + . . .+ ξN

2 − ξ0
2 where ηµν = diag(−1, 1, . . . , 1), (A.1)

invariant. Its elements are (N + 1)× (N + 1) matrices, g who satisfy the properties

gT ηg = η, det g = 1, g0
0 ≥ 1. (A.2)

The generators of the Lie algebra g of group G are (N + 1)× (N + 1) matrices which

satisfy

XT η + ηX = 0. (A.3)

In the basis where Xµν = −Xνµ with µ, ν = 0, 1, . . . ,N , they satisfy the commutation

relations

[Xµν , Xαβ ] = (ηµαXνβ + ηνβXµα)− (ηµβXνα + ηναXµβ) , (A.4)

and can be realized in matrix form via

(Xµν)αβ = ηµβδ
α
ν − ηνβδαµ . (A.5)

This form of the generators differs from the form of physical generators by a factor of i,

Jµν = iXµν .
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A.2 Killing vectors of dS4

Here h = 3/2 so that Greek indices take values in 0 . . . 3 and lower case indices in 1 . . . 3.

We start our calculation in planar coordinates with conformal time, where the metric takes

the form

ds2 =
1

H2η2

[
−dη2 + d~x2

]
. (A.6)

In these coordinates the nontrivial Christoffel symbols are Γηηη = Γηii = Γiiη = − 1
η .

Making use of the metric compatibility ∇µgνκ = 0, we can write the Killing equation

∇µξν +∇νξµ = 0 as

gνα∇µξα + gµα∇νξα = 0. (A.7)

The solution to this equation gives 10 Killing vectors, which is the number of S0(4, 1)

generators. These are

• One Killing vector generating dilatations parametrized by λ

(D)

ξ = λη∂η + λxi∂i. (A.8)

• Three Killing vectors generating translations parametrized by the vector ~a

(Trans)

ξ = ai∂i (A.9)

• Three Killing vectors generating Special Conformal Transformations parametrized by

the vector ~b

(SCT)

ξ = −2η
(
~x ·~b

)
∂η +

[
|~x|2bi − 2xi

(
~x ·~b

)
− η2bi

]
∂i. (A.10)

• Three Killing vectors associated with spatial rotations, parametrized by a 3 × 3 an-

tisymmetric tensor ω
(Rot)

ξ =
1

2

(
ωijx

j∂i − ωj ixj∂i
)
. (A.11)

Transforming to planar coordinates in terms of cosmological time via η → t = − ln(−Hη)
H

then

ds2 = −dt2 + e2Htd~x2 (A.12)

we find that the Killing vector associated with dilatation becomes

(D)

ξ̃ = − λ

HdS
∂t + λxi∂i; i = 1, 2, 3. (A.13)

Note that by equation (A.9) there are no Killing vectors that generate time translation,

hence time translations are not a symmetry of de Sitter.16 In terms of cosmic time however,

the dilatation symmetry, equation (A.13), contains something like time translation.

16For completeness, de Sitter in terms of static patch coordinates where, ds2 = −(1−H2r2)dτ2+ dr2

1−H2r2
+

r2dΩ2, does have a timelike Killing vector. In fact the static patch coordinates were invented in the pursuit

of finding a coordinate system for de Sitter which will have a timelike Killing vector. For example in terms

of Static Patch coordinates one can define energy eigenstates of the Hamiltonian, where as one cannot do

so in terms of planar coordinates. However, the static patch does not cover the entire de Sitter manifold

and as such the timelike Killing vector is not globally defined.
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Above we have written the Killing vectors in a way where the parameters associated

with the transformations they generate are explicit. The appropriately normalized gener-

ators are [18]

Dilatations: D = −η∂η − xi∂i (A.14a)

Translations: Ti = ∂i (A.14b)

SCT: Ci = 2xiη∂η +
[
2xjxi +

(
η2 − |~x|2

)
δji

]
∂j (A.14c)

Rotations: Xij = xi∂j − xj∂i. (A.14d)

Normalized as such, these generators satisfy the commutation relations (A.4).

A.3 Decomposition of the group elements g in terms of the elements of the

subgroups

The group G acts in a natural way, that is by left translation, on the homogeneous space

G/NAM ∼ K/M ∼ S2h. However, it is necessary to be able to note how the group G acts

on Euclidean space R2h with elements ~x ∈ R2h where the fields live. The vector space R2h

can be identified with the right coset ñNMA.17 Thus there is a unique correspondence

between the elements x and the elements ñ,

x = ñNMA (A.15)

which is also denoted by ñx.

The connection of the group elements g to the Euclidean space element x is explicit in

the so called Bruhat decomposition

Bruhat decomposition: g = ñnam. (A.16)

Notice that this decomposition explicitly carries information about SCT, and the Euclidean

Lorentz group in addition to translations and dilatations. Another decomposition, the

Iwasawa decomposition, on the other hand brings forth the compact nature of the group

elements

Iwasawa decomposition: g = kna = ñak. (A.17)

B The normalized intertwining operator Gχ

Here we will follow the derivation of [29] for obtaining the intertwining operator Gχ and

highlight some of the in between steps. Remember that this operator is defined as

Gχ : Cχ̃ → Cχ, and Gχ = γχAχI(Is). (B.1)

17To clarify the notation, we reserved capital letters for the groups and lowercase letters for the group

elements. When the subgroup NAM is factored out of G what practically remains is the subgroup of

translations Ñ . However you can define an equivalence class for the elements ñ ∈ Ñ and it is this equivalence

class that the notation ñNMA aims to capture.
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Here we consider the equivalence map such that l̃ = l. By this definition,[
Gχf̃

]
(ñ~x1) = γχAχ

[
I(Is)̃f

]
(ñ~x1). (B.2)

The action of the equivalence map I(Is) on functions is[
I(Is)̃f

]
(ñ~x1) = D`(Is)̃f(ñ~x1), (B.3)

which leads to [
Gχf̃

]
(ñ~x1) = γχD

`(Is)
[
Aχf̃

]
(ñ~x1). (B.4)

As was noted in equation (4.15)[
Aχf̃

]
(g) =

∫
Ñ
f̃(gwñ~x)d2hx. (B.5)

For g = ñ~x1 this means [
Gχf̃

]
(ñ~x1) = γχD

`(Is)

∫
Ñ
f̃(ñ~x1wñ~x)d2hx. (B.6)

Now we make use of the identity

wñ~x = ñ~x′nIs~xa(~x,w)m(~x,w), (B.7)

with ~x′ = IsR~x where R is the conformal inversion. This leads to[
Gχf̃

]
(ñ~x1) = γχ

∫
Ñ
D`(Is)̃f(ñ~x1 ñ~x′nIs~xam)d2hx. (B.8)

The elements of the translation group obey

ñ~x1 ñ~x′ = ñ~x1+~x′ , (B.9)

and for f̃ ∈ Cχ̃ the covariance condition reads

f̃(ñ~x1+~x′nIs~xam) = |a|h−cD`(m)−1f̃(ñ~x1+~x′). (B.10)

With the identity f̃(ñ~x) = f̃(ñ~x) and |a| = 1
x2

we arrive at[
Gχf̃

]
(~x1) = γχ

∫
|a|h−cD`(Is)D

`(m)−1f̃(~x1 + ~x′)d2hx (B.11)

= γχ

∫
D`(Ism

−1)f̃(~x1 + ~x′)(x2)c−hd2hx. (B.12)

Remember that so far ~x′ = IsR~x. It is convenient to make a change of coordinates such that

~x→ ~x′ : ~x = IsR~x
′ and x2 =

1

x′2
, d2hx = (x′2)−2hd2hx′ (B.13)

in order to put equation (B.12) in a more operational format, which reads[
Gχf̃

]
(~x1) = γχ

∫
D`(Ism

−1)f̃(~x1 + ~x′)(x′2)−(h+c)d2hx′. (B.14)
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Further more, to handle D`(Ism
−1) make the following transformation

~x′ → ~x2 : ~x′ = ~x2 − ~x1 (B.15)

which gives [
Gχf̃

]
(~x1) = γχ

∫
D`(Ism

−1)

|~x2 − ~x1|2(h+c)
f̃(~x2)d2hx2. (B.16)

By the following identities

m−1 = r(~x)Is, (B.17a)

Isr(IsR~x
′)Is = r(~x′) = r(~x2 − ~x1) (B.17b)

we have that

D`(Ism
−1) = D`(Isr(~x)Is). (B.18)

Remember that ~x = IsR~x
′ and so

D`(Ism
−1) = D`(Isr(~x)Is) (B.19)

= D`(Isr(IsR~x
′)Is) = D`(r(~x′)) = D`(r(~x2 − ~x1)). (B.20)

Eventually equation (B.16) gives[
Gχf̃

]
(~x1) = γχ

∫
D`(r(~x2 − ~x1))

|~x2 − ~x1|2(h+c)
f̃(~x2)d2hx2 (B.21)

as was promised in equation (4.24).

C An exemplary shadow transformation

In section 2.3 we studied the corresponding late time operators in two branches (2.31)

and (2.33), because our naming of the operators depended on whether ν is positive or

negative. The first branch corresponded to Re(ν) > 0 which includes ν = 2j+1
2 , and

the second branch was specified for ν = −2j+1
2 for j = 0, 1, 2 . . . Since both branches

include operators with weight ∆ = h ± 2j+1
2 , there should be some relation between the

two branches. Here we demonstrate that the two operators are related to each other via

shadow transformations.

The operators of our focus for ν = ±2j+1
2 are as follows

Branch 1

αI(~q) =− i
π

(q
2

)− 2j+1
2

Γ

(
2j+1

2

)(
a~q−a†−~q

)
, ∆I

α =h− 2j+1

2
, cIα =−2j+1

2
(C.1a)

βI(~q) =
(q

2

) 2j+1
2 1

Γ(2j+3
2 )

(
a~q+a†~−q

)
, ∆I

β =h+
2j+1

2
, cIβ =

2j+1

2
(C.1b)

and
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Branch 2

αII(~q) =
(q

2

)− 2j+1
2 1

Γ(1−2j
2 )

(
a~q+a†−~q

)
, ∆II

α =h− 2j+1

2
, cIIα =−2j+1

2
(C.2a)

βII(~q) =− i
π

(q
2

) 2j+1
2

Γ

(
−2j+1

2

)(
a~q−a†−~q

)
∆II
β =h+

2j+1

2
, cIIβ =

2j+1

2
. (C.2b)

The operator βII has a positive weight cβII = 2j+1
2 . This means the well defined

intertwining operator that can act on βII is G+
[0,c̃

βII
](q) =

(
q2

2

)− 2j+1
2

. Acting on βII with

G+
[0,c̃

βII
](q) would give the shadow operator β̃II . When worked out as follows

β̃II(~q) = G+
[0,c̃

βII
](q)β

II(~q)

= − i
π
q−

2j+1
2 Γ

(
−2j + 1

2

)(
a~q − a†−~q

)
=

(
1

2

) 2j+1
2 Γ(−2j+1

2 )

Γ(2j+1
2 )

αI(~q) (C.3)

this shadow operator turns out to be proportional to the operator αI(q) of the first branch.

Similarly the operator βI(~q) has the positive weight cβI = 2j+1
2 , and acting on this

operator with the well defined intertwining operator G+
[0,c̃

βI
](q) =

(
q2

2

)− 2j+1
2

gives the

shadow operator

β̃I(~q) = G+
[0,c̃

βI
](q)β

I(~q)

=

(
1

2

) 2j+1
2 Γ(1−2j

2 )

Γ(2j+3
2 )

αII(~q), (C.4)

which is proportional to the second branch operator αII .

Thus we can conlude that the branch one and branch two solutions addressed in

section 2.3 are related to each other via the shadow transformation.
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