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1 Introduction

The integrable structures arising in the context of the AdS/CFT correspondence [1, 2]

provide a very rich testing ground for the interplay between quantum groups and the exact

methods of the inverse scattering. This is well demonstrated by superstring theory on the

AdS3×S3×S3×S1 and the AdS3×S3×T 4 backgrounds [3–5]. The superconformal algebra

underlying the former is the D(2, 1;α)×D(2, 1;α) Lie superalgebra, where α controls the

relative radii of the two S3’s; the latter is then obtained by means of an Inönü-Wigner
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contraction of the former background in the limit α→ 0, and displays the superconformal

algebra psu(1, 1|2)× psu(1, 1|2).

The classical integrability of the string sigma-model on these backgrounds was shown

in [3, 6]. The finite-gap equations describing the semi-classical spectrum were given in [7].

The excitations are a mixture of massive and massless modes. The massive-massive S-

matrix was constructed in [8–11] based on a vacuum-preserving algebra composed of a

number of centrally-extended psu(1|1) factors. This was succesfully matched against per-

turbative results [6, 12–19]. Scattering involving the massless modes is a more delicate

matter [20, 21], and it has taken longer to develop a complete world-sheet analysis [22–

26, 119]. The exact massless scattering theory has been only recently constructed in [27–29].

At odds with higher dimensional instances of the AdS/CFT correspondence, the dual

conformal field theories are harder to grasp. A candidate for the dual to the AdS3 ×
S3 × T 4 model was obtained in [27], where it was shown to reproduce the predictions

of [20], although surviving mismatches with perturbation theory [31] remain unresolved.

Comparison between the counting of BPS states emerging from the Bethe ansatz and

the number expected from a CFT analysis of the symmetric T 4 orbifold point of moduli

space SymN (T 4) [32] was performed in [33]. The AdS3 × S3 × S3 × S1 dual CFT has

been proposed in [34], and the BPS analysis has been revisited in [33, 35]. There, the

condition of equal angular momenta on the two S3’s was seen to arise from both the

supergravity and the Bethe-equation analysis — see further progress made in [36–42]. A

host of work on this topic can be found in [25, 43–61]. In [62], the Berenstein-Maldacena-

Nastase (BMN) limit of the S-matrix was found to be non-trivial for massless particles and

involving purely left-left and right-right scattering. As amply reviewed in [62], scattering

theory of left-left and right-right moving massless particles in 2D is a non-perturbative

phenomenon that Zamolodchikov used in order to describe integrable massless theories at

their conformal points. The Thermodynamic Bethe Ansatz (TBA) was derived for such a

purely conformal problem and exactly solved to obtain the central charge of the associated

CFT to be equal to 6.

1.1 The q-deformed Poincaré superalgebra

One of the questions concerning the AdS3 superstring massless sector is how much of the

relativistic intuition can be transferred to the superstring setting. When considering the

scattering of magnons in the AdS5 setting, [63, 64] reinterpreted the square-root dispersion

relation as the Casimir of a q-deformed Poincaré superalgebra in 1 + 1 dimensions. This

algebra did not represent the full symmetry of the scattering matrix, nevertheless a boost

generator was defined as external to the algebra, and utilised to obtain the known expression

for the uniformising rapidity [1, 2]. This deformation was a re-casting of the ordinary

superstring algebra in a form resembling a trigonometric quantum group. Other ways in

which the q-Poincaré supersymmetries appeared in the AdS5 can be found for example

in [65–68].

Adopting the same spirit, [69] (and also [70]) demonstrated that a similar q-deformed

Poincaré superalgebra can be written down for AdS3, where it becomes instead a pseudo-

invariance of the massless R-matrix: the algebra excluding the boost is an exact symmetry
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of the R-matrix, while the boost coproduct annihilates it. The q-Casimir of this algebra

naturally reproduces the massless dispersion relation. This new way of looking at the

massless magnons enjoys a series of very natural traits. It allows a compact reformulation of

the comultiplication rule, where the coproduct of the momentum determines the one of the

other central charges. Interesting connections with phonons and spinons, inspired by [71],

became quite manifest in this setup. Equally, the boost was employed in [69] to derive

a natural uniformising rapidity, capable of reproducing the traditional Zamolodchikov’s

massless variable in the the relativistic limit. This will be brought to full fruition in this

paper and potentially realises the sought-for connection with more traditional relativistic

massless scattering. Another related approach was followed in [72, 73].

Following this path, in [70] a new framework was proposed to describe the AdS3
massless sector in terms of a purely geometric framework. The massless S-matrix was

shown to satisfy a system of differential equations controlled by a flat connection, which was

then used to re-write the S-matrix as a path-ordered exponential. Various interpretations

were advanced for such an emergent geometry, and the open question of how to connect

this to the issue of the dressing phase were left open, although introducing a dressing phase

has been understood as a gauge transformation for the connection [74].

1.2 AdS2 and Bethe ansatz

The AdS2 × S2 × T 6 background [75–79] is, in this respect, particularly interesting. The

holographic dual should either be a superconformal quantum mechanics or a chiral 2D

CFT [80–99]. The string sigma model is formulated on a PSU(1,1|2)
SO(1,1)×SO(2) supercoset [94, 100–

102], and it has been demonstrated to be classically integrable [3, 103] up to second order

in the fermions [104, 105].

The exact quantum S-matrix was conjectured in [106] based on the centrally-extended

psu(1|1)2 residual symmetry of the BMN vacuum [53, 57, 107–110], cf. [8, 10, 111–115].

The S-matrix of massive excitations satisfies crossing and unitarity, but determining the

dressing factor remains an open problem. Perturbation theory gives reasonable agree-

ment [53, 57, 108–110]. The massive magnon representations are long, while the massless

ones are short. The S-matrix for massless modes is obtained as a limit of the massive

one [22, 116, 117], where one has to distinguish between right and left movers. The Yan-

gian symmetry of the problem was elucidated in [106, 118]. Matching with perturbation

theory is much less clear in the massless sector [53, 57, 108–110, 119], and it deserves fur-

ther investigation. Massless scattering is in fact quite different from the massive one — see

e.g. [29], and it was understood by Zamolodchikov as a way of describing the renormalisa-

tion group flow between critical theories [116, 117].

The lack of relativistic invariance one typically experiences in AdS/CFT integrability

adds to the complication [22]. If one attempts to take a relativistic (BMN) limit, this turns

out to be trivial for massive modes. Crucially, this is not the case in the massless sector: the

relativistic limit is non-trivial between right-right and left-left movers [120]. The Lie-algebra

reduces to N = 1 supersymmetry [121], but the S-matrix is rather different. The S-matrix

retains the maximum number of non-zero entries, as in the XYZ/eight-vertex model [122,

123] and in typical relativistic N = 1 theories [124, 125]. The transfer matrix does not
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admit a reference state, making it impossible to apply the algebraic Bethe ansatz [126]

to find the spectrum and test the proposed Bethe equations of [104]. Integrable systems

not admitting a reference state are an area of intense current investigation [127–133]. The

approach of [120] relied on the so-called free-fermion condition [125, 134] combined with

the use of inversion relations [135].

This was further checked in [136], where the eigenvalues of the transfer matrix were

explicitly calculated up to 5 particles, and a conjecture for the complete massless Bethe

ansatz was formulated. Following the ideas of Zamolodchikov, the decoupling of right and

left modes ought to indicate that we are in fact describing a critical theory [62], whose

spectrum should be controlled by the Bethe ansatz we have conjectured.1

Furthermore, the free-fermion condition turns out to be also valid for the massive

AdS2 scattering [106], thanks to a particular u(1) symmetry of the model [53, 57, 108–

110, 137, 138]. Due to a series of remarkable simplifications, and in spite of the complication

of the massive S-matrix entries, the procedure was partially extended to the massive case

in [136], opening the possibility of obtaining manageable expressions which could be then

compared with [104].

1.3 Plan of this paper

This paper is organised as follows. In section 2, we extend the su(1|1)c superalgebra to

the q-deformed Poincaré superalgebra in d = 2, and we study the action of the boost

generator J on the R-matrix governing the massless non-relativistic scattering in ordinary

(undeformed) integrable AdS2 × S2 × T 6 type IIB superstring theory, which leads us to

introduce the new variable γ. In sections 3 and 4, we show that γ has the meaning of

non-relativistic rapidity, and we make the following

Conjecture 1. In AdS/CFT, every massless non-relativistic R-matrix governing the scat-

tering of right-right (or left-left) modes is obtained from the massless relativistic one via

the substitution

θ → γ , γ ≡ log tan
p

4
.

In ordinary (undeformed) AdS3 × S3 × T 4, we show that this conjecture holds for

both the matrix part of the R-matrix and the dressing factor, with numerical evidence for

real momenta. In AdS2 × S2 × T 6, we show that this prescription works for the matrix

part of the R-matrix, and we conjecture the non-relativistic dressing factor. In section 5,

we assume that every R-matrix depending on one real (or complex) parameter θ can be

written as

R(θ) = P exp

(
−
∫ θ

0
dτΓθ(τ)

)
A ,

where A = R(0) is a θ-independent matrix, and we study which equations physical unitar-

ity, braiding unitarity and the algebra invariance for the R-matrix imply for (Γ,A). Our

approach is reminiscent of the one developed in [139–142], however it differs from it.

1We thank Diego Bombardelli, Bogdan Stefański and Roberto Tateo for crucial discussions about

this point.
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2 q-deformed Poincaré for massless AdS2 × S2 × T 6

The algebra to consider in AdS2×S2×T 6 integrable string background is a central extension

of the psu(1|1) superalgebra,2 which will be denoted as su(1|1)c. The non-trivial graded

commutation relations are

{Q,Q} = P, {S,S} = K, {Q,S} = H, (2.1)

where P,K and H are central bosonic generators, Q and S are fermionic generators.

We represent the su(1|1)c generators as 2×2 matrices acting on a pair of boson-fermion

(|φ〉, |ψ〉)T as

Q =

(
0 b

a 0

)
, S =

(
0 d

c 0

)
,

H = H

(
1 0

0 1

)
, P = P

(
1 0

0 1

)
, 6K = K

(
1 0

0 1

)
(2.2)

where a, b, c, d,H, P,K ∈ C are the representation parameters.3 The (non-relativistic)

massless representation is given by the following choice of representation parameters

a = α
√
h sin(p/2), b = ± 1

α

√
h sin(p/2) ,

c = ±α
√
h sin(p/2), d =

1

α

√
h sin(p/2) , (2.3)

and

H = E , P = K = ±2h sin
p

2
, (2.4)

where h is the coupling constant, while E and p stand for the energy and the momentum

of the particle. They are related via the dispersion relation

E = 2h
∣∣∣ sin p

2

∣∣∣, (2.5)

which is a shortening condition. In the formulas above, the upper (lower) sign is associated

with right (left) movers,4 and Rep ∈ [0, π] for right movers, or Rep ∈ [−π, 0] for left movers.

The non-relativistic massless R-matrix, invariant under the representation (2.2), has

been found in [106]. For the right-right scattering, the R-matrix is

RRR =



1 0 0 ± 1
α2

[
tan

p1
4

tan
p2
4

]± 1
2

0 ±1
[
tan

p1
4

tan
p2
4

]± 1
2

0

0
[
tan

p1
4

tan
p2
4

]± 1
2 ∓1 0

±α2
[
tan

p1
4

tan
p2
4

]± 1
2

0 0 −1


, (2.6)

2We focus here only on one single copy of the algebra and R-matrix (see [106]), which is sufficient for

all our purposes.
3For generic values of the mass, the independent ones are only a, b, c, d.
4For the left movers case, one also needs to account for a global factor of

√
−1 = i according to our

choice of branch, which matters if one considers the mixed right-left and left-right coproducts.
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and for the left-left is

RLL =



1 0 0 ± 1
α2

[
tan

p1
4

tan
p2
4

]∓ 1
2

0 ∓1
[
tan

p1
4

tan
p2
4

]∓ 1
2

0

0
[
tan

p1
4

tan
p2
4

]∓ 1
2 ±1 0

±α2
[
tan

p1
4

tan
p2
4

]∓ 1
2

0 0 −1


. (2.7)

The upper (lower) signs in (2.6) and (2.7) correspond to f → +1 ( f → −1) when consid-

ering the limit from the massive R-matrix, as explained in [120]. In order to understand

the dispersion relation (2.5) as the vanishing of a quadratic Casimir, we extend the super-

algebra su(1|1)c to the q-deformed Poincaré superalgebra in d = 2, Eq(1|1). This requires

one to introduce the boost generator J, with non trivial commutation relations:

{Q,Q} = P , {S,S} = K , {Q,S} = H ,

[J ,Q] =
i

2
√
µ

ei
p
2 + e−i

p
2

2
Q , [J ,S] =

i

2
√
µ

ei
p
2 + e−i

p
2

2
S ,

[J ,P] =
i
√
µ

ei
p
2 + e−i

p
2

2
P , [J ,K] =

i
√
µ

ei
p
2 + e−i

p
2

2
K ,

[J ,H] =
eip − e−ip

2µ
1 , [J , p] = iH , (2.8)

where µ ≡ h−2 and the deformation parameter q is related to the coupling constant h via

log q =
i

h2
. (2.9)

The representation of the boost on a single particle state is J = iH∂p. The coproducts for

the generators of Eq(1|1) are

∆(Q) = Q⊗ ei
p
4 + e−i

p
4 ⊗Q , ∆(S) = S ⊗ ei

p
4 + e−i

p
4 ⊗ S ,

∆(P) = P ⊗ ei
p
2 + e−i

p
2 ⊗ P , ∆(K) = K ⊗ ei

p
2 + e−i

p
2 ⊗K ,

∆(H) = H⊗ ei
p
2 + e−i

p
2 ⊗H , ∆(J ) = J ⊗ e−i

p
2 + ei

p
2 ⊗ J . (2.10)

It is very interesting that the commutation relations (2.8) indicate how the boost operator

has a similar action to the one of the outer automorphism D of the centrally-extended

psu(1|1) superalgebra,5 although they are not the same. A first difference partly resides

in the momentum-dependent proportionality factor, which effectively deforms the right

hand side of the commutation relations. This is particularly clear when p is promoted to a

generator in a universal (i.e. representation-independent) reformulation of the Eq(1|1) su-

peralgebra. A second main difference is the non-standard coproduct for the boost operator,

which signals a non-locality in its two-particle action.

5Where the odd elements Q,S have weight 1/2 (e.g. [D,Q] = 1
2
Q) and even elements P,K,H have

weight 1 (e.g. [D,P] = P).
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The R-matrices RRR and RLL (2.6) and (2.7) are invariant under the action of Q, S
and the central bosonic generators, i.e.

∆op(a)R = R∆(a) , a = Q,S,P,K,H , (2.11)

however, they are not invariant under the boost action ∆(J). Moreover, they are neither

annihilated by ∆(J) nor by ∆op(J), in contrast to the boost action on the massless R-

matrix in AdS3 × S3 × T 4 discussed in [70]. Nevertheless, the R-matrix RRR satisfies for

instance the following condition(
w∆(J ) + wop∆op(J)

)
R = 0 , (2.12)

where

w = e−
i
4
(p⊗1−1⊗p) , wop = e−

i
4
(1⊗p−p⊗1) . (2.13)

If we introduce the new variable γ — cf. [69] — as

γ ≡ log tan
p

4
, (2.14)

then equation (2.12) becomes (
∂

∂γ1
+

∂

∂γ2

)
R = 0 , (2.15)

which implies that R depends only on the difference γ1 − γ2. In the relativistic limit

p→ εq ≡ εeθ , h→ c

ε
, (2.16)

where ε→ 0, and θ is the rapidity of the particle, we have that equation (2.15) becomes(
∂

∂θ1
+

∂

∂θ2

)
Rrel = 0 , (2.17)

which states that the relativistic R-matrix Rrel only depends on θ ≡ θ1 − θ2.
We can provide a second possible choice of coproduct, which is a homomorphism for

the Borel-type subalgebra of the Eq(1|1) superalgebra formed by the generators Q, P and J
where Q is a single real supercharge6 This coproduct satisfies the coassociativity property,

and is given by

∆̂(Q) = Q⊗ ei
p
4 + e−i

p
4 ⊗Q , ∆̂(P) = P ⊗ ei

p
2 + e−i

p
2 ⊗ P ,

∆̂(J ) = J ⊗ ei
p
2 + e−i

p
2 ⊗ J +

1

2
e−i

p
4Q⊗ ei

p
4Q . (2.18)

The coproduct ∆̂ differs from ∆ only for the boost generator J , otherwise they are the

same. We find again that the R-matrices (2.6) and (2.7) are not invariant under ∆̂(J ),

6For our specific choice of representation the generators Q and S coincide in the boson-fermion repre-

sentation, so they can be used to think of a very small algebra controlling the scattering problem where

they appear as a unique generator. The same applies to K,P and H.
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and neither are they annihilated by ∆̂(J ) and ∆̂op(J ). However the following combination

annihilates the R-matrix (
z∆̂(J ) + zop∆̂op(J )

)
R = 0 , (2.19)

where z = w−1, i.e.

z = e
i
4
(p⊗1−1⊗p) , zop = e

i
4
(1⊗p−p⊗1) . (2.20)

One can introduce the variable γ defined as in (2.14) and equation (2.19) becomes (2.15),

which in the relativistic limit reproduces (2.17).

We shall comment how the introduction of the dressing factor Φ affects equation (2.15).

In a similar spirit to adding a u(1) part to a would-be connection, as it was shown for the

AdS3 case in [70], we have that the analogous of (2.15) for the dressed R-matrix, i.e.(
∂

∂γ1
+

∂

∂γ2

)
R̃ = 0 , R̃ ≡ ΦR . (2.21)

implies that

R

(
∂

∂γ1
+

∂

∂γ2

)
Φ + Φ

(
∂

∂γ1
+

∂

∂γ2

)
R = 0 (2.22)

and by using (2.15) for the undressed R-matrix, this in turns implies that(
∂

∂γ1
+

∂

∂γ2

)
Φ = 0 , (2.23)

i.e. the dressing factor must depend only on the difference γ1−γ2. We shall see in section 4

that this condition is indeed satisfied by the dressing factor for the AdS3 case. This means

that also the dressed R-matrix must only depend on γ1 − γ2.

3 γ as a non-relativistic rapidity

The variable γ defined in (2.14) emerges from the boost action on the R-matrix via equa-

tions (2.12) and (2.19). The domain of γ is (−∞, 0], which is a consequence of the fact

that the domain of p for a right mover particle is [0, π]. The energy (2.5) in terms of the

variable γ is

E =
2h

cosh γ
, (3.1)

and the group velocity vg

vg =
dE
dp

= − h

tanh γ
. (3.2)

In the relativistic limit (2.16), the variable γ tends to

γ → θ + log
ε

4
, (3.3)

which diverges logarithmically. However in the context of R-matrices, equation (2.17) tells

us that the R-matrix depends only on the difference γ1−γ2, which is a well defined variable

in the relativistic limit. From now on, we shall denote γ ≡ γ1 − γ2.

– 8 –



J
H
E
P
0
6
(
2
0
1
9
)
1
1
6

In terms of the variable γ, the R-matrices (2.6) and (2.7) becomes

RRR =


1 0 0 ± 1

α2 e
± γ

2

0 ±1 e±
γ
2 0

0 e±
γ
2 ∓1 0

±α2e±
γ
2 0 0 −1

 , (3.4)

and

RLL =


1 0 0 ± 1

α2 e
∓ γ

2

0 ∓1 e∓
γ
2 0

0 e∓
γ
2 ±1 0

±α2e∓
γ
2 0 0 −1

 . (3.5)

The relativistic massless R-matrices to which (3.4) and (3.5) tend in the relativistic limit

are encoded in Solution 3 and Solution 5 studied in [120], and they are respectively7

RRRrel =


1 0 0 ± 1

α2 e
± θ

2

0 ±1 e±
θ
2 0

0 e±
θ
2 ∓1 0

±α2e±
θ
2 0 0 −1

 , (3.6)

and

RLLrel =


1 0 0 ± 1

α2 e
∓ θ

2

0 ∓1 e∓
θ
2 0

0 e∓
θ
2 ±1 0

±α2e∓
θ
2 0 0 −1

 . (3.7)

We notice that, if we knew only the relativistic massless R-matrices, we could construct

the parental non-relativistic massless R-matrices simply by replacing

θ ≡ θ1 − θ2 −→ γ ≡ γ1 − γ2 . (3.8)

Interestingly, this prescription also works for the R-matrix in ordinary (undeformed) AdS3×
S3 × T 4. The relativistic massless R-matrix in this background is [62]

RrelAdS3
=


1 0 0 0

0 − tanh θ
2 sech θ

2 0

0 sech θ
2 tanh θ

2 0

0 0 0 −1

 , (3.9)

and the non-relativistic massless R-matrix in [22], expressed in terms of the γ variable, is

Rnon−relAdS3
=


1 0 0 0

0 − tanh γ
2 sech γ

2 0

0 sech γ
2 tanh γ

2 0

0 0 0 −1

 . (3.10)

7We observe that Solution 3 can be rewritten in terms of three 2×2 matrices which satisfy the quaternion

algebra, as explained in appendix A.
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This suggests once again that the non-relativistic R-matrix can be obtained from the rel-

ativistic one simply by the substitution (3.8).

The variable γ can be thought of as a non-relativistic rapidity. We are naturally

brought to conjecture that this simple relationship between non-relativistic and relativistic

massless AdS/CFT R-matrices, where one simply replaces θ = θ1 − θ2 with

γ = γ1 − γ2 = log tan
p1
4
− log tan

p2
4
, (3.11)

will extend in more generality, as we shall now further confirm.

4 The dressing factor

4.1 AdS3 × S3 × T 4

Our intuition is reinforced by considerations on the dressing factor, which the R-matrix

needs to be equipped with. In [29] this dressing factor was derived by solving the massless

non-relativistic crossing equation, while in [62] the relativistic limit was obtained and shown

to coincide with Zamolodchikov’s dressing factor for Sine-Gordon theory at a special value

of the coupling. According to the expectations developed in the previous section, the

same Zamolodchikov’s analytic form should now hold and reproduce the expression derived

in [29], simply by replacing

θ = θ1 − θ2 by γ = γ1 − γ2. (4.1)

This is in part because the matrix part of the R-matrix determines the r.h.s. of the crossing

equation, which shall therefore be identical to the relativistic one with γ replacing θ. In

particular, this should reveal how the dressing factor of [29] is in fact of difference form in

the variable γ.

We have considered the Hernandez-Lopez (HL) term and we have numerically verified

that this is indeed the case for real momenta, by using the dilogarithm expression of the

HL contribution to the dressing phase provided in [144] evaluated for massless variables

x±i = e±i
pi
2 , i = 1, 2:

χ(x, y) ≡ 1

2π

[
− Li2

√
x− 1√

y√
x−√y

− Li2

√
x+ 1√

y√
x+
√
y

+ Li2

√
x− 1√

y√
x+
√
y

+ Li2

√
x+ 1√

y√
x−√y

]
,

Θ = χ(x+1 , x
+
2 ) + χ(x−1 , x

−
2 )− χ(x−1 , x

+
2 )− χ(x+1 , x

−
2 )− (1↔ 2),

x±i = e±i
pi
2 , i = 1, 2, γ = γ1 − γ2, γi = log tan

p1
4
, (4.2)

and (numerically8 up to ∼ 10−15)(
sin

p1
2

∂

∂p1
+ sin

p2
2

∂

∂p2

)
Θ =

∂

∂(γ1 + γ2)
Θ = 0, (4.3)(

sin
p1
2

∂

∂p1
− sin

p2
2

∂

∂p2

)
Θ =

d

dγ
Θ =

4γ

sinh γ
. (4.4)

8The numerics is done primarily for real momenta — although we have obtained numerical evidence

that there exists a double-sided interval of certain regions of the real line where our statements do extend

to the complex plane — and the functions are highly oscillatory. It would therefore be highly desirable to

have an analytic proof in order to reach a conclusive statement.
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Not only the HL term of the dressing factor only depends in massless kinematics — with

the above numerical proviso — on the difference γ1 − γ2, but it satisfies — again to the

numerical accuracy — the relation (4.14) in [62] — hallmark of the fact that the factor is

provided in fact by expression (5.36) in [62].

It is amusing to notice that a natural consequence of this observation, if corroborated by

analytic evidence and extended to complex values of momenta, would be that the massless

non-relativistic dressing factor is meromorphic in the complex plane γ, with only poles on

the imaginary axis and no pole in the region Imγ ∈ [0, π], and would clearly possess all

the attributes of a relativistic phase when considered in the new variable.

We remark that it would have been rather difficult to spot all these remarkable facts,

had it not been for the realisation that the boost operator in the new form provided in this

paper might act on the dressing factor as well and in fact annihilates it.

4.2 AdS2 × S2 × T 6

In [120], the dressing factor for the relativistic massless R-matrix, dubbed Solution 3 in that

paper, has been found, and an integral representation is given in appendix B. Supported

by the check that our conjecture works also for the dressing factor in the AdS3 case, we

infer that the dressing factor for the massless non-relativistic AdS2 case is

Ω(γ) = B expA(γ) , (4.5)

where

B =
e−i

π
8

√
2
, A(γ) =

γ

4
+

1

2

∫ ∞
0

dx

x

cosh[x(1− 2γ
iπ )]− coshx

coshx sinh 2x
. (4.6)

We checked that this conjectured solution for the dressing phase satisfies the non-relativistic

crossing equation derived in [136], which reads in terms of the momenta p1, p2 as follows

Ω(p1, p2)Ω(p̄1, p2) =
sin p1

4 cos p24
sin p1+p2

4

. (4.7)

5 Universal R-matrix and Connections

In [70], a geometric interpretation has been found for the R-matrix in AdS3 × S3 × T 4,

see also [74] for a review. As a consequence of the pseudo-invariance under the boost

generators of Eq(1|1)L⊕Eq(1|1)R, the non-relativistic massless R-matrix (3.10) must satisfy

the following parallel condition

DMR ≡
[

∂

∂pM
+ ΓAdS3

M

]
R = 0, (M = 1, 2) , (5.1)

where

ΓAdS3
1 ≡ −1

4

√
sin p2

2

sin p1
2

Y

sin p1+p2
4

,

ΓAdS3
2 ≡ 1

4

√
sin p1

2

sin p2
2

Y

sin p1+p2
4

, (5.2)
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and

Y ≡
[
E12 ⊗ E21 + E21 ⊗ E12

]
, E12 ≡

(
0 1

0 0

)
, E21 ≡

(
0 0

1 0

)
. (5.3)

This is turns implies that the R-matrix (3.10) can be written as

R
[
γ(λ)

]
= Π ◦P exp

(∫ γ(λ)

γ(0)
dpMΓAdS3

M

)
, (5.4)

where P exp is the path-ordered exponential, and γ(0) = (p, p) with p generic, such that

for λ = 0 we obtain R(p, p) = Π, as can now be easily seen from (3.10).

The relativistic limit (2.16) of the parallel condition (5.1) has been discussed in [62].

One obtains that the two equations contained in (5.1) boil down to just one equation:(
∂

∂θ
− Y

2 cosh θ
2

)
R(θ) = 0 . (5.5)

This suggests that in the relativistic limit one can make the following replacement of the

connection

DM −→
Dθ

ε
, Dθ ≡

∂

∂θ
+ ΓAdS3

θ , ΓAdS3
θ = − Y

2 cosh θ
2

, (5.6)

and the base space T 2 shrinks to S1 for real momenta — while a suitable complexification

of the base space needs to be considered for instance to discuss crossing symmetry. Again,

by integrating (5.5) between [0, θ], we obtain

R(θ) = Π ◦P exp

(∫ θ

0
dτΓAdS3

θ (τ)

)
. (5.7)

In the relativistic limit the R-matrix depends only on one parameter θ instead of two

parameters (p1, p2). This suggests to first investigate universal properties of the connection

when the base space of the fibre bundle has only one (real or complex) dimension.

5.1 System of equations for (Γ,A)

We assume that a generic R-matrix, which depends only on one rapidity-difference variable,

can be written as follows

R(θ) = P exp

(
−
∫ θ

0
dτΓθ(τ)

)
A , (5.8)

where

A ≡ R(0) . (5.9)

We shall not assume any property for Γθ and A, but we shall find a set of con-

straints by imposing some of the fundamental equations for the R-matrix. Note that

the parallel condition (
∂

∂θ
+ Γθ

)
R(θ) = 0 , (5.10)

where Γθ is now a generic connection, is automatically satisfied by (5.8) with our choice of

ordering of the path-ordering exponential.
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5.1.1 Physical unitarity

The R-matrix must satisfy physical unitarity, which reads

R(θ)R†(θ) = 1⊗ 1 , (5.11)

and it is valid for any real value of θ. If R is represented in terms of matrices, † is

the standard matrix transposition and complex conjugation of its entries. For θ = 0,

equation (5.11) reads

AA† = 1⊗ 1 . (5.12)

Differentiating equation (5.11) with respect to θ, we obtain

Γ(θ) = −Γ†(θ) , (5.13)

i.e. Γ must be anti-hermitian.

5.1.2 Braiding unitarity

Fist we shall derive the parallel equations which Rop(−θ) must satisfy. We recall that

Rop ≡ ΠRΠ, where in this picture Π acts on states of the representation, and the momenta

of the two particles 1 and 2 must be exchanged by hand. We first apply the operator Π

to (5.10) and obtain (
∂

∂θ
+ Π Γθ(θ) Π

)
ΠR(θ) Π = 0 . (5.14)

Then we exchange θ → θ̃ ≡ −θ and obtain(
∂

∂θ̃
+ Π Γθ(θ̃) Π

)
Rop(θ̃) = 0 , (5.15)

which can be integrated between 0 and θ̃ to obtain

Rop(θ̃) = P exp

(
−
∫ θ̃

0
dτΠ Γθ(τ) Π

)
ΠAΠ , (5.16)

where we imposed the initial condition

Rop(0) = ΠR(0) Π = ΠAΠ . (5.17)

Finally, we exchange τ → −τ and obtain

Rop(−θ) = P exp

(∫ θ

0
dτΠ Γθ(−τ) Π

)
ΠAΠ . (5.18)

The braiding unitarity equation

R(θ)Rop(−θ) = 1⊗ 1 , (5.19)

imposes a condition on A and Γθ, which reads

P exp

(
−
∫ θ

0
dτΓθ(τ)

)
AP exp

(∫ θ

0
dτΓop

θ (−τ)

)
Aop = 1⊗ 1 , (5.20)
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where we have defined

Γop
θ (θ) ≡ Π Γθ(θ) Π , Aop ≡ ΠAΠ . (5.21)

For θ = 0, equation (5.20) reduces to

AAop = 1⊗ 1 . (5.22)

Two obvious solutions to equation (5.22) are9

A = Π , A = 1 . (5.23)

Comparing physical unitarity (5.11) with braiding unitarity (5.19), we also have that

Rop(−θ) = R†(θ) , Aop = A† . (5.24)

Case A = Π. Equation (5.20) becomes

P exp

(
−
∫ θ

0
dτΓθ(τ)

)
P exp

(∫ θ

0
dτΓθ(−τ)

)
= 1⊗ 1 , (5.25)

The theorem in appendix E, with A(τ) = iΓθ(τ) and B(τ) = iΓθ(−τ), implies that

Γθ(θ) = Γθ(−θ) , (5.26)

i.e. Γθ(θ) must be an even function. We also have the following:

Theorem 1. Continuous deformations of the solution A = Π are not solutions.

Proof. Suppose that continuous deformations of the solution A = Π are still solutions

to (5.22). We write the generic deformed solution as

A = Π + ε δA+O(ε2) , (5.27)

where ε ∈ R is an arbitrary small real parameter, and δA ∈ U [g]⊗U [g] is the deformation.

We shall neglect terms which are higher order powers in ε. If we impose (5.27) to be a

solution to (5.22), we obtain[
Π + ε δA+O(ε2)

]
Π
[
Π + ε δA+O(ε2)

]
Π = 1⊗ 1 , (5.28)

which at zeroth order in ε gives us

Π4 = 1⊗ 1 , (5.29)

and at first order in ε

2δAΠ = 0 , (5.30)

After multiplying the equation above on the right by Π, we obtain

δA = 0 , (5.31)

i.e. a continuous deformation of the solution A = Π is not a solution to (5.22).
9All the R-matrices we are aware of do follow A = Π, cf. condition (1.15) in [148].
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Case A = 1. Equation (5.20) becomes

P exp

(
−
∫ θ

0
dτΓθ(τ)

)
P exp

(∫ θ

0
dτΓop

θ (−τ)

)
= 1⊗ 1 , (5.32)

Using the theorem in appendix E with A(τ) = iΓθ(τ) and B(τ) = iΓop
θ (−τ), we have that

Γθ(θ) = Γop
θ (−θ) . (5.33)

A continuous deformation of the type

A = 1 + εδA+O(ε2) , (5.34)

is still a solution of (5.12) and (5.22), provided that the deformation δA satisfies the

following conditions

δA = −δAop = −δA† . (5.35)

5.1.3 Algebra invariance

The algebra invariance condition is

∆op(a)R(θ) = R(θ)∆(a) , ∀ a ∈ K , (5.36)

where K is a generic superalgebra. By taking the derivative with respect to θ on both sides

of (5.36), we obtain

d∆op(a)

dθ
−Rd∆(a)

dθ
R−1 = ∆op(a)Γθ − Γθ∆

op(a) . (5.37)

In the case where the coproduct satisfy the following property

d∆(a)

dθ
= ca∆(a) , ∀ a ∈ K , (5.38)

then (5.37) implies

[∆op(a),Γθ] = 0 . (5.39)

This happens for instance for the relativistic massless scattering in AdS2 and AdS3 inte-

grable string backgrounds.

The algebra invariance (5.36) evaluated at θ = 0 gives

∆op(a)|θ=0A = A∆(a)|θ=0 . (5.40)

For A = Π, (5.40) becomes

∆op(a) = Π∆(a)Π , (5.41)

which is simply the definition of the opposite coproduct. However for A = 1, (5.40)

becomes

∆op(a) = ∆(a) , (5.42)

which occours for instance in the AdS2 and AdS3 cases in the relativistic limit, when all

braiding factors trivialise. For a generic integrable system, if the given algebra does not

satisfy (5.42), even in a particular regime, than the solution A = 1 must be discarded.
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Equation for A Equation for Γ

Physical unitarity AA† = 1⊗ 1 Γ(θ) = −Γ†(θ)

Braiding unitarity AAop = 1⊗ 1

case A = Π Γ(θ) = Γ(−θ)

case A = 1 Γ(θ) = Γop(−θ)

Algebra invariance, ∆op(a)|θ=0A = A∆(a)|θ=0 [∆op(a),Γ] = 0
coproduct (5.38)

Table 1. Summary of the conditions for (Γ,A).

6 Conclusions

In this paper, we have studied whether the R-matrix governing massless non-relativistic

scatterings in AdS2×S2× T 6 is invariant under the action of the q-deformed Poincaré su-

peralgebra in d = 2. Despite the behaviour of the boost action on the massless and massive

R-matrices in the context of other integrable AdS backgrounds [69, 70, 72, 73], we found

that the R-matrix is neither invariant nor annihilated by the boost action. Nevertheless,

we found that a linear combination of the boost coproduct and its opposite annihilates the

R-matrix. This condition can be naturally expressed in terms of a new variable γ, in the

sense that the R-matrix must only depend on the difference γ1 − γ2 associated with the

two particles.

In the relativistic limit, γ tends to the rapidity θ modulo a logarithmically divergent

term, which disappears when considering the difference γ1 − γ2. We found that the non-

relativistic massless R-matrices describing right-right and left-left scatterings written in the

γ variable are exactly reproduced by the relativistic massless R-matrices with θ replaced by

γ. This feature is also confirmed in AdS3×S3×T 4, where we also have numerical evidence

that for real momenta the non-relativistic dressing factor is correctly reproduced from the

relativistic one via the minimal prescription above, with the numerical accuracy given in the

text. We have checked that the non-relativistic crossing equation reduces, in terms of the

variable γ, to the one satisfied by the Sine-Gordon dressing phase at a special value of the

coupling, which is relevant in the relativistic case. It would be desirable to show in a purely

analytic fashion, without relying on numerical computations, that the expression available

in the literature [29] for the non-relativistic dressing phase does indeed only depend on

the difference of the γ variables, and attains the precise Sine-Gordon form without the

contribution from any CDD factors. Progress in this direction has recently been made

in [30], where the property of being of difference form in the γ variables was derived purely

analytically for the massless non-relativistic AdS3 dressing phase constructed in [29], and

the absence of CDD factors was motivated. This has shown that (2.15) is indeed satisfied

exactly also by the dressing factor as well, and therefore no modifications to that equation

occur as a consequence of introducing such factor.

Supported by this evidence, we conjectured the non-relativistic dressing factor of the

R-matrix in AdS2×S2×T 6, which it is still unknown, and we checked that the conjectured

solution satisfies the non-relativistic crossing equation.
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Motivated by the geometric interpretation of the boost action on the R-matrix in [70],

we started the program of classifying all possible R-matrices associated with a given in-

tegrable model with a certain (super)algebra. The conjectured expression for the most

general R-matrix is given in terms of a connection Γ on a fibre bundle and a constant

matrix A, which is fixed by initial conditions. The R-matrix must satisfy a set of equa-

tions (e.g. physical unitarity, brading unitarity, crossing symmetry, Yang-Baxter equation,

algebra invariance) and this in turns implies a set of equations for the pair (Γ,A). In this

paper, we made some progress towards the understanding of physical unitarity, braiding

unitarity and the algebra invariance in terms of (Γ,A). The conditions obtained from this

set of equations are listed in table 1 and we checked that they are satisfied for the set of

known integrable systems in appendix C.

Studying the Yang-Baxter and crossing equations turns out to be more involved.

The Yang-Baxter equation involves the scattering with a third particle, and potentially

this might be implemented via extending the base space with an extra coordinate. A

representation-dependent formulation of crossing symmetry involves to implement the no-

tion of supertransposition on one particle subspace. This procedure however turns out to

be quite involved. We plan to investigate further on this in the future.

One of the implication of our conjecture in the context of AdS/CFT massless scatter-

ings is that one can safely restrict to classify only R-matrices which depend only on one

(real or complex) variable, i.e. the rapidity θ. Once the classification is done in this simpler

context, one immediately obtains also the classification of the massless non-relativistic R-

matrices, simply via the substitution θ → γ. We leave for future work the task of exploring

whether this minimal prescription can also be applied in the context of the Bethe ansatz.
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van Tongeren and Martin Wolf for several interesting discussions. We thank very much
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A Quaternionic notation

Let us focus for definiteness on the R-matrix Solution 3 of [120] for the right-right scattering

and for the choice α = 1. It turns out that there is a compact quaternionic-type notation

one can introduce to rewrite this matrix, i.e.

R3 = 1⊗ σ3 + µσ1 ⊗ σ̌1 , µ ≡ e−
θ
2 , θ ≡ θ1 − θ2 , (A.1)

where θi is the rapidity of the i-th particle, with dispersion relation

Ei = pi = eθi , (A.2)

and

σ3 = E11 − E22 , σ1 = E12 + E21 , σ̌1 = E12 − E21 , (A.3)

where

|1〉 = |φ〉 , |2〉 = |ψ〉 , (A.4)

and |φ〉 is a boson, |ψ〉 a fermion. The matrices {σ3, σ1, σ̌3} satisfy the quaternion algebra,

σ21 = σ23 = 1 , σ̌21 = −1 , σ1 σ3 = −σ3 σ1 = −σ̌1 ,
σ̌1 σ3 = −σ3 σ̌1 = −σ1 , σ1 σ̌1 = −σ̌1 σ1 = −σ3 . (A.5)

Expression (A.1) is reminiscent of spin-chain R-matrices of Yangian-type, and it does

indeed possess a very special Yangian symmetry [136].

B Integral representation of the dressing factor

In this appendix we show that the dressing factor for the R-matrix Solution 3 of [120]

admits an integral representation.

The R-matrix we shall focus on initially, dubbed Solution 3 in [120], is provided by

the following formula, valid for arbitrary values of α:

R3(θ) =


1 0 0 ∓α−2e−

θ
2

0 −1 e−
θ
2 0

0 e−
θ
2 1 0

∓α2e−
θ
2 0 0 −1

 , (B.1)

where the upper sign is for right-right, the lower sign for left-left. It satisfies cross-

unitarity [29] (cf. also [143]), but does not satisfy braiding-unitarity by itself. Rather, it

satisfies a mixed braiding unitarity relation with the R-matrix dubbed Solution 5 in [120]:

R5 =


1 0 0 ±α−2e

θ
2

0 1 e
θ
2 0

0 e
θ
2 −1 0

±α2e
θ
2 0 0 −1

 , (B.2)
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for arbitrary values of α, with the upper sign for right-right scattering, the lower sign for

left-left. If we set α2 = 1 for simplicity, and focus on right-right for definiteness, the mixed

braiding unitarity condition, already anticipated in [106], is given by:

Rop
5 (−θ)R3(θ) = (1 + e−θ)1⊗ 1. (B.3)

This relation allows to determine the dressing factor to associate with the Solution 5, say,

Ω5(θ), from the knowledge of the one associated with the Solution 3:

Ω5(−θ)Ω3(θ) =
1

1 + e−θ
, (B.4)

which can be trivially solved for Ω5(θ).

Because of this relationship, in what follows, we will simply write Ω instead of Ω3.

The fact that we have a non-trivial massless right-right and left-left scattering (surviv-

ing the BMN limit, which is the regime we are effectively taking the string theory to) is a

non-perturbative effect, in agreement with Zamolodchikov’s picture of massless scattering,

outlined for instance in [29, 116, 117]. The mixed right-left scattering is instead trivial,

which signals that what we are actually describing via this scattering problem is a critical

theory possessing scale invarance.

Focusing on Solution 3 for right-right scattering, we notice that crossing symmetry is

implemented as follows.We define the supertranspose of a matrix M to be

M str
ij = (−)ij+iMji, (B.5)

and the charge conjugation matrix to be

C = diag(i, 1), (B.6)

such that

−Qq = C−1Qstr
−q C, −Sq = C−1Sstr

−q C,

(B.7)

where the crossing transformation is defined by

q → −q, θ → iπ + θ. (B.8)

The R-matrix satisfies a combined crossing - braiding unitarity condition:

R(θ)
[
C−1 ⊗ 1

]
Rstr1(iπ + θ)

[
C ⊗ 1

]
= 1⊗ 1 . (B.9)

In order to fulfil (B.9), we will equip the solution with an appropriate dressing factor :

R = Ω(θ)R3. (B.10)

Eq. (B.9) implies that this factor has to satisfy

Ω(θ)Ω(θ + iπ) =
e
θ
2

2 cosh θ
2

≡ f(θ). (B.11)
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As a consistency check, it is easy to verify that the dressing factor of the Solution 5 S-matrix

satisfies a similar condition:

Ω5(θ)Ω5(θ + iπ) =
e

−θ
2

2 cosh θ
2

= f(−θ), (B.12)

which reduces to (B.11) upon using (B.4). Furthermore, using these equations one can

deduce that

Ω5(θ) = Ω3(iπ − θ). (B.13)

In [120], a minimal dressing factor was proposed:

Ω(θ) =
e
γEM

2
− iπ

8
+ θ

4

√
2π

∞∏
j=1

e
− 1

2j j
Γ
(
j − 1

2 + θ
2πi

)
Γ
(
j − θ

2πi

)
Γ
(
j + 1

2 −
θ

2πi

)
Γ
(
j + θ

2πi

) , (B.14)

with γEM being the Euler-Mascheroni constant. The “minimal” nature of Ω(θ) is due to

the fact that it displays neither poles nor zeroes in the physical strip Imθ ∈ (0, π). From

the representation (B.14) one can see that the function Ω(θ) is meromorphic in the entire

complex plane, with poles occurring at the following points on the imaginary axis:

θ = −iπ(1 + 2n), n = 0, 1, 2, . . . −→ pole of order n+ 1 ,

θ = 2iπm, m = 1, 2, . . . −→ pole of order m, (B.15)

and zeroes at the following points on the imaginary axis:

θ = iπ(1 + 2n), n = 1, 2, . . . −→ zero of order n ,

θ = −2iπm, m = 1, 2, . . . −→ zero of order m . (B.16)

The factor Ω(θ) is actually analytic, with neither zeroes nor poles, in the strip

Imθ ∈ (−π, 2π).

Using the property z Γ(z) = Γ(z + 1) one can show

Ω(θ) Ω(−θ) =
e−i

π
4

2 cosh θ
2

≡ g(θ). (B.17)

By combining (B.11) and (B.17) one obtains

Ω(θ) =
f(θ)

Ω(θ + iπ)
= f(θ)

Ω(−θ − iπ)

g(θ + iπ)
=

f(θ)

g(θ + iπ)

f(−θ − iπ)

f(−θ)
Ω(iπ − θ), (B.18)

where at the last stage we have used

Ω(iπ − θ) =
f(−θ)
Ω(−θ)

=
f(−θ)

f(−θ − iπ)
Ω(−θ − iπ). (B.19)

Altogether, this implies

Ω(θ)

Ω(iπ − θ)
=

f(θ)

g(θ + iπ)

f(−θ − iπ)

f(−θ)
= e

θ
2
−iπ

4 (B.20)
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Finally, the condition of physical unitarity of the S-matrix

S(θ)S†(θ) = 1⊗ 1 θ real, (B.21)

reads for the Solution 3 as follows:10

R3(θ)R
†
3(θ) = (1 + e−θ) 1⊗ 1 θ real. (B.22)

This implies that the dressing factor ought to satisfy

Ω(θ)Ω∗(θ) =
1

1 + e−θ
θ real. (B.23)

Using the explicit solution (B.14) we have verified numerically that this is indeed the case:

the expression (B.14) satisifes (B.23), hence the S-matrix associated to Solution 3 is a

unitary matrix for real momenta, i.e. it satisfies physical unitarity.

Taking inspiration from [145], we now manipulate the dressing factor Ω(θ) into an

alternative form, which is traditionally more suitable for instance in the calculation of

form factors. To this purpose, we can use the so-called Malmstén representation of the

Gamma function: integral representation

Γ(z) = exp

∫ ∞
0

e−t

t

[
(z − 1)− 1− e−(z−1)t

1− e−t

]
, (B.24)

valid for Rez > 0 - see also [146, 147]. It is clear that we can use this representation

only if the intersection of all the domains of the gamma functions appearing in (B.14) is

non-empty, namely if, ∀ j = 1, . . . ,∞,

Re

(
j − 1

2
+

θ

2πi

)
> 0 and Re

(
j − θ

2πi

)
> 0

and Re

(
j +

1

2
− θ

2πi

)
> 0 and Re

(
j +

θ

2πi

)
> 0 .

Since these real parts are all monotonically increasing with j, the intersection is dictated

by the lowest value which is j = 1, which produces

Imθ ∈ (−π, 2π) . (B.25)

Notice that the physical strip Imθ ∈ (0, π) is entirely contained in the domain of valid-

ity (B.25). Working in the domain (B.25), bringing all contributions under one integral,

after a series of simplifications, one gets

Ω(θ) =
e
γ
2
−πi

8
+ θ

4

√
2π

∞∏
j=1

e
− 1

2j j exp

∫ ∞
0

e−t

t

[
− 1 +

cosh
(
t
4 −

tθ
2πi

)
cosh t

4

et
[
3
2
−j
]]

. (B.26)

10Since the S-matrix can be related to the R-matrix via S = PRP , where P is the matrix implementing

the permutation on two-particle states, and P is a unitary matrix — being real, symmetric and self-inverse

— we see that unitarity of R is equivalent to unitarity of S.
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We cannot simply transform the infinite product of exponentials into the exponent of an

infinite sum, because the resulting expression does not converge. Differentiating w.r.t. θ

the log of (B.26) allows to get rid of the diverging piece, at which point bringing the sum

over j inside the integral produces a simple geometric series. One then gets

K(θ) ≡ d log Ω(θ)

dθ
=

1

4
+
i

π

∫ ∞
0

dx
sinh

[
x
(
1− 2θ

iπ

)]
coshx sinh 2x

, Imθ ∈ (−π, 2π) . (B.27)

Now we have the task of reconstructing Ω(θ) from its logarithmic derivative, namely

Ω(θ) = B exp

∫ θ

0
dβ K(β) = B expA(θ) , (B.28)

where

A(θ) =
θ

4
+

1

2

∫ ∞
0

dx

x

cosh[x(1− 2θ
iπ )]− coshx

coshx sinh 2x
, (B.29)

and B is a constant. At the last step, we have swapped the integral over β with the one over

x. We have also chosen to leave the constant term inside the integral to ensure convergence

near x = 0.

The initial integration value is now fixed by reproducing any specific value of Ω obtained

from the original expression (B.14), for instance

Ω(0) =
e
γ
2
−πi

8

√
2π

∞∏
j=1

e
− 1

2j j
Γ
(
j − 1

2

)
Γ
(
j + 1

2

) =
e−i

π
8

√
2
. (B.30)

This means that we have to set

B =
e−i

π
8

√
2
. (B.31)

C (Γ,A) for various relativistic models

• Sine-Gordon model (non supersymmetric, fully bosonic)

R =



1 0 0 0

0
sinh(πθ

ξ
)

sinh(
π(iπ−θ)

ξ
)

sin(π
2

ξ
)

sin(
π(π+iθ)

ξ
)

0

0
sin(π

2

ξ
)

sin(
π(π+iθ)

ξ
)

sinh(πθ
ξ
)

sinh(
π(iπ−θ)

ξ
)

0

0 0 0 1


, A =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 = Π , (C.1)

Γθ = −
iπ sin(2π

2

ξ )

ξ cos(2π
2

ξ )− ξ cosh(2πθξ )
E11 ⊗ E22 −

2iπ cosh(πθξ ) sin(π
2

ξ )

ξ cos(2π
2

ξ )− ξ cosh(2πθξ )
E21 ⊗ E12

−
2iπ cosh(πθξ ) sin(π

2

ξ )

ξ cos(2π
2

ξ )− ξ cosh(2πθξ )
E12 ⊗ E21 −

iπ sin(2π
2

ξ )

ξ cos(2π
2

ξ )− ξ cosh(2πθξ )
E22 ⊗ E11 .

(C.2)

where Eij are the matrices wit all 0s, but 1 in row i and column j. Γθ is an even

function of θ.
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• Non-relativistic Heisenberg XXX spin chain (non supersymmetric, fully bosonic)

R =
u

u− 1

(
1 +

Π

u

)
, u ≡ u1 − u2 , (C.3)

A = Π , Γu =
1

u2 − 1

(
1−Π

)
. (C.4)

Γu is an even function of u.

• Integrable superstring in AdS5 × S5. Forcing the massless and subsequently the

relativistic limit for the choice of right-right kinematics, i.e.

x± = e±i
p
2 , p→ ε eθ, ε→ 0, (C.5)

on the massive R-matrix [111] — written having eliminated all explicit coupling-

constant dependence using the x± constraint — we obtain

−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −A2 0 0 C 0 0 0 0 0 0 AB 0 0 −AB 0

0 0 A 0 0 0 0 0 −B 0 0 0 0 0 0 0

0 0 0 A 0 0 0 0 0 0 0 0 −B 0 0 0

0 −C 0 0 −A2 0 0 0 0 0 0 −AB 0 0 AB 0

0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 A 0 0 −B 0 0 0 0 0 0

0 0 0 0 0 0 0 A 0 0 0 0 0 −B 0 0

0 0 −B 0 0 0 0 0 −A 0 0 0 0 0 0 0

0 0 0 0 0 0 −B 0 0 −A 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 −AB 0 0 AB 0 0 0 0 0 0 A2 0 0 B2 0

0 0 0 −B 0 0 0 0 0 0 0 0 −A 0 0 0

0 0 0 0 0 0 0 −B 0 0 0 0 0 −A 0 0

0 AB 0 0 −AB 0 0 0 0 0 0 B2 0 0 A2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



(C.6)

where

A = tanh
θ

2
, B =

1

cosh θ
2

, C = − 2

1 + cosh θ
. (C.7)

Γθ = − 1

2 cosh θ
2



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 0 1 0

0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 −1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



(C.8)

Γθ is even in θ.

In all three cases described above, as well as in AdS3 and AdS2 if we disregard parts

proportional to the identity, one has that Γθ anticommutes with Π.
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D Geometric interpretation of Γop
M

We recall that

Γop
M = Π ΓM Π . (D.1)

We notice that in the massless non-relativistic cases in AdS3 × S3 × T 4 and AdS5 × S5

superstring backgrounds, the following relations hold

Γop
1 (p2, p1) = Γ2(p1, p2) , Γop

2 (p2, p1) = Γ1(p1, p2) , (D.2)

or equivalently, in a vector notation(
Γ1(p1, p2)

Γ2(p1, p2)

)op

=

(
Γ2(p2, p1)

Γ1(p2, p1)

)
. (D.3)

Here we show that the r.h.s. term of (D.3) can be generated as a consequence of a rotation

of π/2 anticlockwise of the axes (p1, p2) followed by an inversion of the new p2 axis.

For an anticlockwise rotation of angle θ = π/2 of the axes (p1, p2), we have that(
p′1
p′2

)
=

(
0 1

−1 0

)(
p1
p2

)
=

(
p2
−p1

)
. (D.4)

The inversion of the p′2 axis can be written as(
p′′1
p′′2

)
=

(
1 0

0 −1

)(
p′1
p′′2

)
=

(
p′1
−p′2

)
. (D.5)

The corresponding transformation of the connection ΓM is(
Γ′′1
Γ′′2

)
(p′′1, p

′′
2) =

(
1 0

0 −1

)(
0 1

−1 0

)(
Γ1

Γ2

)
(p1(p

′′
1, p
′′
2), p2(p

′′
1, p
′′
2)) , (D.6)

where we have that

p1(p
′′
1, p
′′
2) = p′′2 , p2(p

′′
1, p
′′
2) = p1 , (D.7)

and (
1 0

0 −1

)(
0 1

−1 0

)(
Γ1

Γ2

)
=

(
Γ2

Γ1

)
. (D.8)

This implies that (
Γ′′1
Γ′′2

)
(p′′1, p

′′
2) =

(
Γ2

Γ1

)
(p′′2, p

′′
1) , (D.9)

and therefore, by using (D.3), we have(
Γ′′1
Γ′′2

)
(p′′1, p

′′
2) =

(
Γ1

Γ2

)op

(p′′1, p
′′
2) . (D.10)

This argument shows that whenever (D.3) is satisfied, the op operation can be interpreted

as an anticlockwise rotation of π/2 of the frame of the fibre bundle base space, followed by

an axis inversion.
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E A useful theorem

Theorem 2. Suppose that the following equation holds for any θ

P exp

(
i

∫ θ

0
dτA(τ)

)
P exp

(
i

∫ 0

θ
dτB(τ)

)
= 1⊗ 1 , (E.1)

for generic operators A and B. Then

A(θ) = B(θ) . (E.2)

Proof. We shall first recall the following property[
P exp

(
i

∫ θ

0
dτA(τ)

)]−1
= P exp

(
− i
∫ θ

0
dτA(τ)

)
. (E.3)

Then equation (E.1) can be rewritten as

P exp

(
− i
∫ θ

0
dτA(τ)

)
= P exp

(
− i
∫ θ

0
dτB(τ)

)
. (E.4)

Differentiating both members of (E.4) with respect to θ, we obtain

− iA(θ)P exp

(
− i
∫ θ

0
dτA(τ)

)
= −iB(θ)P exp

(
− i
∫ θ

0
dτB(τ)

)
, (E.5)

and by using (E.4), this in turns implies

A(θ) = B(θ) . (E.6)
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R-matrix, Phys. Rev. D 97 (2018) 066001 [arXiv:1711.02446] [INSPIRE].

[74] A. Fontanella, Black horizons and integrability in string theory, arXiv:1810.05434

[INSPIRE].

[75] I.R. Klebanov and A.A. Tseytlin, Intersecting M-branes as four-dimensional black holes,

Nucl. Phys. B 475 (1996) 179 [hep-th/9604166] [INSPIRE].

[76] A.A. Tseytlin, Harmonic superpositions of M-branes, Nucl. Phys. B 475 (1996) 149

[hep-th/9604035] [INSPIRE].
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