Abstract
We consider the action of the q-deformed Poincaré superalgebra on the massless non-relativistic R-matrix in ordinary (undeformed) integrable AdS2 × S2 × T6 type IIB superstring theory. The boost generator acts non-trivially on the R-matrix, confirming the existence of a non-relativistic rapidity γ with respect to which the R-matrix must be of difference form. We conjecture that from a massless AdS/CFT integrable relativistic R-matrix one can obtain the parental massless non-relativistic R-matrix simply by replacing the relativistic rapidity with γ. We check our conjecture in ordinary (undeformed) AdSn × Sn × T10−2n, n = 2,3. In the case n = 3, we check that the matrix part and the dressing factor — up to numerical accuracy for real momenta — obey our prescription. In the n = 2 case, we check the matrix part and propose the non-relativistic dressing factor. We then start a programme of classifying R-matrices in terms of connections on fibre bundles. The conditions obtained for the connection are tested on a set of known integrable R-matrices.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
N. Beisert et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].
G. Arutyunov and S. Frolov, Foundations of the AdS 5 × S 5 superstring. Part I, J. Phys. A 42 (2009) 254003 [arXiv:0901.4937] [INSPIRE].
A. Babichenko, B. Stefanski, Jr. and K. Zarembo, Integrability and the AdS 3 /CF T 2 correspondence, JHEP 03 (2010) 058 [arXiv:0912.1723] [INSPIRE].
A. Sfondrini, Towards integrability for AdS3/CF T 2, J. Phys. A 48 (2015) 023001 [arXiv:1406.2971] [INSPIRE].
R. Borsato, Integrable strings for AdS/CFT, Ph.D. thesis, Imperial Coll., London, 2015. arXiv:1605.03173 [INSPIRE].
P. Sundin and L. Wulff, Classical integrability and quantum aspects of the AdS 3 × S 3 × S 3 × S 1 superstring, JHEP 10 (2012) 109 [arXiv:1207.5531] [INSPIRE].
O. Ohlsson Sax and B. Stefanski Jr., Integrability, spin-chains and the AdS3/CFT2 correspondence, JHEP 08 (2011) 029 [arXiv:1106.2558] [INSPIRE].
R. Borsato, O. Ohlsson Sax and A. Sfondrini, A dynamic SU(1|1)2 S-matrix for AdS 3 /CF T 2, JHEP 04 (2013) 113 [arXiv:1211.5119] [INSPIRE].
R. Borsato, O. Ohlsson Sax and A. Sfondrini, All-loop Bethe ansatz equations for AdS 3 /CF T 2, JHEP 04 (2013) 116 [arXiv:1212.0505] [INSPIRE].
R. Borsato et al., The all-loop integrable spin-chain for strings on AdS 3 × S 3 × T 4 : the massive sector, JHEP 08 (2013) 043 [arXiv:1303.5995] [INSPIRE].
R. Borsato et al., Dressing phases of AdS 3 /CF T 2, Phys. Rev. D 88 (2013) 066004 [arXiv:1306.2512] [INSPIRE].
N. Rughoonauth, P. Sundin and L. Wulff, Near BMN dynamics of the AdS 3 × S 3 × S 3 × S 1 superstring, JHEP 07 (2012) 159 [arXiv:1204.4742] [INSPIRE].
M.C. Abbott, Comment on strings in AdS 3 × S 3 × S 3 × S 1 at one loop, JHEP 02 (2013) 102 [arXiv:1211.5587] [INSPIRE].
M. Beccaria, F. Levkovich-Maslyuk, G. Macorini and A.A. Tseytlin, Quantum corrections to spinning superstrings in AdS 3 × S 3 × M 4 : determining the dressing phase, JHEP 04 (2013) 006 [arXiv:1211.6090] [INSPIRE].
M. Beccaria and G. Macorini, Quantum corrections to short folded superstring in AdS 3 × S 3 × M 4, JHEP 03 (2013) 040 [arXiv:1212.5672] [INSPIRE].
P. Sundin and L. Wulff, Worldsheet scattering in AdS 3 /CF T 2, JHEP 07 (2013) 007 [arXiv:1302.5349] [INSPIRE].
L. Bianchi, V. Forini and B. Hoare, Two-dimensional S-matrices from unitarity cuts, JHEP 07 (2013) 088 [arXiv:1304.1798] [INSPIRE].
O.T. Engelund, R.W. McKeown and R. Roiban, Generalized unitarity and the worldsheet S matrix in AdS n × S n × M 10−2n, JHEP 08 (2013) 023 [arXiv:1304.4281] [INSPIRE].
L. Bianchi and B. Hoare, AdS 3 × S 3 × M 4 string S-matrices from unitarity cuts, JHEP 08 (2014) 097 [arXiv:1405.7947] [INSPIRE].
O. Ohlsson Sax, B. Stefanski Jr. and A. Torrielli, On the massless modes of the AdS 3 /CF T 2 integrable systems, JHEP 03 (2013) 109 [arXiv:1211.1952] [INSPIRE].
T. Lloyd and B. Stefanski, Jr., AdS 3 /CF T 2 , finite-gap equations and massless modes, JHEP 04 (2014) 179 [arXiv:1312.3268] [INSPIRE].
R. Borsato, O. Ohlsson Sax, A. Sfondrini and B. Stefanski, Towards the All-Loop Worldsheet S Matrix for AdS 3 × S 3 × T 4, Phys. Rev. Lett. 113 (2014) 131601 [arXiv:1403.4543] [INSPIRE].
R. Borsato, O. Ohlsson Sax, A. Sfondrini and B. Stefanski, The complete AdS 3 × S 3 × T 4 worldsheet S matrix, JHEP 10 (2014) 066 [arXiv:1406.0453] [INSPIRE].
T. Lloyd, O. Ohlsson Sax, A. Sfondrini and B. Stefanski Jr., The complete worldsheet S matrix of superstrings on AdS 3 × S 3 × T 4 with mixed three-form flux, Nucl. Phys. B 891 (2015) 570 [arXiv:1410.0866] [INSPIRE].
R. Borsato, O. Ohlsson Sax, A. Sfondrini and B. Stefanski, The AdS 3 × S 3 × S 3 × S 1 worldsheet S matrix, J. Phys. A 48 (2015) 415401 [arXiv:1506.00218] [INSPIRE].
M.C. Abbott and I. Aniceto, Macroscopic (and microscopic) massless modes, Nucl. Phys. B 894 (2015) 75 [arXiv:1412.6380] [INSPIRE].
O. Ohlsson Sax, A. Sfondrini and B. Stefanski, Integrability and the conformal field theory of the Higgs branch, JHEP 06 (2015) 103 [arXiv:1411.3676] [INSPIRE].
R. Borsato, O. Ohlsson Sax, A. Sfondrini and B. Stefanski, On the spectrum of AdS 3 × S 3 × T 4 strings with Ramond-Ramond flux, J. Phys. A 49 (2016) 41LT03 [arXiv:1605.00518] [INSPIRE].
R. Borsato et al., On the dressing factors, Bethe equations and Yangian symmetry of strings on AdS 3 × S 3 × T 4, J. Phys. A 50 (2017) 024004 [arXiv:1607.00914] [INSPIRE].
A. Fontanella, O. Ohlsson Sax, B. Stefanski and A. Torrielli, The effectiveness of relativistic invariance in AdS 3, arXiv:1905.00757 [INSPIRE].
P. Sundin and L. Wulff, The complete one-loop BMN S-matrix in AdS 3 × S 3 × T 4, JHEP 06 (2016) 062 [arXiv:1605.01632] [INSPIRE].
L. Eberhardt and M.R. Gaberdiel, String theory on AdS 3 and the symmetric orbifold of Liouville theory, arXiv:1903.00421 [INSPIRE].
M. Baggio et al., Protected string spectrum in AdS 3 /CF T 2 from worldsheet integrability, JHEP 04 (2017) 091 [arXiv:1701.03501] [INSPIRE].
D. Tong, The holographic dual of AdS 3 × S 3 × S 3 × S 1, JHEP 04 (2014) 193 [arXiv:1402.5135] [INSPIRE].
L. Eberhardt, M.R. Gaberdiel, R. Gopakumar and W. Li, BPS spectrum on AdS 3 × S 3 × S 3 × S 1, JHEP 03 (2017) 124 [arXiv:1701.03552] [INSPIRE].
M.R. Gaberdiel, R. Gopakumar and C. Hull, Stringy AdS 3 from the worldsheet, JHEP 07 (2017) 090 [arXiv:1704.08665] [INSPIRE].
L. Eberhardt, M.R. Gaberdiel and W. Li, A holographic dual for string theory on AdS 3 × S 3 × S 3 × S 1, JHEP 08 (2017) 111 [arXiv:1707.02705] [INSPIRE].
O. Ohlsson Sax and B. Stefanski, Closed strings and moduli in AdS 3 /CF T 2, JHEP 05 (2018) 101 [arXiv:1804.02023] [INSPIRE].
A. Dei, M.R. Gaberdiel and A. Sfondrini, The plane-wave limit of AdS 3 × S 3 × S 3 × S 1, JHEP 08 (2018) 097 [arXiv:1805.09154] [INSPIRE].
A. Dei and A. Sfondrini, Integrable spin chain for stringy Wess-Zumino-Witten models, JHEP 07 (2018) 109 [arXiv:1806.00422] [INSPIRE].
L. Eberhardt, M.R. Gaberdiel and R. Gopakumar, The worldsheet dual of the symmetric product CFT, JHEP 04 (2019) 103 [arXiv:1812.01007] [INSPIRE].
A. Dei and A. Sfondrini, Integrable S matrix, mirror TBA and spectrum for the stringy AdS 3 × S 3 × S 3 × S 1 WZW model, JHEP 02 (2019) 072 [arXiv:1812.08195] [INSPIRE].
M.C. Abbott, The AdS 3 × S 3 × S 3 × S 1 Hernández-López phases: a semiclassical derivation, J. Phys. A 46 (2013) 445401 [arXiv:1306.5106] [INSPIRE].
P. Sundin and L. Wulff, The low energy limit of the AdS 3 × S 3 × M 4 spinning string, JHEP 10 (2013) 111 [arXiv:1306.6918] [INSPIRE].
A. Prinsloo, D1 and D5-brane giant gravitons on AdS 3 × S 3 × S 3 × S 1, JHEP 12 (2014) 094 [arXiv:1406.6134] [INSPIRE].
A. Prinsloo, V. Regelskis and A. Torrielli, Integrable open spin-chains in AdS 3 /CF T 2 correspondences, Phys. Rev. D 92 (2015) 106006 [arXiv:1505.06767] [INSPIRE].
M.C. Abbott et al., T-duality of Green-Schwarz superstrings on AdS d × S d × M 10−2d, JHEP 12 (2015) 104 [arXiv:1509.07678] [INSPIRE].
M.C. Abbott, J. Tarrant and J. Murugan, Fermionic T-duality of AdS n × S n(×S n) × T m using IIA supergravity, Class. Quant. Grav. 33 (2016) 075008 [arXiv:1509.07872] [INSPIRE].
J.R. David and B. Sahoo, Giant magnons in the D1-D5 system, JHEP 07 (2008) 033 [arXiv:0804.3267] [INSPIRE].
J.R. David and B. Sahoo, S-matrix for magnons in the D1-D5 system, JHEP 10 (2010) 112 [arXiv:1005.0501] [INSPIRE].
C. Ahn and D. Bombardelli, Exact S-matrices for AdS 3 /CF T 2, Int. J. Mod. Phys. A 28 (2013) 1350168 [arXiv:1211.4512] [INSPIRE].
P. Sundin, Worldsheet two- and four-point functions at one loop in AdS 3 /CF T 2, Phys. Lett. B 733 (2014) 134 [arXiv:1403.1449] [INSPIRE].
R. Roiban, P. Sundin, A. Tseytlin and L. Wulff, The one-loop worldsheet S-matrix for the AdS n × S n × T 10−2n superstring, JHEP 08 (2014) 160 [arXiv:1407.7883] [INSPIRE].
M. Heinze, G. Jorjadze and L. Megrelidze, Isometry group orbit quantization of spinning strings in AdS 3 × S 3, J. Phys. A 48 (2015) 125401 [arXiv:1410.3428] [INSPIRE].
M.C. Abbott and I. Aniceto, An improved AFS phase for AdS 3 string integrability, Phys. Lett. B 743 (2015) 61 [arXiv:1412.6863] [INSPIRE].
L. Wulff, On integrability of strings on symmetric spaces, JHEP 09 (2015) 115 [arXiv:1505.03525] [INSPIRE].
P. Sundin and L. Wulff, The AdS n × S n × T 10−2n BMN string at two loops, JHEP 11 (2015) 154 [arXiv:1508.04313] [INSPIRE].
A. Pittelli, A. Torrielli and M. Wolf, Secret symmetries of type IIB superstring theory on AdS 3 × S 3 × M 4, J. Phys. A 47 (2014) 455402 [arXiv:1406.2840] [INSPIRE].
V. Regelskis, Yangian of AdS 3 /CF T 2 and its deformation, J. Geom. Phys. 106 (2016) 213 [arXiv:1503.03799] [INSPIRE].
B. Hoare, N. Levine and A.A. Tseytlin, On the massless tree-level S-matrix in 2d σ-models, J. Phys. A 52 (2019) 144005 [arXiv:1812.02549] [INSPIRE].
A. Pittelli, Yangian symmetry of string theory on AdS 3 × S 3 × S 3 × S 1 with mixed 3-form flux, Nucl. Phys. B 935 (2018) 271 [arXiv:1711.02468] [INSPIRE].
D. Bombardelli, B. Stefanski and A. Torrielli, The low-energy limit of AdS 3 /CF T 2 and its TBA, JHEP 10 (2018) 177 [arXiv:1807.07775] [INSPIRE].
C. Gomez and R. Hernandez, Quantum deformed magnon kinematics, JHEP 03 (2007) 108 [hep-th/0701200] [INSPIRE].
C.A.S. Young, q-deformed supersymmetry and dynamic magnon representations, J. Phys. A 40 (2007) 9165 [arXiv:0704.2069] [INSPIRE].
A. Pachol and S.J. van Tongeren, Quantum deformations of the flat space superstring, Phys. Rev. D 93 (2016) 026008 [arXiv:1510.02389] [INSPIRE].
I. Kawaguchi and K. Yoshida, Classical integrability of Schrödinger σ-models and q-deformed Poincaré symmetry, JHEP 11 (2011) 094 [arXiv:1109.0872] [INSPIRE].
I. Kawaguchi and K. Yoshida, Exotic symmetry and monodromy equivalence in Schrödinger σ-models, JHEP 02 (2013) 024 [arXiv:1209.4147] [INSPIRE].
I. Kawaguchi, T. Matsumoto and K. Yoshida, Schroedinger σ-models and Jordanian twists, JHEP 08 (2013) 013 [arXiv:1305.6556] [INSPIRE].
J. Stromwall and A. Torrielli, AdS 3 /CF T 2 and q-Poincaré superalgebras, J. Phys. A 49 (2016) 435402 [arXiv:1606.02217] [INSPIRE].
A. Fontanella and A. Torrielli, Massless sector of AdS 3 superstrings: a geometric interpretation, Phys. Rev. D 94 (2016) 066008 [arXiv:1608.01631] [INSPIRE].
A. Ballesteros, E. Celeghini and F.J. Herranz, Quantum (1 + 1) extended Galilei algebras: from Lie bialgebras to quantum R-matrices and integrable systems, J. Phys. A 33 (2000) 3431 [math/9906094] [INSPIRE].
R. Borsato and A. Torrielli, q-Poincaré supersymmetry in AdS 5 /CF T 4, Nucl. Phys. B 928 (2018) 321 [arXiv:1706.10265] [INSPIRE].
R. Borsato, J. Strömwall and A. Torrielli, q-Poincaré invariance of the AdS 3 /CF T 2 R-matrix, Phys. Rev. D 97 (2018) 066001 [arXiv:1711.02446] [INSPIRE].
A. Fontanella, Black horizons and integrability in string theory, arXiv:1810.05434 [INSPIRE].
I.R. Klebanov and A.A. Tseytlin, Intersecting M-branes as four-dimensional black holes, Nucl. Phys. B 475 (1996) 179 [hep-th/9604166] [INSPIRE].
A.A. Tseytlin, Harmonic superpositions of M-branes, Nucl. Phys. B 475 (1996) 149 [hep-th/9604035] [INSPIRE].
M.J. Duff, H. Lü and C.N. Pope, AdS 5 × S 5 untwisted, Nucl. Phys. B 532 (1998) 181 [hep-th/9803061] [INSPIRE].
H.J. Boonstra, B. Peeters and K. Skenderis, Brane intersections, anti-de Sitter space-times and dual superconformal theories, Nucl. Phys. B 533 (1998) 127 [hep-th/9803231] [INSPIRE].
J. Lee and S. Lee, Mass spectrum of D = 11 supergravity on AdS 2 × S 2 × T 7, Nucl. Phys. B 563 (1999) 125 [hep-th/9906105] [INSPIRE].
A. Strominger, AdS 2 quantum gravity and string theory, JHEP 01 (1999) 007 [hep-th/9809027] [INSPIRE].
G.W. Gibbons and P.K. Townsend, Black holes and Calogero models, Phys. Lett. B 454 (1999) 187 [hep-th/9812034] [INSPIRE].
J.M. Maldacena, J. Michelson and A. Strominger, Anti-de Sitter fragmentation, JHEP 02 (1999) 011 [hep-th/9812073] [INSPIRE].
C. Chamon, R. Jackiw, S.-Y. Pi and L. Santos, Conformal quantum mechanics as the CF T 1 dual to AdS 2, Phys. Lett. B 701 (2011) 503 [arXiv:1106.0726] [INSPIRE].
O. Lunin, Bubbling geometries for AdS 2 × S 2, JHEP 10 (2015) 167 [arXiv:1507.06670] [INSPIRE].
M. Cadoni, P. Carta, D. Klemm and S. Mignemi, AdS 2 gravity as conformally invariant mechanical system, Phys. Rev. D 63 (2001) 125021 [hep-th/0009185] [INSPIRE].
A. Strominger, A matrix model for AdS 2, JHEP 03 (2004) 066 [hep-th/0312194] [INSPIRE].
H.L. Verlinde, Superstrings on AdS 2 and superconformal matrix quantum mechanics, hep-th/0403024 [INSPIRE].
A. Castro, D. Grumiller, F. Larsen and R. McNees, Holographic description of AdS 2 black holes, JHEP 11 (2008) 052 [arXiv:0809.4264] [INSPIRE].
D. Ridout and J. Teschner, Integrability of a family of quantum field theories related to σ-models, Nucl. Phys. B 853 (2011) 327 [arXiv:1102.5716] [INSPIRE].
A. Dabholkar, J. Gomes and S. Murthy, Quantum black holes, localization and the topological string, JHEP 06 (2011) 019 [arXiv:1012.0265] [INSPIRE].
A. Almheiri and J. Polchinski, Models of AdS 2 backreaction and holography, JHEP 11 (2015) 014 [arXiv:1402.6334] [INSPIRE].
M. Heinze, B. Hoare, G. Jorjadze and L. Megrelidze, Orbit method quantization of the AdS 2 superparticle, J. Phys. A 48 (2015) 315403 [arXiv:1504.04175] [INSPIRE].
O. Lechtenfeld and S. Nampuri, A Calogero formulation for four-dimensional black-hole microstates, Phys. Lett. B 753 (2016) 263 [arXiv:1509.03256] [INSPIRE].
R. Borsato, A.A. Tseytlin and L. Wulff, Supergravity background of λ-deformed model for AdS 2 × S 2 supercoset, Nucl. Phys. B 905 (2016) 264 [arXiv:1601.08192] [INSPIRE].
F. Benini, K. Hristov and A. Zaffaroni, Black hole microstates in AdS 4 from supersymmetric localization, JHEP 05 (2016) 054 [arXiv:1511.04085] [INSPIRE].
M. Cvetič and I. Papadimitriou, AdS 2 holographic dictionary, JHEP 12 (2016) 008 [Erratum ibid. 01 (2017) 120] [arXiv:1608.07018] [INSPIRE].
Q. Li, Minisuperspace quantization of bubbling AdS 2 × S 2 geometries, Phys. Rev. D 95 (2017) 026014 [arXiv:1612.03113] [INSPIRE].
M. Mezei, S.S. Pufu and Y. Wang, A 2d/1d holographic duality, arXiv:1703.08749 [INSPIRE].
S. Giombi, R. Roiban and A.A. Tseytlin, Half-BPS Wilson loop and AdS 2 /CF T 1, Nucl. Phys. B 922 (2017) 499 [arXiv:1706.00756] [INSPIRE].
R.R. Metsaev and A.A. Tseytlin, Type IIB superstring action in AdS 5 × S 5 background, Nucl. Phys. B 533 (1998) 109 [hep-th/9805028] [INSPIRE].
J.-G. Zhou, Super 0-brane and GS superstring actions on AdS 2 × S 2, Nucl. Phys. B 559 (1999) 92 [hep-th/9906013] [INSPIRE].
N. Berkovits et al., Superstring theory on AdS 2 × S 2 as a coset supermanifold, Nucl. Phys. B 567 (2000) 61 [hep-th/9907200] [INSPIRE].
A.N. Kvinikhidze and B. Blankleider, Equivalence of light front and conventional thermal field theory, Phys. Rev. D 69 (2004) 125005 [hep-th/0305115] [INSPIRE].
D. Sorokin, A. Tseytlin, L. Wulff and K. Zarembo, Superstrings in AdS 2 × S 2 × T 6, J. Phys. A 44 (2011) 275401 [arXiv:1104.1793] [INSPIRE].
A. Cagnazzo, D. Sorokin and L. Wulff, More on integrable structures of superstrings in AdS 4 × CP 3 and AdS 2 × S 2 × T 6 superbackgrounds, JHEP 01 (2012) 004 [arXiv:1111.4197] [INSPIRE].
B. Hoare, A. Pittelli and A. Torrielli, Integrable S-matrices, massive and massless modes and the AdS 2 × S 2 superstring, JHEP 11 (2014) 051 [arXiv:1407.0303] [INSPIRE].
D.E. Berenstein, J.M. Maldacena and H.S. Nastase, Strings in flat space and pp waves from N = 4 super-Yang-Mills, JHEP 04(2002) 013 [hep-th/0202021] [INSPIRE].
B. Hoare and A.A. Tseytlin, Towards the quantum S-matrix of the Pohlmeyer reduced version of AdS 5 × S 5 superstring theory, Nucl. Phys. B 851 (2011) 161 [arXiv:1104.2423] [INSPIRE].
J. Murugan, P. Sundin and L. Wulff, Classical and quantum integrability in AdS 2 /CF T 1, JHEP 01 (2013) 047 [arXiv:1209.6062] [INSPIRE].
M.C. Abbott, J. Murugan, P. Sundin and L. Wulff, Scattering in AdS 2 /CF T 1 and the BES Phase, JHEP 10 (2013) 066 [arXiv:1308.1370] [INSPIRE].
N. Beisert, The SU(2|2) dynamic S-matrix, Adv. Theor. Math. Phys. 12 (2008) 945 [hep-th/0511082] [INSPIRE].
R.A. Janik, The AdS 5 × S 5 superstring worldsheet S-matrix and crossing symmetry, Phys. Rev. D 73 (2006) 086006 [hep-th/0603038] [INSPIRE].
C. Gomez and R. Hernandez, The Magnon kinematics of the AdS/CFT correspondence, JHEP 11 (2006) 021 [hep-th/0608029] [INSPIRE].
J. Plefka, F. Spill and A. Torrielli, On the Hopf algebra structure of the AdS/CF T S-matrix, Phys. Rev. D 74 (2006) 066008 [hep-th/0608038] [INSPIRE].
G. Arutyunov, S. Frolov and M. Zamaklar, The Zamolodchikov-Faddeev algebra for AdS 5 × S 5 superstring, JHEP 04 (2007) 002 [hep-th/0612229] [INSPIRE].
A.B. Zamolodchikov and A.B. Zamolodchikov, Massless factorized scattering and σ-models with topological terms, Nucl. Phys. B 379 (1992) 602 [INSPIRE].
P. Fendley, H. Saleur and A.B. Zamolodchikov, Massless flows, 2. The exact S matrix approach, Int. J. Mod. Phys. A 8 (1993) 5751 [hep-th/9304051] [INSPIRE].
B. Hoare, A. Pittelli and A. Torrielli, S-matrix algebra of the AdS 2 × S 2 superstring, Phys. Rev. D 93 (2016) 066006 [arXiv:1509.07587] [INSPIRE].
M.C. Abbott and I. Aniceto, Massless Lüscher terms and the limitations of the AdS 3 asymptotic Bethe ansatz, Phys. Rev. D 93 (2016) 106006 [arXiv:1512.08761] [INSPIRE].
A. Fontanella and A. Torrielli, Massless AdS 2 scattering and Bethe ansatz, JHEP 09 (2017) 075 [arXiv:1706.02634] [INSPIRE].
P. Fendley, A second supersymmetric S matrix for the perturbed tricritical Ising model, Phys. Lett. B 250 (1990) 96 [INSPIRE].
R.J. Baxter, Partition function of the eight vertex lattice model, Annals Phys. 70 (1972) 193 [INSPIRE].
R.J. Baxter, One-dimensional anisotropic Heisenberg chain, Annals Phys. 70 (1972) 323 [INSPIRE].
K. Schoutens, Supersymmetry and factorizable scattering, Nucl. Phys. B 344 (1990) 665 [INSPIRE].
M. Moriconi and K. Schoutens, Thermodynamic Bethe ansatz for N = 1 supersymmetric theories, Nucl. Phys. B 464 (1996) 472 [hep-th/9511008] [INSPIRE].
F. Levkovich-Maslyuk, The Bethe ansatz, J. Phys. A 49 (2016) 323004 [arXiv:1606.02950] [INSPIRE].
L.A. Takhtajan and L.D. Faddeev, The quantum method of the inverse problem and the Heisenberg XYZ model, Russ. Math. Surveys 34 (1979) 11 [Usp. Mat. Nauk 34 (1979) 13] [INSPIRE].
D. Fioravanti and M. Rossi, From the braided to the usual Yang-Baxter relation, J. Phys. A 34 (2001) L567 [hep-th/0107050] [INSPIRE].
J. Cao, W.-L. Yang, K. Shi and Y. Wang, Off-diagonal Bethe ansatz solution of the XXX spin-chain with arbitrary boundary conditions, Nucl. Phys. B 875 (2013) 152 [arXiv:1306.1742] [INSPIRE].
S. Belliard and N. Crampé, Heisenberg XXX model with general boundaries: eigenvectors from algebraic Bethe ansatz, SIGMA 9 (2013) 072 [arXiv:1309.6165] [INSPIRE].
X. Zhang et al., Bethe ansatz for an AdS/CF T open spin chain with non-diagonal boundaries, JHEP 10 (2015) 133 [arXiv:1507.08866] [INSPIRE].
Y. Wang, W. L. Yang, J. Cao and K. Shi, Off-diagonal Bethe ansatz for exactly solvable models, Springer, Germany (2015).
M. Guica, F. Levkovich-Maslyuk and K. Zarembo, Integrability in dipole-deformed N = 4 super Yang-Mills, J. Phys. A 50 (2017) 39 [arXiv:1706.07957] [INSPIRE].
C.-r. Ahn, Thermodynamics and form-factors of supersymmetric integrable field theories, Nucl. Phys. B 422 (1994) 449 [hep-th/9306146] [INSPIRE].
A.B. Zamolodchikov, Thermodynamic Bethe ansatz for RSOS scattering theories, Nucl. Phys. B 358 (1991) 497 [INSPIRE].
A. Torrielli, On AdS 2 /CF T 1 transfer matrices, Bethe ansatz and scale invariance, J. Phys. A 51 (2018) 015402 [arXiv:1708.09598] [INSPIRE].
L.D. Faddeev and O. Tirkkonen, Connections of the Liouville model and XXZ spin chain, Nucl. Phys. B 453 (1995) 647 [hep-th/9506023] [INSPIRE].
D. Fioravanti and M. Rossi, A braided Yang-Baxter algebra in a theory of two coupled lattice quantum KdV: algebraic properties and ABA representations, J. Phys. A 35 (2002) 3647 [hep-th/0104002] [INSPIRE].
E. Witten, Gauge theories, vertex models and quantum groups, Nucl. Phys. B 330 (1990) 285 [INSPIRE].
J.M. Maillet, Integrable systems and gauge theories, Nucl. Phys. Proc. Suppl. 18B (1991) 212 [INSPIRE].
L. Freidel and J.M. Maillet, The universal R matrix and its associated quantum algebra as functionals of the classical r matrix: the sl(2) case, Phys. Lett. B 296 (1992) 353 [hep-th/9210039] [INSPIRE].
V.G. Knizhnik and A.B. Zamolodchikov, Current algebra and Wess-Zumino model in two-dimensions, Nucl. Phys. B 247 (1984) 83 [INSPIRE].
D. Bernard, On symmetries of some massless 2 − D field theories, Phys. Lett. B 279 (1992) 78 [hep-th/9201006] [INSPIRE].
N. Beisert, R. Hernandez and E. Lopez, A Crossing-symmetric phase for AdS 5 × S 5 strings, JHEP 11 (2006) 070 [hep-th/0609044] [INSPIRE].
M. Karowski and P. Weisz, Exact form-factors in (1 + 1)-dimensional field theoretic models with soliton behavior, Nucl. Phys. B 139 (1978) 455 [INSPIRE].
P.H. Weisz, Perturbation theory check of a proposed exact Thirring model S matrix, Nucl. Phys. B 122 (1977) 1 [INSPIRE].
D. Bombardelli, S-matrices and integrability, J. Phys. A 49 (2016) 323003 [arXiv:1606.02949] [INSPIRE].
V.O. Tarasov, L.A. Takhtajan and L.D. Faddeev, Local Hamiltonians for integrable quantum models on a lattice, Theor. Math. Phys. 57 (1983) 1059 [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1903.10759
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Fontanella, A., Torrielli, A. Geometry of massless scattering in integrable superstring. J. High Energ. Phys. 2019, 116 (2019). https://doi.org/10.1007/JHEP06(2019)116
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP06(2019)116