A. Almheiri, X. Dong and D. Harlow, Bulk locality and quantum error correction in AdS/CFT, JHEP
04 (2015) 163 [arXiv:1411.7041] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP
04 (2003) 021 [hep-th/0106112] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett.
96 (2006) 181602 [hep-th/0603001] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy, JHEP
08 (2006) 045 [hep-th/0605073] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP
07 (2007) 062 [arXiv:0705.0016] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M. Headrick and T. Takayanagi, A holographic proof of the strong subadditivity of entanglement entropy, Phys. Rev.
D 76 (2007) 106013 [arXiv:0704.3719] [INSPIRE].
ADS
MathSciNet
Google Scholar
M. Van Raamsdonk, Comments on quantum gravity and entanglement, arXiv:0907.2939 [INSPIRE].
M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav.
42 (2010) 2323 [arXiv:1005.3035] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
P. Hayden, M. Headrick and A. Maloney, Holographic mutual information is monogamous, Phys. Rev.
D 87 (2013) 046003 [arXiv:1107.2940] [INSPIRE].
ADS
Google Scholar
A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP
08 (2013) 090 [arXiv:1304.4926] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys.
61 (2013) 781 [arXiv:1306.0533] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
N. Lashkari, M.B. McDermott and M. Van Raamsdonk, Gravitational dynamics from entanglement ‘thermodynamics’, JHEP
04 (2014) 195 [arXiv:1308.3716] [INSPIRE].
ADS
Article
Google Scholar
G. Vidal, Efficient classical simulation of slightly entangled quantum computations, Phys. Rev. Lett.
91 (2003) 147902 [quant-ph/0301063].
F. Verstraete and J.I. Cirac, Renormalization algorithms for quantum-many body systems in two and higher dimensions, cond-mat/0407066 [INSPIRE].
F. Verstraete, J. Cirac and V. Murg, Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems, Adv. Phys.
57 (2008) 143 [arXiv:0907.2796].
ADS
Article
Google Scholar
G. Vidal, Entanglement renormalization, Phys. Rev. Lett.
99 (2007) 220405 [cond-mat/0512165] [INSPIRE].
ADS
Article
Google Scholar
G. Vidal, Class of quantum many-body states that can be efficiently simulated, Phys. Rev. Lett.
101 (2008) 110501 [INSPIRE].
ADS
Article
Google Scholar
G. Evenbly and G. Vidal, Entanglement renormalization in two spatial dimensions, Phys. Rev. Lett.
102 (2009) 180406 [arXiv:0811.0879] [INSPIRE].
ADS
Article
Google Scholar
G. Evenbly and G. Vidal, Algorithms for entanglement renormalization, Phys. Rev.
B 79 (2009) 144108 [arXiv:0707.1454].
ADS
Article
Google Scholar
G. Evenbly and G. Vidal, Frustrated antiferromagnets with entanglement renormalization: ground state of the spin-1/2 Heisenberg model on a Kagome lattice, Phys. Rev. Lett.
104 (2010) 187203 [arXiv:0904.3383] [INSPIRE].
ADS
Article
Google Scholar
L. Susskind and E. Witten, The holographic bound in anti-de Sitter space, hep-th/9805114 [INSPIRE].
B. Swingle, Entanglement renormalization and holography, Phys. Rev.
D 86 (2012) 065007 [arXiv:0905.1317] [INSPIRE].
ADS
Google Scholar
B. Swingle, Constructing holographic spacetimes using entanglement renormalization, arXiv:1209.3304 [INSPIRE].
B. Yoshida, Information storage capacity of discrete spin systems, Annals Phys.
338 (2013) 134 [arXiv:1111.3275] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J.I. Latorre and G. Sierra, Holographic codes, arXiv:1502.06618 [INSPIRE].
A.J. Ferris and D. Poulin, Tensor networks and quantum error correction, Phys. Rev. Lett.
113 (2014) 030501 [arXiv:1312.4578].
ADS
Article
Google Scholar
D. Bacon, S.T. Flammia, A.W. Harrow and J. Shi, Sparse quantum codes from quantum circuits, arXiv:1411.3334.
X.-L. Qi, Exact holographic mapping and emergent space-time geometry, arXiv:1309.6282 [INSPIRE].
W. Helwig, W. Cui, A. Riera, J.I. Latorre and H.-K. Lo, Absolute maximal entanglement and quantum secret sharing, Phys. Rev.
A 86 (2012) 052335 [arXiv:1204.2289] [INSPIRE].
ADS
Article
Google Scholar
W. Helwig, Absolutely maximally entangled qudit graph states, arXiv:1306.2879.
R. Cleve, D. Gottesman and H.-K. Lo, How to share a quantum secret, Phys. Rev. Lett.
83 (1999) 648 [quant-ph/9901025] [INSPIRE].
ADS
Article
Google Scholar
J. Weeks, KaleidoTile. A computer program for creating spherical, Euclidean and hyperbolic tilings, http://www.geometrygames.org/KaleidoTile.
C.H. Papadimitriou and K. Steiglitz, Combinatorial optimization: algorithms and complexity, Courier Corporation, (1998).
A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Holographic representation of local bulk operators, Phys. Rev.
D 74 (2006) 066009 [hep-th/0606141] [INSPIRE].
ADS
MathSciNet
Google Scholar
I.A. Morrison, Boundary-to-bulk maps for AdS causal wedges and the Reeh-Schlieder property in holography, JHEP
05 (2014) 053 [arXiv:1403.3426] [INSPIRE].
ADS
Article
Google Scholar
D. Kribs, R. Laflamme and D. Poulin, Unified and generalized approach to quantum error correction, Phys. Rev. Lett.
94 (2005) 180501 [quant-ph/0412076].
ADS
Article
Google Scholar
D.W. Kribs, R. Laflamme, D. Poulin and M. Lesosky, Operator quantum error correction, Quant. Inf. Comp.
6 (2006) 383 [quant-ph/0504189].
C. Bény, A. Kempf and D. Kribs, Quantum error correction of observables, Phys. Rev.
A 76 (2007) 042303 [arXiv:0705.1574].
ADS
Article
Google Scholar
C. Bény, A. Kempf and D. Kribs, Generalization of quantum error correction via the Heisenberg picture, Phys. Rev. Lett.
98 (2007) 100502 [quant-ph/0608071].
M. Headrick, V.E. Hubeny, A. Lawrence and M. Rangamani, Causality & holographic entanglement entropy, JHEP
12 (2014) 162 [arXiv:1408.6300] [INSPIRE].
ADS
Article
Google Scholar
A.C. Wall, Maximin surfaces and the strong subadditivity of the covariant holographic entanglement entropy, Class. Quant. Grav.
31 (2014) 225007 [arXiv:1211.3494] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, The gravity dual of a density matrix, Class. Quant. Grav.
29 (2012) 155009 [arXiv:1204.1330] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
D.L. Jafferis and S.J. Suh, The gravity duals of modular hamiltonians, arXiv:1412.8465 [INSPIRE].
D. Gottesman, An introduction to quantum error correction and fault-tolerant quantum computation, arXiv:0904.2557.
E. Mintun, J. Polchinski and V. Rosenhaus, Bulk-boundary duality, gauge invariance and quantum error correction, arXiv:1501.06577 [INSPIRE].
S. Bravyi and B. Terhal, A no-go theorem for a two-dimensional self-correcting quantum memory based on stabilizer codes, New J. Phys.
11 (2009) 043029 [arXiv:0810.1983].
ADS
Article
Google Scholar
F. Pastawski and B. Yoshida, Fault-tolerant logical gates in quantum error-correcting codes, Phys. Rev.
A 91 (2015) 012305 [arXiv:1408.1720].
ADS
MathSciNet
Article
Google Scholar
A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or firewalls?, JHEP
02 (2013) 062 [arXiv:1207.3123] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
D. Harlow, Jerusalem lectures on black holes and quantum information, arXiv:1409.1231 [INSPIRE].
J.D. Bekenstein, Black holes and entropy, Phys. Rev.
D 7 (1973) 2333 [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
S.W. Hawking, Particle creation by black holes, Commun. Math. Phys.
43 (1975) 199 [Erratum ibid.
46 (1976) 206] [INSPIRE].
T. Hartman and J. Maldacena, Time evolution of entanglement entropy from black hole interiors, JHEP
05 (2013) 014 [arXiv:1303.1080] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
L. Susskind, Computational complexity and black hole horizons, arXiv:1403.5695 [INSPIRE].
D.A. Roberts, D. Stanford and L. Susskind, Localized shocks, JHEP
03 (2015) 051 [arXiv:1409.8180] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
D. Aharonov and M. Ben-Or, Fault-tolerant quantum computation with constant error, in Proceedings of the 29th
Annual ACM Symposium on Theory of Computing, (1997), pg. 176 [quant-ph/9906129] [INSPIRE].
M. Grassl, T. Beth and M. Roetteler, On optimal quantum codes, Int. J. Quant. Inf.
2 (2004) 55 [quant-ph/0312164].
D.N. Page, Average entropy of a subsystem, Phys. Rev. Lett.
71 (1993) 1291 [gr-qc/9305007] [INSPIRE].
S. Goldstein, J.L. Lebowitz, R. Tumulka and N. Zanghì, Canonical typicality, Phys. Rev. Lett.
96 (2006) 050403 [cond-mat/0511091].
J. Adler, Bootstrap percolation, Phys.
A 171 (1991) 453.
Google Scholar
D.A. Levin, Y. Peres and E.L. Wilmer, Markov chains and mixing times, American Mathematical Society, U.S.A. (2008).
Book
Google Scholar
M.A. Nielsen and I.L. Chuang, Quantum computation and quantum information, Cambridge University Press, Cambridge U.K. (2000).
MATH
Google Scholar
N. Schuch, I. Cirac and D. Perez-Garcia, PEPS as ground states: degeneracy and topology, Ann. Phys.
325 (2010) 2153 [arXiv:1001.3807].
ADS
MathSciNet
Article
MATH
Google Scholar
M.B. ¸ahinoğlu et al., Characterizing topological order with matrix product operators, arXiv:1409.2150.
O. Buerschaper, Twisted injectivity in projected entangled pair states and the classification of quantum phases, Annals Phys.
351 (2014) 447 [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
B. Yoshida and I.L. Chuang, Framework for classifying logical operators in stabilizer codes, Phys. Rev.
A 81 (2010) 052302 [arXiv:1002.0085].
ADS
Article
Google Scholar
J. Haah and J. Preskill, Logical-operator tradeoff for local quantum codes, Phys. Rev.
A 86 (2012) 032308 [arXiv:1011.3529].
ADS
Article
Google Scholar
P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, JHEP
09 (2007) 120 [arXiv:0708.4025] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar