Skip to main content

Unitary and non-unitary N = 2 minimal models

A preprint version of the article is available at arXiv.

Abstract

The unitary N = 2 superconformal minimal models have a long history in string theory and mathematical physics, while their non-unitary (and logarithmic) cousins have recently attracted interest from mathematicians. Here, we give an efficient and uniform analysis of all these models as an application of a type of Schur-Weyl duality, as it pertains to the well-known Kazama-Suzuki coset construction. The results include straight-forward classifications of the irreducible modules, branching rules, (super)characters and (Grothendieck) fusion rules.

References

  1. M. Ademollo et al., Supersymmetric strings and color confinement, Phys. Lett. 62B (1976) 105 [INSPIRE].

    ADS  Article  Google Scholar 

  2. P. Di Vecchia, J.L. Petersen and H.B. Zheng, N = 2 extended superconformal theories in two-dimensions, Phys. Lett. 162B (1985) 327 [INSPIRE].

  3. W. Boucher, D. Friedan and A. Kent, Determinant formulae and unitarity for the N = 2 superconformal algebras in two-dimensions or exact results on string compactification, Phys. Lett. B 172 (1986) 316 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. S. Nam, The Kac formula for the N = 1 and the N = 2 super-conformal algebras, Phys. Lett. B 172 (1986) 323 [INSPIRE].

  5. A. Schwimmer and N. Seiberg, Comments on the N = 2, N = 3, N = 4 superconformal algebras in two-dimensions, Phys. Lett. B 184 (1987) 191 [INSPIRE].

  6. A.B. Zamolodchikov and V.A. Fateev, Disorder fields in two-dimensional conformal quantum field theory and N = 2 extended supersymmetry, Sov. Phys. JETP 63 (1986) 913 [INSPIRE].

  7. P. Di Vecchia, J.L. Petersen and M. Yu, On the unitary representations of N = 2 superconformal theory, Phys. Lett. B 172 (1986) 211 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. P. Di Vecchia, J.L. Petersen, M. Yu and H.B. Zheng, Explicit construction of unitary representations of the N = 2 superconformal algebra, Phys. Lett. B 174 (1986) 280 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. T. Eguchi and A. Taormina, On the unitary representations of N = 2 and N = 4 superconformal algebras, Phys. Lett. B 210 (1988) 125 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. W. Lerche, C. Vafa and N.P. Warner, Chiral rings in N = 2 superconformal theories, Nucl. Phys. B 324 (1989) 427 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. Y. Kazama and H. Suzuki, New N = 2 superconformal field theories and superstring compactification, Nucl. Phys. B 321 (1989) 232 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. Y. Kazama and H. Suzuki, Characterization of N = 2 superconformal models generated by coset space method, Phys. Lett. B 216 (1989) 112 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. V.K. Dobrev, Characters of the unitarizable highest weight modules over the N = 2 superconformal algebras, Phys. Lett. B 186 (1987) 43 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. Y. Matsuo, Character formula of C < 1 unitary representation of N = 2 superconformal algebra, Prog. Theor. Phys. 77 (1987) 793 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. M. Dörrzapf, Singular vectors of the N = 2 superconformal algebra, Int. J. Mod. Phys. A 10 (1995) 2143 [hep-th/9403124] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. W. Eholzer and M.R. Gaberdiel, Unitarity of rational N = 2 superconformal theories, Commun. Math. Phys. 186 (1997) 61 [hep-th/9601163] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. M. Dörrzapf, The embedding structure of unitary N = 2 minimal models, Nucl. Phys. B 529 (1998) 639 [hep-th/9712165] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. F. Ravanini and S.-K. Yang, Modular invariance in N = 2 superconformal field theories, Phys. Lett. B 195 (1987) 202 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. Z.-a. Qiu, Modular invariant partition functions for N = 2 superconformal field theories, Phys. Lett. B 198 (1987) 497 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. M. Wakimoto, Fusion rules for N = 2 superconformal modules, hep-th/9807144 [INSPIRE].

  21. D. Adamović, Vertex algebra approach to fusion rules for N = 2 superconformal minimal models, J. Algebra 239 (2001) 549.

    MathSciNet  Article  Google Scholar 

  22. V Kac, S Roan and M Wakimoto, Quantum reduction for affine superalgebras, Commun. Math. Phys. 241 (2003) 307 [math-ph/0302015].

    ADS  MathSciNet  Article  Google Scholar 

  23. V.G. Kac and M. Wakimoto, Quantum reduction and representation theory of superconformal algebras, math-ph/0304011 [INSPIRE].

  24. A. Semikhatov, A. Taormina and I. Yu. Tipunin, Higher-level Appell functions, modular transformations, and characters, Commun. Math. Phys. 255 (2005) 469 [hep-th/0311314].

    ADS  MathSciNet  Article  Google Scholar 

  25. V. Kac and M. Wakimoto, Representations of affine superalgebras and mock theta functions, Transform. Groups 19 (2014) 383 [arXiv:1308.1261].

    MathSciNet  Article  Google Scholar 

  26. V.G. Kac and M. Wakimoto, Representations of affine superalgebras and mock theta functions II, Adv. Math. 300 (2016) 17 [arXiv:1402.0727] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  27. V. Kac and M. Wakimoto, Representations of superconformal algebras and mock theta functions, Trans. Moscow Math. Soc. 78 (2017) 9 [arXiv:1701.03344].

    MathSciNet  Article  Google Scholar 

  28. B.L. Feigin, A.M. Semikhatov and I. Yu. Tipunin, Equivalence between chain categories of representations of affine sl(2) and N = 2 superconformal algebras, J. Math. Phys. 39 (1998) 3865 [hep-th/9701043] [INSPIRE].

  29. A.M. Semikhatov and V.A. Sirota, Embedding diagrams of N = 2 Verma modules and relaxed sl(2) Verma modules, hep-th/9712102 [INSPIRE].

  30. B.L. Feigin, A.M. Semikhatov, V.A. Sirota and I. Yu. Tipunin, Resolutions and characters of irreducible representations of the N = 2 superconformal algebra, Nucl. Phys. B 536 (1998) 617 [hep-th/9805179] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  31. D. Adamović, Representations of the N = 2 superconformal vertex algebra, Int. Math. Res. Not. 1999 (1999) 61 [math.QA/9809141].

  32. R. Sato, Equivalences between weight modules via \( \mathcal{N} \) = 2 coset constructions, arXiv:1605.02343 [INSPIRE].

  33. R. Sato, Modular invariant representations of the \( \mathcal{N} \) = 2 superconformal algebra, arXiv:1706.04882 [INSPIRE].

  34. S. Koshida and R. Sato, On resolution of highest weight modules over the \( \mathcal{N} \) = 2 superconformal algebra, arXiv:1810.13147 [INSPIRE].

  35. D. Adamović and A. Milas, Vertex operator algebras associated to modular invariant representations of A (1)1 , Math. Res. Lett. 2 (1995) 563 [q-alg/9509025].

  36. M.R. Gaberdiel, Fusion rules and logarithmic representations of a WZW model at fractional level, Nucl. Phys. B 618 (2001) 407 [hep-th/0105046] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  37. D. Ridout, \( \widehat{\mathfrak{sl}} \)(2)−1/2 : A case study, Nucl. Phys. B 814 (2009) 485 [arXiv:0810.3532] [INSPIRE].

  38. D. Ridout, \( \widehat{\mathfrak{sl}} \)(2)−1/2 and the triplet model, Nucl. Phys. B 835 (2010) 314 [arXiv:1001.3960] [INSPIRE].

  39. D. Ridout, Fusion in fractional level \( \widehat{\mathfrak{sl}} \)(2)-theories with k = − \( \frac{1}{2} \), Nucl. Phys. B 848 (2011) 216 [arXiv:1012.2905] [INSPIRE].

  40. T. Creutzig and D. Ridout, Modular data and Verlinde formulae for fractional level WZW models I, Nucl. Phys. B 865 (2012) 83 [arXiv:1205.6513] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  41. T. Creutzig and D. Ridout, Modular data and Verlinde formulae for fractional level WZW models II, Nucl. Phys. B 875 (2013) 423 [arXiv:1306.4388] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  42. D. Ridout and S. Wood, Relaxed singular vectors, Jack symmetric functions and fractional level \( \widehat{\mathfrak{sl}} \)(2) models, Nucl. Phys. B 894 (2015) 621 [arXiv:1501.07318] [INSPIRE].

  43. T. Creutzig and A.R. Linshaw, Cosets of affine vertex algebras inside larger structures, J. Algebra 517 (2019) 396 [arXiv:1407.8512] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  44. T. Creutzig, S. Kanade and A. Linshaw, Simple current extensions beyond semi-simplicity, Commun. Contemp. Math. (2019) 1950001 [arXiv:1511.08754].

  45. T. Creutzig, S. Kanade, A.R. Linshaw and D. Ridout, Schur-Weyl Duality for Heisenberg Cosets, Transform. Groups 24 (2019) 301 [arXiv:1611.00305] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  46. T. Creutzig, S. Kanade and R. McRae, Tensor categories for vertex operator superalgebra extensions, arXiv:1705.05017 [INSPIRE].

  47. V. Kac and A. Radul, Representation theory of the vertex algebra W(1+infinity), hep-th/9512150 [INSPIRE].

  48. C. Dong, H. Li and G. Mason, Compact automorphism groups of vertex operator algebras, Int. Math. Res. Not. 1996 (1996) 913 [q-alg/9608009].

  49. Y.-Z. Huang, J. Lepowsky and L. Zhang, Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, I: Introduction and strongly graded algebras and their generalized modules, arXiv:1012.4193 [INSPIRE].

  50. Y.-Z. Huang, J. Lepowsky and L. Zhang, Logarithmic tensor category theory, II: Logarithmic formal calculus and properties of logarithmic intertwining operators, arXiv:1012.4196 [INSPIRE].

  51. Y.-Z. Huang, J. Lepowsky and L. Zhang, Logarithmic tensor category theory, III: Intertwining maps and tensor product bifunctors, arXiv:1012.4197 [INSPIRE].

  52. Y.-Z. Huang, J. Lepowsky and L. Zhang, Logarithmic tensor category theory, IV: Constructions of tensor product bifunctors and the compatibility conditions, arXiv:1012.4198 [INSPIRE].

  53. Y.-Z. Huang, J. Lepowsky and L. Zhang, Logarithmic tensor category theory, V: Convergence condition for intertwining maps and the corresponding compatibility condition, arXiv:1012.4199 [INSPIRE].

  54. Y.-Z. Huang, J. Lepowsky and L. Zhang, Logarithmic tensor category theory, VI: Expansion condition, associativity of logarithmic intertwining operators and the associativity isomorphisms, arXiv:1012.4202 [INSPIRE].

  55. Y.-Z. Huang, J. Lepowsky and L. Zhang, Logarithmic tensor category theory, VII: Convergence and extension properties and applications to expansion for intertwining maps, arXiv:1110.1929 [INSPIRE].

  56. Y.-Z. Huang, J. Lepowsky and L. Zhang, Logarithmic tensor category theory, VIII: Braided tensor category structure on categories of generalized modules for a conformal vertex algebra, arXiv:1110.1931 [INSPIRE].

  57. Y.-Z. Huang, A. Kirillov Jr. and J. Lepowsky, Braided tensor categories and extensions of vertex operator algebras, Commun. Math. Phys. 337 (2015) 1143 [arXiv:1406.3420] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  58. D. Ridout and S. Wood, The Verlinde formula in logarithmic CFT, J. Phys. Conf. Ser. 597 (2015) 012065 [arXiv:1409.0670] [INSPIRE].

    Article  Google Scholar 

  59. J. Auger, T. Creutzig and D. Ridout, Modularity of logarithmic parafermion vertex algebras, Lett. Math. Phys. 108 (2018) 2543 [arXiv:1704.05168] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  60. T. Creutzig, J. Frohlich and S. Kanade, Representation theory of L k (\( \mathfrak{o}\mathfrak{s}\mathfrak{p} \)(1|2)) from vertex tensor categories and Jacobi forms, arXiv:1706.00242.

  61. T. Creutzig, S. Kanade, T. Liu and D. Ridout, Cosets, characters and fusion for admissible-level \( \mathfrak{o}\mathfrak{s}\mathfrak{p} \)(1|2) minimal models, Nucl. Phys. B 938 (2019) 22 [arXiv:1806.09146] [INSPIRE].

  62. T. Creutzig and D. Ridout, Logarithmic conformal field theory: beyond an introduction, J. Phys. A 46 (2013) 4006 [arXiv:1303.0847] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  63. D. Adamović, Realizations of simple affine vertex algebras and their modules: the cases \( \widehat{sl(2)} \) and \( \widehat{osp\left(1,2\right)} \). arXiv:1711.11342.

  64. K. Kawasetsu and D. Ridout, Relaxed highest-weight modules I: rank 1 cases, Commun. Math. Phys. 368 (2019) 627 [arXiv:1803.01989] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  65. V. Kac and M. Wakimoto, Modular invariant representations of infinite-dimensional Lie algebras and superalgebras, Proc. Nat. Acad. Sci. U.S.A. 85 (1988) 4956.

    ADS  MathSciNet  Article  Google Scholar 

  66. I.G. Koh and P. Sorba, Fusion Rules and (Sub)Modular Invariant Partition Functions in Nonunitary Theories, Phys. Lett. B 215 (1988) 723 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  67. A. Dabholkar, S. Murthy and D. Zagier, Quantum Black Holes, Wall Crossing and Mock Modular Forms, arXiv:1208.4074 [INSPIRE].

  68. K. Bringmann, T. Creutzig and L. Rolen, Negative index Jacobi forms and quantum modular forms, arXiv:1401.7189 [INSPIRE].

  69. K. Bringmann, L. Rolen and S. Zwegers, On the Fourier coefficients of negative index meromorphic Jacobi forms, arXiv:1501.04476 [INSPIRE].

  70. M. Gorelik and V. Kac. On simplicity of vacuum modules, Adv. Math. 211 (2007) 621 [math-ph/0606002].

  71. W. Eholzer and R. Hübel, Fusion algebras of fermionic rational conformal field theories via a generalized Verlinde formula, Nucl. Phys. B 414 (1994) 348 [hep-th/9307031] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  72. M. Canagasabey and D. Ridout, Fusion rules for the logarithmic N = 1 superconformal minimal models II: Including the Ramond sector, Nucl. Phys. B 905 (2016) 132 [arXiv:1512.05837] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  73. T. Creutzig, Y.-Z. Huang and J. Yang, Braided tensor categories of admissible modules for affine Lie algebras, Commun. Math. Phys. 362 (2018) 827 [arXiv:1709.01865] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  74. V.G. Kac and D.H. Peterson, Infinite dimensional Lie algebras, theta functions and modular forms, Adv. Math. 53 (1984) 125 [INSPIRE].

    MathSciNet  Article  Google Scholar 

  75. V.G. Kac and M. Wakimoto, Integrable highest weight modules over affine superalgebras and number theory, Progr. Math. 123 (1994) 415 [hep-th/9407057] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  76. C. Alfes and T. Creutzig, The mock modular data of a family of superalgebras, Proc. Am. Math. Soc. 142 (2014) 2265 [arXiv:1205.1518] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  77. T. Creutzig and D. Ridout, Relating the archetypes of logarithmic conformal field theory, Nucl. Phys. B 872 (2013) 348 [arXiv:1107.2135] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  78. Y.-Z. Huang, Vertex operator algebras, the Verlinde conjecture and modular tensor categories, Proc. Nat. Acad. Sci. 102 (2005) 5352 [math/0412261] [INSPIRE].

  79. T. Creutzig, Fusion categories for affine vertex algebras at admissible levels. arXiv:1807.00415.

  80. T. Liu, Coset construction for the N = 2 and osp(1|2) minimal models, Ph.D. Thesis, School of Mathematics and Statistics, University of Melbourne, Australia, submitted.

  81. K. Kytölä and D. Ridout, On staggered indecomposable Virasoro modules, J. Math. Phys. 50 (2009) 123503 [arXiv:0905.0108] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianshu Liu.

Additional information

ArXiv ePrint: 1902.08370

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Creutzig, T., Liu, T., Ridout, D. et al. Unitary and non-unitary N = 2 minimal models. J. High Energ. Phys. 2019, 24 (2019). https://doi.org/10.1007/JHEP06(2019)024

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2019)024

Keywords

  • Conformal and W Symmetry
  • Conformal Field Theory
  • Sigma Models