Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

A factorization approach to next-to-leading-power threshold logarithms

  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 03 June 2015
  • volume 2015, Article number: 8 (2015)
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
A factorization approach to next-to-leading-power threshold logarithms
Download PDF
  • D. Bonocore1,
  • E. Laenen1,2,3,
  • L. Magnea4,
  • S. Melville5,
  • L. Vernazza6 &
  • …
  • C. D. White5 
  • 484 Accesses

  • 71 Citations

  • 1 Altmetric

  • Explore all metrics

  • Cite this article

A preprint version of the article is available at arXiv.

Abstract

Threshold logarithms become dominant in partonic cross sections when the selected final state forces gluon radiation to be soft or collinear. Such radiation factorizes at the level of scattering amplitudes, and this leads to the resummation of threshold logarithms which appear at leading power in the threshold variable. In this paper, we consider the extension of this factorization to include effects suppressed by a single power of the threshold variable. Building upon the Low-Burnett-Kroll-Del Duca (LBKD) theorem, we propose a decomposition of radiative amplitudes into universal building blocks, which contain all effects ultimately responsible for next-to-leading-power (NLP) threshold logarithms in hadronic cross sections for electroweak annihilation processes. In particular, we provide a NLO evaluation of the radiative jet function, responsible for the interference of next-to-soft and collinear effects in these cross sections. As a test, using our expression for the amplitude, we reproduce all abelian-like NLP threshold logarithms in the NNLO Drell-Yan cross section, including the interplay of real and virtual emissions. Our results are a significant step towards developing a generally applicable resummation formalism for NLP threshold effects, and illustrate the breakdown of next-to-soft theorems for gauge theory amplitudes at loop level.

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. G.F. Sterman, Summation of large corrections to short distance hadronic cross-sections, Nucl. Phys. B 281 (1987) 310 [INSPIRE].

    Article  ADS  Google Scholar 

  2. S. Catani and L. Trentadue, Resummation of the QCD Perturbative Series for Hard Processes, Nucl. Phys. B 327 (1989) 323 [INSPIRE].

    Article  ADS  Google Scholar 

  3. H. Contopanagos, E. Laenen and G.F. Sterman, Sudakov factorization and resummation, Nucl. Phys. B 484 (1997) 303 [hep-ph/9604313] [INSPIRE].

    Article  ADS  Google Scholar 

  4. G.P. Korchemsky and G. Marchesini, Resummation of large infrared corrections using Wilson loops, Phys. Lett. B 313 (1993) 433 [INSPIRE].

    Article  ADS  Google Scholar 

  5. G.P. Korchemsky and G. Marchesini, Structure function for large x and renormalization of Wilson loop, Nucl. Phys. B 406 (1993) 225 [hep-ph/9210281] [INSPIRE].

    Article  ADS  Google Scholar 

  6. S. Forte and G. Ridolfi, Renormalization group approach to soft gluon resummation, Nucl. Phys. B 650 (2003) 229 [hep-ph/0209154] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  7. T. Becher and M. Neubert, Threshold resummation in momentum space from effective field theory, Phys. Rev. Lett. 97 (2006) 082001 [hep-ph/0605050] [INSPIRE].

    Article  ADS  Google Scholar 

  8. M.D. Schwartz, Resummation and NLO matching of event shapes with effective field theory, Phys. Rev. D 77 (2008) 014026 [arXiv:0709.2709] [INSPIRE].

    ADS  Google Scholar 

  9. C.W. Bauer, S.P. Fleming, C. Lee and G.F. Sterman, Factorization of e + e − Event Shape Distributions with Hadronic Final States in Soft Collinear Effective Theory, Phys. Rev. D 78 (2008) 034027 [arXiv:0801.4569] [INSPIRE].

    ADS  Google Scholar 

  10. J.-y. Chiu, A. Fuhrer, R. Kelley and A.V. Manohar, Factorization Structure of Gauge Theory Amplitudes and Application to Hard Scattering Processes at the LHC, Phys. Rev. D 80 (2009) 094013 [arXiv:0909.0012] [INSPIRE].

    ADS  Google Scholar 

  11. E. Laenen, G. Stavenga and C.D. White, Path integral approach to eikonal and next-to-eikonal exponentiation, JHEP 03 (2009) 054 [arXiv:0811.2067] [INSPIRE].

    Article  ADS  Google Scholar 

  12. J.C. Collins, Sudakov form-factors, Adv. Ser. Direct. High Energy Phys. 5 (1989) 573 [hep-ph/0312336] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  13. L.J. Dixon, L. Magnea and G.F. Sterman, Universal structure of subleading infrared poles in gauge theory amplitudes, JHEP 08 (2008) 022 [arXiv:0805.3515] [INSPIRE].

    Article  ADS  Google Scholar 

  14. S. Moch, J.A.M. Vermaseren and A. Vogt, The quark form-factor at higher orders, JHEP 08 (2005) 049 [hep-ph/0507039] [INSPIRE].

    Article  ADS  Google Scholar 

  15. S. Moch, J.A.M. Vermaseren and A. Vogt, Three-loop results for quark and gluon form-factors, Phys. Lett. B 625 (2005) 245 [hep-ph/0508055] [INSPIRE].

    Article  ADS  Google Scholar 

  16. S.M. Aybat, L.J. Dixon and G.F. Sterman, The two-loop anomalous dimension matrix for soft gluon exchange, Phys. Rev. Lett. 97 (2006) 072001 [hep-ph/0606254] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  17. S.M. Aybat, L.J. Dixon and G.F. Sterman, The two-loop soft anomalous dimension matrix and resummation at next-to-next-to leading pole, Phys. Rev. D 74 (2006) 074004 [hep-ph/0607309] [INSPIRE].

    ADS  Google Scholar 

  18. T. Becher and M. Neubert, Infrared singularities of scattering amplitudes in perturbative QCD, Phys. Rev. Lett. 102 (2009) 162001 [arXiv:0901.0722] [INSPIRE].

    Article  ADS  Google Scholar 

  19. E. Gardi and L. Magnea, Factorization constraints for soft anomalous dimensions in QCD scattering amplitudes, JHEP 03 (2009) 079 [arXiv:0901.1091] [INSPIRE].

    Article  ADS  Google Scholar 

  20. T. Becher and M. Neubert, On the structure of infrared singularities of gauge-theory amplitudes, JHEP 06 (2009) 081 [arXiv:0903.1126] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. N. Kidonakis, Two-loop soft anomalous dimensions and NNLL resummation for heavy quark production, Phys. Rev. Lett. 102 (2009) 232003 [arXiv:0903.2561] [INSPIRE].

    Article  ADS  Google Scholar 

  22. T. Becher and M. Neubert, Infrared singularities of QCD amplitudes with massive partons, Phys. Rev. D 79 (2009) 125004 [arXiv:0904.1021] [INSPIRE].

    ADS  Google Scholar 

  23. A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Two-loop divergences of massive scattering amplitudes in non-abelian gauge theories, JHEP 11 (2009) 062 [arXiv:0908.3676] [INSPIRE].

    Article  ADS  Google Scholar 

  24. A. Ferroglia, M. Neubert, B.D. Pecjak and L.L. Yang, Two-loop divergences of scattering amplitudes with massive partons, Phys. Rev. Lett. 103 (2009) 201601 [arXiv:0907.4791] [INSPIRE].

    Article  ADS  Google Scholar 

  25. A. Mitov, G.F. Sterman and I. Sung, The Massive Soft Anomalous Dimension Matrix at Two Loops, Phys. Rev. D 79 (2009) 094015 [arXiv:0903.3241] [INSPIRE].

    ADS  Google Scholar 

  26. A. Mitov, G. Sterman and I. Sung, Diagrammatic Exponentiation for Products of Wilson Lines, Phys. Rev. D 82 (2010) 096010 [arXiv:1008.0099] [INSPIRE].

    ADS  Google Scholar 

  27. E. Gardi, E. Laenen, G. Stavenga and C.D. White, Webs in multiparton scattering using the replica trick, JHEP 11 (2010) 155 [arXiv:1008.0098] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  28. E. Gardi and C.D. White, General properties of multiparton webs: proofs from combinatorics, JHEP 03 (2011) 079 [arXiv:1102.0756] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. E. Gardi, J.M. Smillie and C.D. White, On the renormalization of multiparton webs, JHEP 09 (2011) 114 [arXiv:1108.1357] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  30. D. Correa, J. Henn, J. Maldacena and A. Sever, The cusp anomalous dimension at three loops and beyond, JHEP 05 (2012) 098 [arXiv:1203.1019] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. J.M. Henn and T. Huber, Systematics of the cusp anomalous dimension, JHEP 11 (2012) 058 [arXiv:1207.2161] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  32. M. Dukes, E. Gardi, E. Steingrimsson and C.D. White, Web worlds, web-colouring matrices and web-mixing matrices, J. Comb. Theory Ser. A 120 (2013) 1012 [arXiv:1301.6576] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  33. J.M. Henn and T. Huber, The four-loop cusp anomalous dimension in \( \mathcal{N} \) = 4 super Yang-Mills and analytic integration techniques for Wilson line integrals, JHEP 09 (2013) 147 [arXiv:1304.6418] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  34. E. Gardi, J.M. Smillie and C.D. White, The non-Abelian exponentiation theorem for multiple Wilson lines, JHEP 06 (2013) 088 [arXiv:1304.7040] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. M. Dukes, E. Gardi, H. McAslan, D.J. Scott and C.D. White, Webs and posets, JHEP 01 (2014) 024 [arXiv:1310.3127] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. E. Gardi, From webs to polylogarithms, JHEP 04 (2014) 044 [arXiv:1310.5268] [INSPIRE].

    Article  ADS  Google Scholar 

  37. A. Grozin, J.M. Henn, G.P. Korchemsky and P. Marquard, The n f terms of the three-loop cusp anomalous dimension in QCD, PoS(LL2014)016 [arXiv:1406.7828] [INSPIRE].

  38. G. Falcioni, E. Gardi, M. Harley, L. Magnea and C.D. White, Multiple Gluon Exchange Webs, JHEP 10 (2014) 010 [arXiv:1407.3477] [INSPIRE].

    Article  ADS  Google Scholar 

  39. A. Grozin, J.M. Henn, G.P. Korchemsky and P. Marquard, Three Loop Cusp Anomalous Dimension in QCD, Phys. Rev. Lett. 114 (2015) 062006 [arXiv:1409.0023] [INSPIRE].

    Article  ADS  Google Scholar 

  40. E. Laenen, Resummation for observables at TeV colliders, Pramana 63 (2004) 1225 [INSPIRE].

    Article  ADS  Google Scholar 

  41. G. Parisi, Summing large perturbative corrections in QCD, Phys. Lett. B 90 (1980) 295 [INSPIRE].

    Article  ADS  Google Scholar 

  42. T.O. Eynck, E. Laenen and L. Magnea, Exponentiation of the Drell-Yan cross-section near partonic threshold in the DIS and MS-bar schemes, JHEP 06 (2003) 057 [hep-ph/0305179] [INSPIRE].

    Article  ADS  Google Scholar 

  43. M. Krämer, E. Laenen and M. Spira, Soft gluon radiation in Higgs boson production at the LHC, Nucl. Phys. B 511 (1998) 523 [hep-ph/9611272] [INSPIRE].

    Article  ADS  Google Scholar 

  44. R.V. Harlander and W.B. Kilgore, Soft and virtual corrections to pp → H + X at NNLO, Phys. Rev. D 64 (2001) 013015 [hep-ph/0102241] [INSPIRE].

    ADS  Google Scholar 

  45. R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [INSPIRE].

    Article  ADS  Google Scholar 

  46. S. Catani, D. de Florian and M. Grazzini, Higgs production in hadron collisions: soft and virtual QCD corrections at NNLO, JHEP 05 (2001) 025 [hep-ph/0102227] [INSPIRE].

    Article  ADS  Google Scholar 

  47. S. Catani, D. de Florian, M. Grazzini and P. Nason, Soft gluon resummation for Higgs boson production at hadron colliders, JHEP 07 (2003) 028 [hep-ph/0306211] [INSPIRE].

  48. F.E. Low, Bremsstrahlung of very low-energy quanta in elementary particle collisions, Phys. Rev. 110 (1958) 974 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  49. T.H. Burnett and N.M. Kroll, Extension of the low soft photon theorem, Phys. Rev. Lett. 20 (1968) 86 [INSPIRE].

    Article  ADS  Google Scholar 

  50. V. Del Duca, High-energy bremsstrahlung theorems for soft photons, Nucl. Phys. B 345 (1990) 369 [INSPIRE].

    Article  ADS  Google Scholar 

  51. Y. Dokshitzer, G. Marchesini and G.P. Salam, Revisiting parton evolution and the large-x limit, Phys. Lett. B 634 (2006) 504 [hep-ph/0511302] [INSPIRE].

    Article  ADS  Google Scholar 

  52. E. Laenen, L. Magnea and G. Stavenga, On next-to-eikonal corrections to threshold resummation for the Drell-Yan and DIS cross sections, Phys. Lett. B 669 (2008) 173 [arXiv:0807.4412] [INSPIRE].

    Article  ADS  Google Scholar 

  53. S. Moch and A. Vogt, Threshold Resummation of the Structure Function F(L), JHEP 04 (2009) 081 [arXiv:0902.2342] [INSPIRE].

    Article  ADS  Google Scholar 

  54. G. Grunberg and V. Ravindran, On threshold resummation beyond leading 1 − x order, JHEP 10 (2009) 055 [arXiv:0902.2702] [INSPIRE].

    Article  ADS  Google Scholar 

  55. S. Moch and A. Vogt, On non-singlet physical evolution kernels and large-x coefficient functions in perturbative QCD, JHEP 11 (2009) 099 [arXiv:0909.2124] [INSPIRE].

    Article  ADS  Google Scholar 

  56. G. Soar, S. Moch, J.A.M. Vermaseren and A. Vogt, On Higgs-exchange DIS, physical evolution kernels and fourth-order splitting functions at large x, Nucl. Phys. B 832 (2010) 152 [arXiv:0912.0369] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  57. E. Laenen, L. Magnea, G. Stavenga and C.D. White, Next-to-eikonal corrections to soft gluon radiation: a diagrammatic approach, JHEP 01 (2011) 141 [arXiv:1010.1860] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  58. A.A. Almasy, G. Soar and A. Vogt, Generalized double-logarithmic large-x resummation in inclusive deep-inelastic scattering, JHEP 03 (2011) 030 [arXiv:1012.3352] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  59. R.D. Ball, M. Bonvini, S. Forte, S. Marzani and G. Ridolfi, Higgs production in gluon fusion beyond NNLO, Nucl. Phys. B 874 (2013) 746 [arXiv:1303.3590] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. T. Altinoluk, N. Armesto, G. Beuf, M. Mart´ınez and C.A. Salgado, Next-to-eikonal corrections in the CGC: gluon production and spin asymmetries in pA collisions, JHEP 07 (2014) 068 [arXiv:1404.2219] [INSPIRE].

    Article  ADS  Google Scholar 

  61. L. Apolinário, N. Armesto, J.G. Milhano and C.A. Salgado, Medium-induced gluon radiation and colour decoherence beyond the soft approximation, JHEP 02 (2015) 119 [arXiv:1407.0599] [INSPIRE].

    Article  ADS  Google Scholar 

  62. D. de Florian, J. Mazzitelli, S. Moch and A. Vogt, Approximate N 3 LO Higgs-boson production cross section using physical-kernel constraints, JHEP 10 (2014) 176 [arXiv:1408.6277] [INSPIRE].

    Article  ADS  Google Scholar 

  63. N.A. Lo Presti, A.A. Almasy and A. Vogt, Leading large-x logarithms of the quark-gluon contributions to inclusive Higgs-boson and lepton-pair production, Phys. Lett. B 737 (2014) 120 [arXiv:1407.1553] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  64. D. Bonocore, E. Laenen, L. Magnea, L. Vernazza and C.D. White, The method of regions and next-to-soft corrections in Drell-Yan production, Phys. Lett. B 742 (2015) 375 [arXiv:1410.6406] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  65. T. Matsuura, S.C. van der Marck and W.L. van Neerven, The Order α 2 s Contribution to the K Factor of the Drell-Yan Process, Phys. Lett. B 211 (1988) 171 [INSPIRE].

    Article  ADS  Google Scholar 

  66. T. Matsuura, S.C. van der Marck and W.L. van Neerven, The Calculation of the Second Order Soft and Virtual Contributions to the Drell-Yan Cross-Section, Nucl. Phys. B 319 (1989) 570 [INSPIRE].

    Article  ADS  Google Scholar 

  67. T. Matsuura and W.L. van Neerven, Second order logarithmic corrections to the Drell-Yan cross-section, Z. Phys. C 38 (1988) 623 [INSPIRE].

    ADS  Google Scholar 

  68. R. Hamberg, W.L. van Neerven and T. Matsuura, A complete calculation of the order α 2 s correction to the Drell-Yan K factor, Nucl. Phys. B 359 (1991) 343 [INSPIRE].

    Article  ADS  Google Scholar 

  69. T. Matsuura, R. Hamberg and W.L. van Neerven, The contribution of the gluon gluon subprocess to the Drell-Yan K-factor, Nucl. Phys. Proc. Suppl. 23B (1991) 3 [INSPIRE].

    Article  ADS  Google Scholar 

  70. M. Beneke and V.A. Smirnov, Asymptotic expansion of Feynman integrals near threshold, Nucl. Phys. B 522 (1998) 321 [hep-ph/9711391] [INSPIRE].

    Article  ADS  Google Scholar 

  71. A. Pak and A. Smirnov, Geometric approach to asymptotic expansion of Feynman integrals, Eur. Phys. J. C 71 (2011) 1626 [arXiv:1011.4863] [INSPIRE].

    Article  ADS  Google Scholar 

  72. B. Jantzen, Foundation and generalization of the expansion by regions, JHEP 12 (2011) 076 [arXiv:1111.2589] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  73. C. Anastasiou, C. Duhr, F. Dulat, F. Herzog and B. Mistlberger, Real-virtual contributions to the inclusive Higgs cross-section at N 3 LO, JHEP 12 (2013) 088 [arXiv:1311.1425] [INSPIRE].

    Article  ADS  Google Scholar 

  74. F. Herzog and B. Mistlberger, The Soft-Virtual Higgs Cross-section at N3LO and the Convergence of the Threshold Expansion, arXiv:1405.5685 [INSPIRE].

  75. F. Cachazo, S. He and E.Y. Yuan, Scattering of Massless Particles in Arbitrary Dimensions, Phys. Rev. Lett. 113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].

    Article  ADS  Google Scholar 

  76. F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles: scalars, gluons and gravitons, JHEP 07 (2014) 033 [arXiv:1309.0885] [INSPIRE].

    Article  ADS  Google Scholar 

  77. A. Strominger, On BMS invariance of gravitational scattering, JHEP 07 (2014) 152 [arXiv:1312.2229] [INSPIRE].

    Article  ADS  Google Scholar 

  78. T. He, V. Lysov, P. Mitra and A. Strominger, BMS supertranslations and Weinberg’s soft graviton theorem, arXiv:1401.7026 [INSPIRE].

  79. F. Cachazo and A. Strominger, Evidence for a New Soft Graviton Theorem, arXiv:1404.4091 [INSPIRE].

  80. E. Casali, Soft sub-leading divergences in Yang-Mills amplitudes, JHEP 08 (2014) 077 [arXiv:1404.5551] [INSPIRE].

    Article  ADS  Google Scholar 

  81. B.U.W. Schwab and A. Volovich, Subleading soft theorem in arbitrary dimensions from scattering equations, Phys. Rev. Lett. 113 (2014) 101601 [arXiv:1404.7749] [INSPIRE].

    Article  ADS  Google Scholar 

  82. Z. Bern, S. Davies and J. Nohle, On Loop Corrections to Subleading Soft Behavior of Gluons and Gravitons, Phys. Rev. D 90 (2014) 085015 [arXiv:1405.1015] [INSPIRE].

    ADS  Google Scholar 

  83. S. He, Y.-t. Huang and C. Wen, Loop corrections to soft theorems in gauge theories and gravity, JHEP 12 (2014) 115 [arXiv:1405.1410] [INSPIRE].

    Article  ADS  Google Scholar 

  84. A.J. Larkoski, Conformal Invariance of the Subleading Soft Theorem in Gauge Theory, Phys. Rev. D 90 (2014) 087701 [arXiv:1405.2346] [INSPIRE].

    ADS  Google Scholar 

  85. F. Cachazo and E.Y. Yuan, Are Soft Theorems Renormalized?, arXiv:1405.3413 [INSPIRE].

  86. N. Afkhami-Jeddi, Soft Graviton Theorem in Arbitrary Dimensions, arXiv:1405.3533 [INSPIRE].

  87. T. Adamo, E. Casali and D. Skinner, Perturbative gravity at null infinity, Class. Quant. Grav. 31 (2014) 225008 [arXiv:1405.5122] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  88. M. Bianchi, S. He, Y.-t. Huang and C. Wen, More on Soft Theorems: Trees, Loops and Strings, arXiv:1406.5155 [INSPIRE].

  89. Z. Bern, S. Davies, P. Di Vecchia and J. Nohle, Low-Energy Behavior of Gluons and Gravitons from Gauge Invariance, Phys. Rev. D 90 (2014) 084035 [arXiv:1406.6987] [INSPIRE].

    ADS  Google Scholar 

  90. J. Broedel, M. de Leeuw, J. Plefka and M. Rosso, Constraining subleading soft gluon and graviton theorems, Phys. Rev. D 90 (2014) 065024 [arXiv:1406.6574] [INSPIRE].

    ADS  Google Scholar 

  91. T. He, P. Mitra, A.P. Porfyriadis and A. Strominger, New symmetries of massless QED, JHEP 10 (2014) 112 [arXiv:1407.3789] [INSPIRE].

    Article  ADS  Google Scholar 

  92. M. Zlotnikov, Sub-sub-leading soft-graviton theorem in arbitrary dimension, JHEP 10 (2014) 148 [arXiv:1407.5936] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  93. C. Kalousios and F. Rojas, Next to subleading soft-graviton theorem in arbitrary dimensions, JHEP 01 (2015) 107 [arXiv:1407.5982] [INSPIRE].

    Article  ADS  Google Scholar 

  94. Y.-J. Du, B. Feng, C.-H. Fu and Y. Wang, Note on soft graviton theorem by KLT relation, JHEP 11 (2014) 090 [arXiv:1408.4179] [INSPIRE].

    Article  ADS  Google Scholar 

  95. H. Lüo, P. Mastrolia and W.J. Torres Bobadilla, Subleading soft behavior of QCD amplitudes, Phys. Rev. D 91 (2015) 065018 [arXiv:1411.1669] [INSPIRE].

    ADS  Google Scholar 

  96. A.J. Larkoski, D. Neill and I.W. Stewart, Soft Theorems from Effective Field Theory, arXiv:1412.3108 [INSPIRE].

  97. C.D. White, Diagrammatic insights into next-to-soft corrections, Phys. Lett. B 737 (2014) 216 [arXiv:1406.7184] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  98. C.D. White, Factorization properties of soft graviton amplitudes, JHEP 05 (2011) 060 [arXiv:1103.2981] [INSPIRE].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  99. E. Gardi and L. Magnea, Infrared singularities in QCD amplitudes, Nuovo Cim. C32N5-6 (2009) 137 [arXiv:0908.3273] [INSPIRE].

    Google Scholar 

  100. S. Weinberg, The quantum theory of fields. Vol. 2: Modern applications, Cambridge University Press, Cambridge U.K. (2005).

    MATH  Google Scholar 

  101. J. Grammer, G. and D.R. Yennie, Improved treatment for the infrared divergence problem in quantum electrodynamics, Phys. Rev. D 8 (1973) 4332 [INSPIRE].

  102. R. Hamberg, W.L. van Neerven and T. Matsuura, A complete calculation of the order α 2 s correction to the Drell-Yan K factor, Nucl. Phys. B 359 (1991) 343 [Erratum ibid. B 644 (2002) 403] [INSPIRE].

  103. T. Matsuura, S.C. van der Marck and W.L. van Neerven, The Calculation of the Second Order Soft and Virtual Contributions to the Drell-Yan Cross-Section, Nucl. Phys. B 319 (1989) 570 [INSPIRE].

    Article  ADS  Google Scholar 

  104. Y. Li, A. von Manteuffel, R.M. Schabinger and H.X. Zhu, N 3 LO Higgs boson and Drell-Yan production at threshold: The one-loop two-emission contribution, Phys. Rev. D 90 (2014) 053006 [arXiv:1404.5839] [INSPIRE].

    ADS  Google Scholar 

  105. Y. Li, A. von Manteuffel, R.M. Schabinger and H.X. Zhu, Soft-virtual corrections to Higgs production at N 3 LO, Phys. Rev. D 91 (2015) 036008 [arXiv:1412.2771] [INSPIRE].

    ADS  Google Scholar 

  106. J. Kublbeck, H. Eck and R. Mertig, Computeralgebraic generation and calculation of Feynman graphs using FeynArts and FeynCalc, Nucl. Phys. Proc. Suppl. 29A (1992) 204 [INSPIRE].

    ADS  Google Scholar 

  107. G. Passarino and M.J.G. Veltman, One Loop Corrections for e + e − Annihilation Into μ + μ − in the Weinberg Model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].

    Article  ADS  Google Scholar 

  108. R.K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP 02 (2008) 002 [arXiv:0712.1851] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Nikhef, Science Park 105, NL-1098 XG, Amsterdam, Netherlands

    D. Bonocore & E. Laenen

  2. ITFA, University of Amsterdam, Science Park 904, Amsterdam, Netherlands

    E. Laenen

  3. ITF, Utrecht University, Leuvenlaan 4, Utrecht, Netherlands

    E. Laenen

  4. Dipartimento di Fisica, Università di Torino and INFN, Sezione di Torino, Via P. Giuria 1, I-10125, Torino, Italy

    L. Magnea

  5. School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK

    S. Melville & C. D. White

  6. Higgs Centre for Theoretical Physics, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3JZ, Scotland, UK

    L. Vernazza

Authors
  1. D. Bonocore
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. E. Laenen
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. L. Magnea
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. S. Melville
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. L. Vernazza
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. C. D. White
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to C. D. White.

Additional information

ArXiv ePrint: 1503.05156

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonocore, D., Laenen, E., Magnea, L. et al. A factorization approach to next-to-leading-power threshold logarithms. J. High Energ. Phys. 2015, 8 (2015). https://doi.org/10.1007/JHEP06(2015)008

Download citation

  • Received: 27 March 2015

  • Revised: 11 May 2015

  • Accepted: 12 May 2015

  • Published: 03 June 2015

  • DOI: https://doi.org/10.1007/JHEP06(2015)008

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • QCD Phenomenology
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature