M. Taylor, Non-relativistic holography, arXiv:0812.0530 [INSPIRE].
S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav.
26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
S.A. Hartnoll, Horizons, holography and condensed matter, in Black holes in higher dimensions, G.T. Horowitz ed., (2012), pg. 387 [arXiv:1106.4324] [INSPIRE].
M. Taylor, Lifshitz holography, Class. Quant. Grav.
33 (2016) 033001 [arXiv:1512.03554] [INSPIRE].
E. Bettelheim, A.G. Abanov and P. Wiegmann, Quantum shock waves: the case for non-linear effects in dynamics of electronic liquids, Phys. Rev. Lett.
97 (2006) 246401 [cond-mat/0606778] [INSPIRE].
P. Wiegmann, Non-linear hydrodynamics and fractionally quantized solitons at fractional quantum Hall edge, Phys. Rev. Lett.
108 (2012) 206810 [arXiv:1112.0810] [INSPIRE].
ADS
Article
Google Scholar
S. Sotiriadis, Equilibration in one-dimensional quantum hydrodynamic systems, J. Phys.
A 50 (2017) 424004 [arXiv:1612.00373] [INSPIRE].
H.A. Gonzalez, D. Tempo and R. Troncoso, Field theories with anisotropic scaling in 2D, solitons and the microscopic entropy of asymptotically Lifshitz black holes, JHEP
11 (2011) 066 [arXiv:1107.3647] [INSPIRE].
A. Pérez, D. Tempo and R. Troncoso, Boundary conditions for general relativity on AdS
3
and the KdV hierarchy, JHEP
06 (2016) 103 [arXiv:1605.04490] [INSPIRE].
P. Di Francesco, P. Mathieu and D. Senechal, Conformal field theory, Graduate Texts in Contemporary Physics, Springer-Verlag, New York, NY, U.S.A. (1997) [INSPIRE].
A.B. Zamolodchikov, Expectation value of composite field
\( T\overline{T} \)
in two-dimensional quantum field theory, hep-th/0401146 [INSPIRE].
F.A. Smirnov and A.B. Zamolodchikov, On space of integrable quantum field theories, Nucl. Phys.
B 915 (2017) 363 [arXiv:1608.05499] [INSPIRE].
A. Cavaglià, S. Negro, I.M. Szécsényi and R. Tateo, \( T\overline{T} \)
-deformed 2D quantum field theories, JHEP
10 (2016) 112 [arXiv:1608.05534] [INSPIRE].
L. McGough, M. Mezei and H. Verlinde, Moving the CFT into the bulk with
\( T\overline{T} \), JHEP
04 (2018) 010 [arXiv:1611.03470] [INSPIRE].
P. Kraus, J. Liu and D. Marolf, Cutoff AdS
3
versus the
\( T\overline{T} \)
deformation, JHEP
07 (2018) 027 [arXiv:1801.02714] [INSPIRE].
S. Datta and Y. Jiang, \( T\overline{T} \)
deformed partition functions, JHEP
08 (2018) 106 [arXiv:1806.07426] [INSPIRE].
O. Aharony, S. Datta, A. Giveon, Y. Jiang and D. Kutasov, Modular invariance and uniqueness of
\( T\overline{T} \)
deformed CFT, JHEP
01 (2019) 086 [arXiv:1808.02492] [INSPIRE].
J.L. Cardy, Operator content of two-dimensional conformally invariant theories, Nucl. Phys.
B 270 (1986) 186 [INSPIRE].
D. Grumiller, A. Perez, D. Tempo and R. Troncoso, Log corrections to entropy of three dimensional black holes with soft hair, JHEP
08 (2017) 107 [arXiv:1705.10605] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
E. Shaghoulian, A Cardy formula for holographic hyperscaling-violating theories, JHEP
11 (2015) 081 [arXiv:1504.02094] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
T.M. Apostol, Modular functions and Dirichlet series in number theory, Springer, New York, NY, U.S.A. (1990).
E. Ayon-Beato, A. Garbarz, G. Giribet and M. Hassaine, Lifshitz black hole in three dimensions, Phys. Rev.
D 80 (2009) 104029 [arXiv:0909.1347] [INSPIRE].
E. Ayón-Beato, M. Bravo-Gaete, F. Correa, M. Hassaïne, M.M. Juárez-Aubry and J. Oliva, First law and anisotropic Cardy formula for three-dimensional Lifshitz black holes, Phys. Rev.
D 91 (2015) 064006 [Addendum ibid.
D 96 (2017) 049903] [arXiv:1501.01244] [INSPIRE].
M. Bravo-Gaete, S. Gomez and M. Hassaine, Cardy formula for charged black holes with anisotropic scaling, Phys. Rev.
D 92 (2015) 124002 [arXiv:1510.04084] [INSPIRE].
H. Afshar, D. Grumiller, W. Merbis, A. Perez, D. Tempo and R. Troncoso, Soft hairy horizons in three spacetime dimensions, Phys. Rev.
D 95 (2017) 106005 [arXiv:1611.09783] [INSPIRE].
H. Afshar et al., Soft Heisenberg hair on black holes in three dimensions, Phys. Rev.
D 93 (2016) 101503 [arXiv:1603.04824] [INSPIRE].
M. Henneaux, A. Perez, D. Tempo and R. Troncoso, Chemical potentials in three-dimensional higher spin anti-de Sitter gravity, JHEP
12 (2013) 048 [arXiv:1309.4362] [INSPIRE].
ADS
Article
Google Scholar
C. Bunster, M. Henneaux, A. Perez, D. Tempo and R. Troncoso, Generalized black holes in three-dimensional spacetime, JHEP
05 (2014) 031 [arXiv:1404.3305] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
G.H. Hardy and S. Ramanujan, Asymptotic formulæ in combinatory analysis, Proc. Lond. Math. Soc.
s2-17 (1918) 75.
E.M. Wright, Asymptotic partition formulae. III. Partitions into k-th powers, Acta Math.
63 (1934) 143.
R.C. Vaughan, Squares: additive questions and partitions, Int. J. Number Theor.
11 (2015) 1367.
MathSciNet
Article
Google Scholar
A. Gafni, Power partitions, J. Number Theor.
163 (2016) 19 [arXiv:1506.06124].
S.W. Hawking, M.J. Perry and A. Strominger, Soft hair on black holes, Phys. Rev. Lett.
116 (2016) 231301 [arXiv:1601.00921] [INSPIRE].
ADS
Article
Google Scholar
S.W. Hawking, M.J. Perry and A. Strominger, Superrotation charge and supertranslation hair on black holes, JHEP
05 (2017) 161 [arXiv:1611.09175] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
F. Luca and D. Ralaivaosaona, An explicit bound for the number of partitions into roots, J. Number Theor.
169 (2016) 250.
MathSciNet
Article
Google Scholar
Y.-L. Li and Y.-G. Chen, On the r-th root partition function, II, J. Number Theor.
188 (2018) 392.
E. Lifshitz, On the theory of second-order phase transitions I, Zh. Eksp. Teor. Fiz.
11 (1941) 255.
Google Scholar
E. Lifshitz, On the theory of second-order phase transitions II, Zh. Eksp. Teor. Fiz.
11 (1941) 269.
Google Scholar
D. Melnikov, F. Novaes, A. Pérez and R. Troncoso, work in progress.
Y. Matsuno, Bilinear transformation method, volume 174, Academic Press, New York, NY, U.S.A. (1984).
D.R. Lebedev and A.O. Radul, Generalized internal long waves equations: construction, Hamiltonian structure and conservation laws, Commun. Math. Phys.
91 (1983) 543 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Degasperis, D. Lebedev, M. Olshanetsky, S. Pakuliak, A. Perelomov and P. Santini, Nonlocal integrable partners to generalized MKdV and two-dimensional Toda lattice equations in the formalism of a dressing method with quantized spectral parameter, Commun. Math. Phys.
141 (1991) 133 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Degasperis et al., Generalized intermediate long-wave hierarchy in zero-curvature representation with noncommutative spectral parameter, J. Math. Phys.
33 (1992) 3783.
ADS
MathSciNet
Article
Google Scholar
A.G. Abanov and P.B. Wiegmann, Quantum hydrodynamics, quantum Benjamin-Ono equation and Calogero model, Phys. Rev. Lett.
95 (2005) 076402 [cond-mat/0504041] [INSPIRE].
A.G. Abanov, E. Bettelheim and P. Wiegmann, Integrable hydrodynamics of Calogero-Sutherland model: bidirectional Benjamin-Ono equation, J. Phys.
A 42 (2009) 135201 [arXiv:0810.5327] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Imambekov, T.L. Schmidt and L.I. Glazman, One-dimensional quantum liquids: beyond the Luttinger liquid paradigm, Rev. Mod. Phys.
84 (2012) 1253 [arXiv:1110.1374].
ADS
Article
Google Scholar
V.V. Bazhanov, S.L. Lukyanov and A.B. Zamolodchikov, Integrable structure of conformal field theory, quantum KdV theory and thermodynamic Bethe ansatz, Commun. Math. Phys.
177 (1996) 381 [hep-th/9412229] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A.V. Litvinov, On spectrum of ILW hierarchy in conformal field theory, JHEP
11 (2013) 155 [arXiv:1307.8094] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
I.M. Gel’fand and I.Y. Dorfman, Hamiltonian operators and algebraic structures related to them, Funct. Anal. Appl.
13 (1980) 248.
Article
Google Scholar
A. Das, Integrable models, World Sci. Lect. Notes Phys.
30 (1989) 1 [INSPIRE].
P.J. Olver, Applications of Lie groups to differential equations, volume 107, Springer, U.S.A. (1986).
L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville correlation functions from four-dimensional gauge theories, Lett. Math. Phys.
91 (2010) 167 [arXiv:0906.3219] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys.
7 (2003) 831 [hep-th/0206161] [INSPIRE].
MathSciNet
Article
Google Scholar
V.A. Alba, V.A. Fateev, A.V. Litvinov and G.M. Tarnopolskiy, On combinatorial expansion of the conformal blocks arising from AGT conjecture, Lett. Math. Phys.
98 (2011) 33 [arXiv:1012.1312] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
S. Ribault, Conformal field theory on the plane, arXiv:1406.4290 [INSPIRE].
B. Feigin, M. Jimbo and E. Mukhin, Integrals of motion from quantum toroidal algebras, J. Phys.
A 50 (2017) 464001 [arXiv:1705.07984] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Achucarro and P.K. Townsend, Extended supergravities in d = (2 + 1) as Chern-Simons theories, Phys. Lett.
B 229 (1989) 383 [INSPIRE].
O. Fuentealba et al., Integrable systems with BMS
3
Poisson structure and the dynamics of locally flat spacetimes, JHEP
01 (2018) 148 [arXiv:1711.02646] [INSPIRE].
E. Witten, (2 + 1)-dimensional gravity as an exactly soluble system, Nucl. Phys.
B 311 (1988) 46 [INSPIRE].
O. Coussaert, M. Henneaux and P. van Driel, The asymptotic dynamics of three-dimensional Einstein gravity with a negative cosmological constant, Class. Quant. Grav.
12 (1995) 2961 [gr-qc/9506019] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys.
104 (1986) 207 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
T. Regge and C. Teitelboim, Role of surface integrals in the Hamiltonian formulation of general relativity, Annals Phys.
88 (1974) 286 [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M. Henneaux, L. Maoz and A. Schwimmer, Asymptotic dynamics and asymptotic symmetries of three-dimensional extended AdS supergravity, Annals Phys.
282 (2000) 31 [hep-th/9910013] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett.
69 (1992) 1849 [hep-th/9204099] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev.
D 48 (1993) 1506 [Erratum ibid.
D 88 (2013) 069902] [gr-qc/9302012] [INSPIRE].