Skip to main content

Lifshitz scaling, microstate counting from number theory and black hole entropy

A preprint version of the article is available at arXiv.

Abstract

Non-relativistic field theories with anisotropic scale invariance in (1+1)-d are typically characterized by a dispersion relation Ekz and dynamical exponent z > 1. The asymptotic growth of the number of states of these theories can be described by an extension of Cardy formula that depends on z. We show that this result can be recovered by counting the partitions of an integer into z-th powers, as proposed by Hardy and Ramanujan a century ago. This gives a novel duality relationship between the characteristic energy of the dispersion relation with the cylinder radius and the ground state energy. For free bosons with Lifshitz scaling, this relationship is shown to be identically fulfilled by virtue of the reflection property of the Riemann ζ-function. The quantum Benjamin-Ono2 (BO2) integrable system, relevant in the AGT correspondence, is also analyzed. As a holographic realization, we provide a special set of boundary conditions for which the reduced phase space of Einstein gravity with a couple of U (1) fields on AdS3 is described by the BO2 equations. This suggests that the phase space can be quantized in terms of quantum BO2 states. Indeed, in the semiclassical limit, the ground state energy of BO2 coincides with the energy of global AdS3, and the Bekenstein-Hawking entropy for BTZ black holes is recovered from the anisotropic extension of Cardy formula.

References

  1. M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].

  2. S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. S.A. Hartnoll, Horizons, holography and condensed matter, in Black holes in higher dimensions, G.T. Horowitz ed., (2012), pg. 387 [arXiv:1106.4324] [INSPIRE].

  4. M. Taylor, Lifshitz holography, Class. Quant. Grav. 33 (2016) 033001 [arXiv:1512.03554] [INSPIRE].

  5. E. Bettelheim, A.G. Abanov and P. Wiegmann, Quantum shock waves: the case for non-linear effects in dynamics of electronic liquids, Phys. Rev. Lett. 97 (2006) 246401 [cond-mat/0606778] [INSPIRE].

  6. P. Wiegmann, Non-linear hydrodynamics and fractionally quantized solitons at fractional quantum Hall edge, Phys. Rev. Lett. 108 (2012) 206810 [arXiv:1112.0810] [INSPIRE].

    ADS  Article  Google Scholar 

  7. S. Sotiriadis, Equilibration in one-dimensional quantum hydrodynamic systems, J. Phys. A 50 (2017) 424004 [arXiv:1612.00373] [INSPIRE].

  8. H.A. Gonzalez, D. Tempo and R. Troncoso, Field theories with anisotropic scaling in 2D, solitons and the microscopic entropy of asymptotically Lifshitz black holes, JHEP 11 (2011) 066 [arXiv:1107.3647] [INSPIRE].

  9. A. Pérez, D. Tempo and R. Troncoso, Boundary conditions for general relativity on AdS 3 and the KdV hierarchy, JHEP 06 (2016) 103 [arXiv:1605.04490] [INSPIRE].

  10. P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York, NY, U.S.A. (1997) [INSPIRE].

  11. A.B. Zamolodchikov, Expectation value of composite field \( T\overline{T} \) in two-dimensional quantum field theory, hep-th/0401146 [INSPIRE].

  12. F.A. Smirnov and A.B. Zamolodchikov, On space of integrable quantum field theories, Nucl. Phys. B 915 (2017) 363 [arXiv:1608.05499] [INSPIRE].

  13. A. Cavaglià, S. Negro, I.M. Szécsényi and R. Tateo, \( T\overline{T} \) -deformed 2D quantum field theories, JHEP 10 (2016) 112 [arXiv:1608.05534] [INSPIRE].

  14. L. McGough, M. Mezei and H. Verlinde, Moving the CFT into the bulk with \( T\overline{T} \), JHEP 04 (2018) 010 [arXiv:1611.03470] [INSPIRE].

  15. P. Kraus, J. Liu and D. Marolf, Cutoff AdS 3 versus the \( T\overline{T} \) deformation, JHEP 07 (2018) 027 [arXiv:1801.02714] [INSPIRE].

  16. S. Datta and Y. Jiang, \( T\overline{T} \) deformed partition functions, JHEP 08 (2018) 106 [arXiv:1806.07426] [INSPIRE].

  17. O. Aharony, S. Datta, A. Giveon, Y. Jiang and D. Kutasov, Modular invariance and uniqueness of \( T\overline{T} \) deformed CFT, JHEP 01 (2019) 086 [arXiv:1808.02492] [INSPIRE].

  18. J.L. Cardy, Operator content of two-dimensional conformally invariant theories, Nucl. Phys. B 270 (1986) 186 [INSPIRE].

  19. D. Grumiller, A. Perez, D. Tempo and R. Troncoso, Log corrections to entropy of three dimensional black holes with soft hair, JHEP 08 (2017) 107 [arXiv:1705.10605] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. E. Shaghoulian, A Cardy formula for holographic hyperscaling-violating theories, JHEP 11 (2015) 081 [arXiv:1504.02094] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. T.M. Apostol, Modular functions and Dirichlet series in number theory, Springer, New York, NY, U.S.A. (1990).

  22. E. Ayon-Beato, A. Garbarz, G. Giribet and M. Hassaine, Lifshitz black hole in three dimensions, Phys. Rev. D 80 (2009) 104029 [arXiv:0909.1347] [INSPIRE].

  23. E. Ayón-Beato, M. Bravo-Gaete, F. Correa, M. Hassaïne, M.M. Juárez-Aubry and J. Oliva, First law and anisotropic Cardy formula for three-dimensional Lifshitz black holes, Phys. Rev. D 91 (2015) 064006 [Addendum ibid. D 96 (2017) 049903] [arXiv:1501.01244] [INSPIRE].

  24. M. Bravo-Gaete, S. Gomez and M. Hassaine, Cardy formula for charged black holes with anisotropic scaling, Phys. Rev. D 92 (2015) 124002 [arXiv:1510.04084] [INSPIRE].

  25. H. Afshar, D. Grumiller, W. Merbis, A. Perez, D. Tempo and R. Troncoso, Soft hairy horizons in three spacetime dimensions, Phys. Rev. D 95 (2017) 106005 [arXiv:1611.09783] [INSPIRE].

  26. H. Afshar et al., Soft Heisenberg hair on black holes in three dimensions, Phys. Rev. D 93 (2016) 101503 [arXiv:1603.04824] [INSPIRE].

  27. M. Henneaux, A. Perez, D. Tempo and R. Troncoso, Chemical potentials in three-dimensional higher spin anti-de Sitter gravity, JHEP 12 (2013) 048 [arXiv:1309.4362] [INSPIRE].

    ADS  Article  Google Scholar 

  28. C. Bunster, M. Henneaux, A. Perez, D. Tempo and R. Troncoso, Generalized black holes in three-dimensional spacetime, JHEP 05 (2014) 031 [arXiv:1404.3305] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. G.H. Hardy and S. Ramanujan, Asymptotic formulæ in combinatory analysis, Proc. Lond. Math. Soc. s2-17 (1918) 75.

  30. E.M. Wright, Asymptotic partition formulae. III. Partitions into k-th powers, Acta Math. 63 (1934) 143.

  31. R.C. Vaughan, Squares: additive questions and partitions, Int. J. Number Theor. 11 (2015) 1367.

    MathSciNet  Article  Google Scholar 

  32. A. Gafni, Power partitions, J. Number Theor. 163 (2016) 19 [arXiv:1506.06124].

  33. S.W. Hawking, M.J. Perry and A. Strominger, Soft hair on black holes, Phys. Rev. Lett. 116 (2016) 231301 [arXiv:1601.00921] [INSPIRE].

    ADS  Article  Google Scholar 

  34. S.W. Hawking, M.J. Perry and A. Strominger, Superrotation charge and supertranslation hair on black holes, JHEP 05 (2017) 161 [arXiv:1611.09175] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  35. F. Luca and D. Ralaivaosaona, An explicit bound for the number of partitions into roots, J. Number Theor. 169 (2016) 250.

    MathSciNet  Article  Google Scholar 

  36. Y.-L. Li and Y.-G. Chen, On the r-th root partition function, II, J. Number Theor. 188 (2018) 392.

  37. E. Lifshitz, On the theory of second-order phase transitions I, Zh. Eksp. Teor. Fiz. 11 (1941) 255.

    Google Scholar 

  38. E. Lifshitz, On the theory of second-order phase transitions II, Zh. Eksp. Teor. Fiz. 11 (1941) 269.

    Google Scholar 

  39. D. Melnikov, F. Novaes, A. Pérez and R. Troncoso, work in progress.

  40. Y. Matsuno, Bilinear transformation method, volume 174, Academic Press, New York, NY, U.S.A. (1984).

  41. D.R. Lebedev and A.O. Radul, Generalized internal long waves equations: construction, Hamiltonian structure and conservation laws, Commun. Math. Phys. 91 (1983) 543 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  42. A. Degasperis, D. Lebedev, M. Olshanetsky, S. Pakuliak, A. Perelomov and P. Santini, Nonlocal integrable partners to generalized MKdV and two-dimensional Toda lattice equations in the formalism of a dressing method with quantized spectral parameter, Commun. Math. Phys. 141 (1991) 133 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  43. A. Degasperis et al., Generalized intermediate long-wave hierarchy in zero-curvature representation with noncommutative spectral parameter, J. Math. Phys. 33 (1992) 3783.

    ADS  MathSciNet  Article  Google Scholar 

  44. A.G. Abanov and P.B. Wiegmann, Quantum hydrodynamics, quantum Benjamin-Ono equation and Calogero model, Phys. Rev. Lett. 95 (2005) 076402 [cond-mat/0504041] [INSPIRE].

  45. A.G. Abanov, E. Bettelheim and P. Wiegmann, Integrable hydrodynamics of Calogero-Sutherland model: bidirectional Benjamin-Ono equation, J. Phys. A 42 (2009) 135201 [arXiv:0810.5327] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  46. A. Imambekov, T.L. Schmidt and L.I. Glazman, One-dimensional quantum liquids: beyond the Luttinger liquid paradigm, Rev. Mod. Phys. 84 (2012) 1253 [arXiv:1110.1374].

    ADS  Article  Google Scholar 

  47. V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe ansatz, Commun. Math. Phys. 177 (1996) 381 [hep-th/9412229] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  48. A.V. Litvinov, On spectrum of ILW hierarchy in conformal field theory, JHEP 11 (2013) 155 [arXiv:1307.8094] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  49. I.M. Gel’fand and I.Y. Dorfman, Hamiltonian operators and algebraic structures related to them, Funct. Anal. Appl. 13 (1980) 248.

    Article  Google Scholar 

  50. A. Das, Integrable models, World Sci. Lect. Notes Phys. 30 (1989) 1 [INSPIRE].

  51. P.J. Olver, Applications of Lie groups to differential equations, volume 107, Springer, U.S.A. (1986).

  52. L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys. 91 (2010) 167 [arXiv:0906.3219] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  53. N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7 (2003) 831 [hep-th/0206161] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  54. V.A. Alba, V.A. Fateev, A.V. Litvinov and G.M. Tarnopolskiy, On combinatorial expansion of the conformal blocks arising from AGT conjecture, Lett. Math. Phys. 98 (2011) 33 [arXiv:1012.1312] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  55. S. Ribault, Conformal field theory on the plane, arXiv:1406.4290 [INSPIRE].

  56. B. Feigin, M. Jimbo and E. Mukhin, Integrals of motion from quantum toroidal algebras, J. Phys. A 50 (2017) 464001 [arXiv:1705.07984] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  57. A. Achucarro and P.K. Townsend, Extended supergravities in d = (2 + 1) as Chern-Simons theories, Phys. Lett. B 229 (1989) 383 [INSPIRE].

  58. O. Fuentealba et al., Integrable systems with BMS 3 Poisson structure and the dynamics of locally flat spacetimes, JHEP 01 (2018) 148 [arXiv:1711.02646] [INSPIRE].

  59. E. Witten, (2 + 1)-dimensional gravity as an exactly soluble system, Nucl. Phys. B 311 (1988) 46 [INSPIRE].

  60. O. Coussaert, M. Henneaux and P. van Driel, The asymptotic dynamics of three-dimensional Einstein gravity with a negative cosmological constant, Class. Quant. Grav. 12 (1995) 2961 [gr-qc/9506019] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  61. J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys. 104 (1986) 207 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  62. T. Regge and C. Teitelboim, Role of surface integrals in the Hamiltonian formulation of general relativity, Annals Phys. 88 (1974) 286 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  63. M. Henneaux, L. Maoz and A. Schwimmer, Asymptotic dynamics and asymptotic symmetries of three-dimensional extended AdS supergravity, Annals Phys. 282 (2000) 31 [hep-th/9910013] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  64. M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  65. M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev. D 48 (1993) 1506 [Erratum ibid. D 88 (2013) 069902] [gr-qc/9302012] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fábio Novaes.

Additional information

ArXiv ePrint: 1808.04034

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Melnikov, D., Novaes, F., Pérez, A. et al. Lifshitz scaling, microstate counting from number theory and black hole entropy. J. High Energ. Phys. 2019, 54 (2019). https://doi.org/10.1007/JHEP06(2019)054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2019)054

Keywords

  • Integrable Field Theories
  • Space-Time Symmetries
  • Classical Theories of Gravity
  • Gauge-gravity correspondence