Comments on black holes in bubbling spacetimes

Abstract

In five-dimensional minimal supergravity, there are spherical black holes with nontrivial topology outside the horizon which have the same conserved charges at infinity as the BMPV solution. We show that some of these black holes have greater entropy than the BMPV solution. These spacetimes are all asymptotically flat, stationary, and supersymmetric. We also show that there is a limit in which the black hole shrinks to zero size and the solution becomes a nonsingular “bubbling” geometry. Thus, these solutions provide explicit analytic examples of placing black holes inside solitons.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    R. Emparan and H.S. Reall, A rotating black ring solution in five-dimensions, Phys. Rev. Lett. 88 (2002) 101101 [hep-th/0110260] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. [2]

    J.C. Breckenridge, R.C. Myers, A.W. Peet and C. Vafa, D-branes and spinning black holes, Phys. Lett. B 391 (1997) 93 [hep-th/9602065] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  3. [3]

    I. Bena and N.P. Warner, Black holes, black rings and their microstates, Lect. Notes Phys. 755 (2008) 1 [hep-th/0701216] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  4. [4]

    H.K. Kunduri and J. Lucietti, Black hole non-uniqueness via spacetime topology in five dimensions, JHEP 10 (2014) 082 [arXiv:1407.8002] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  5. [5]

    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    H. Elvang, R. Emparan, D. Mateos and H.S. Reall, A supersymmetric black ring, Phys. Rev. Lett. 93 (2004) 211302 [hep-th/0407065] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. [7]

    J.P. Gauntlett and J.B. Gutowski, Concentric black rings, Phys. Rev. D 71 (2005) 025013 [hep-th/0408010] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  8. [8]

    F. Denef and G.W. Moore, Split states, entropy enigmas, holes and halos, JHEP 11 (2011) 129 [hep-th/0702146] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  9. [9]

    P.M. Crichigno, F. Porri and S. Vandoren, Bound states of spinning black holes in five dimensions, JHEP 05 (2017) 101 [arXiv:1603.09729] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. [10]

    I. Bena, B.D. Chowdhury, J. de Boer, S. El-Showk and M. Shigemori, Moulting black holes, JHEP 03 (2012) 094 [arXiv:1108.0411] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  11. [11]

    H.K. Kunduri and J. Lucietti, Supersymmetric black holes with lens-space topology, Phys. Rev. Lett. 113 (2014) 211101 [arXiv:1408.6083] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    S. Tomizawa and M. Nozawa, Supersymmetric black lenses in five dimensions, Phys. Rev. D 94 (2016) 044037 [arXiv:1606.06643] [INSPIRE].

    ADS  Google Scholar 

  13. [13]

    M.S. Volkov and D.V. Galtsov, Black holes in Einstein-Yang-Mills theory (in Russian), Sov. J. Nucl. Phys. 51 (1990) 747 [INSPIRE].

    Google Scholar 

  14. [14]

    K.-M. Lee, V.P. Nair and E.J. Weinberg, Black holes in magnetic monopoles, Phys. Rev. D 45 (1992) 2751 [hep-th/9112008] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  15. [15]

    P. Basu et al., Small hairy black holes in global AdS spacetime, JHEP 10 (2010) 045 [arXiv:1003.3232] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  16. [16]

    O.J.C. Dias, G.T. Horowitz and J.E. Santos, Gravitational turbulent instability of anti-de Sitter space, Class. Quant. Grav. 29 (2012) 194002 [arXiv:1109.1825] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  17. [17]

    P.A. Cano, P. Meessen, T. Ortín and P.F. Ramirez, Non-Abelian black holes in string theory, arXiv:1704.01134 [INSPIRE].

  18. [18]

    J.P. Gauntlett, J.B. Gutowski, C.M. Hull, S. Pakis and H.S. Reall, All supersymmetric solutions of minimal supergravity in five dimensions, Class. Quant. Grav. 20 (2003) 4587 [hep-th/0209114] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  19. [19]

    S. Hollands and S. Yazadjiev, Uniqueness theorem for 5-dimensional black holes with two axial Killing fields, Commun. Math. Phys. 283 (2008) 749 [arXiv:0707.2775] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  20. [20]

    J. Armas, Uniqueness of black holes with bubbles in minimal supergravity, Class. Quant. Grav. 32 (2015) 045001 [arXiv:1408.4567] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  21. [21]

    H.K. Kunduri and J. Lucietti, The first law of soliton and black hole mechanics in five dimensions, Class. Quant. Grav. 31 (2014) 032001 [arXiv:1310.4810] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  22. [22]

    I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes, Phys. Rev. D 74 (2006) 066001 [hep-th/0505166] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  23. [23]

    H.K. Kunduri and J. Lucietti, Classification of near-horizon geometries of extremal black holes, Living Rev. Rel. 16 (2013) 8 [arXiv:1306.2517] [INSPIRE].

    Article  MATH  Google Scholar 

  24. [24]

    B. Haghighat, S. Murthy, C. Vafa and S. Vandoren, F-theory, spinning black holes and multi-string branches, JHEP 01 (2016) 009 [arXiv:1509.00455] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. [25]

    V. Balasubramanian, E.G. Gimon and T.S. Levi, Four dimensional black hole microstates: from D-branes to spacetime foam, JHEP 01 (2008) 056 [hep-th/0606118] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  26. [26]

    K. Skenderis and M. Taylor, The fuzzball proposal for black holes, Phys. Rept. 467 (2008) 117 [arXiv:0804.0552] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  27. [27]

    S. Giusto, E. Moscato and R. Russo, AdS 3 holography for 1/4 and 1/8 BPS geometries, JHEP 11 (2015) 004 [arXiv:1507.00945] [INSPIRE].

    ADS  Article  Google Scholar 

  28. [28]

    F.C. Eperon, H.S. Reall and J.E. Santos, Instability of supersymmetric microstate geometries, JHEP 10 (2016) 031 [arXiv:1607.06828] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. [29]

    D. Marolf, B. Michel and A. Puhm, A rough end for smooth microstate geometries, JHEP 05 (2017) 021 [arXiv:1612.05235] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to James Lucietti.

Additional information

ArXiv ePrint: 1704.04071

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Horowitz, G.T., Kunduri, H.K. & Lucietti, J. Comments on black holes in bubbling spacetimes. J. High Energ. Phys. 2017, 48 (2017). https://doi.org/10.1007/JHEP06(2017)048

Download citation

Keywords

  • Black Holes
  • Black Holes in String Theory
  • Supergravity Models