Skip to main content
Log in

On the functional renormalization group approach for Yang-Mills fields

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We explore the gauge dependence of the effective average action within the functional renormalization group (FRG) approach. It is shown that in the framework of standard definitions of FRG for the Yang-Mills theory, the effective average action remains gauge-dependent on-shell, independent on the use of truncation scheme. Furthermore, we propose a new formulation of the FRG, based on the use of composite operators. In this case one can provide on-shell gauge-invariance for the effective average action and universality of S-matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.G. Wilson and J. Kogut, The renormalization group and the ε-expansion, Phys. Rept. 12 (1974) 75.

    Article  ADS  Google Scholar 

  2. J. Polchinski, Renormalization and effective lagrangians, Nucl. Phys. B 231 (1984) 269 [INSPIRE].

    Article  ADS  Google Scholar 

  3. C. Wetterich, average action and the renormalization group equations, Nucl. Phys. B 352 (1991) 529 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. C. Wetterich, Exact evolution equation for the effective potential, Phys. Lett. B 301 (1993) 90 [INSPIRE].

    ADS  Google Scholar 

  5. J. Berges, N. Tetradis and C. Wetterich, Nonperturbative renormalization flow in quantum field theory and statistical physics, Phys. Rept. 363 (2002) 223 [hep-ph/0005122] [INSPIRE].

  6. C. Bagnuls and C. Bervillier, Exact renormalization group equations. An Introductory review, Phys. Rept. 348 (2001) 91 [hep-th/0002034] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. J. Polonyi, Lectures on the functional renormalization group method, Central Eur. J. Phys. 1 (2003) 1 [hep-th/0110026] [INSPIRE].

    Article  ADS  Google Scholar 

  8. J.M. Pawlowski, Aspects of the functional renormalisation group, Annals Phys. 322 (2007) 2831 [hep-th/0512261] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Y. Igarashi, K. Itoh and H. Sonoda, Realization of symmetry in the ERG approach to quantum field theory, Prog. Theor. Phys. Suppl. 181 (2010) 1 [arXiv:0909.0327] [INSPIRE].

    Article  ADS  Google Scholar 

  10. B. Delamotte, An introduction to the nonperturbative renormalization group, Lect. Notes Phys. 852 (2012) 49 [cond-mat/0702365] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. O.J. Rosten, Fundamentals of the exact renormalization group, Phys. Rept. 511 (2012) 177 [arXiv:1003.1366] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. M. Reuter and C. Wetterich, Average action for the Higgs model with Abelian gauge symmetry, Nucl. Phys. B 391 (1993) 147 [INSPIRE].

    Article  ADS  Google Scholar 

  13. M. Reuter and C. Wetterich, Effective average action for gauge theories and exact evolution equations, Nucl. Phys. B 417 (1994) 181 [INSPIRE].

    Article  ADS  Google Scholar 

  14. C. Becchi, On the construction of renormalized gauge theories using renormalization group techniques, hep-th/9607188 [INSPIRE].

  15. M. Bonini, M. D’Attanasio and G. Marchesini, Ward identities and Wilson renormalization group for QED, Nucl. Phys. B 418 (1994) 81 [hep-th/9307174] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. M. Bonini, M. D’Attanasio and G. Marchesini, Renormalization group flow for SU(2) Yang-Mills theory and gauge invariance, Nucl. Phys. B 421 (1994) 429 [hep-th/9312114] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. M. Bonini, M. D’Attanasio and G. Marchesini, BRS symmetry for Yang-Mills theory with exact renormalization group, Nucl. Phys. B 437 (1995) 163 [hep-th/9410138] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. U. Ellwanger, Flow equations and BRS invariance for Yang-Mills theories, Phys. Lett. B 335 (1994) 364 [hep-th/9402077] [INSPIRE].

    ADS  Google Scholar 

  19. U. Ellwanger, M. Hirsch and A. Weber, Flow equations for the relevant part of the pure Yang-Mills action, Z. Phys. C 69 (1996) 687 [hep-th/9506019] [INSPIRE].

    MathSciNet  Google Scholar 

  20. M. D’Attanasio and T.R. Morris, Gauge invariance, the quantum action principle and the renormalization group, Phys. Lett. B 378 (1996) 213 [hep-th/9602156] [INSPIRE].

    ADS  Google Scholar 

  21. M. Reuter and C. Wetterich, Gluon condensation in nonperturbative flow equations, Phys. Rev. D 56 (1997) 7893 [hep-th/9708051] [INSPIRE].

    ADS  Google Scholar 

  22. D.F. Litim and J.M. Pawlowski, Flow equations for Yang-Mills theories in general axial gauges, Phys. Lett. B 435 (1998) 181 [hep-th/9802064] [INSPIRE].

    ADS  Google Scholar 

  23. F. Freire, D.F. Litim and J.M. Pawlowski, Gauge invariance and background field formalism in the exact renormalization group, Phys. Lett. B 495 (2000) 256 [hep-th/0009110] [INSPIRE].

    ADS  Google Scholar 

  24. Y. Igarashi, K. Itoh and H. So, Regularized quantum master equation in the Wilsonian renormalization group, JHEP 10 (2001) 032 [hep-th/0109202] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. Y. Igarashi, K. Itoh and H. So, BRS symmetry, the quantum master equation and the Wilsonian renormalization group, Prog. Theor. Phys. 106 (2001) 149 [hep-th/0101101] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. H. Gies, Introduction to the functional RG and applications to gauge theories, Lect. Notes Phys. 852 (2012) 287 [hep-ph/0611146].

    Article  MathSciNet  ADS  Google Scholar 

  27. C. Becchi, A. Rouet and R. Stora, Renormalization of the Abelian Higgs-Kibble Model, Commun. Math. Phys. 42 (1975) 127 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. I. Tyutin, Gauge invariance in field theory and statistical physics in operator formalism, arXiv:0812.0580 [INSPIRE].

  29. L.D. Faddeev and A.A. Slavnov, Gauge fields: introduction to quantum theory, Benjamin/Cummings Publishing Company Inc., San Francisco U.S.A. (1980).

    MATH  Google Scholar 

  30. D.M. Gitman and I.V. Tyutin, Quantization of fields with constraints, Springer, Berlin Germany (1990).

    Book  MATH  Google Scholar 

  31. M. Henneaux and C. Teitelboim, Quantization of gauge systems, Princeton University Press, Princeton U.S.A. (1992).

    MATH  Google Scholar 

  32. S. Weinberg, The quantum theory of fields. Vol. II, Cambridge University Press, Cambridge U.K. (1996).

    Book  Google Scholar 

  33. A. Slavnov, Ward identities in gauge theories, Theor. Math. Phys. 10 (1972) 99 [INSPIRE].

    Article  Google Scholar 

  34. J. Taylor, Ward identities and charge renormalization of the Yang-Mills field, Nucl. Phys. B 33 (1971) 436 [INSPIRE].

    Article  ADS  Google Scholar 

  35. T.R. Morris, A gauge invariant exact renormalization group. 2., JHEP 12 (2000) 012 [hep-th/0006064] [INSPIRE].

    Article  ADS  Google Scholar 

  36. S. Arnone, T.R. Morris and O.J. Rosten, A generalised manifestly gauge invariant exact renormalisation group for SU(N) Yang-Mills, Eur. Phys. J. C 50 (2007) 467 [hep-th/0507154] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. O.J. Rosten, The manifestly gauge invariant exact renormalisation group, hep-th/0506162 [INSPIRE].

  38. O.J. Rosten, A manifestly gauge invariant and universal calculus for SU(N) Yang-Mills, Int. J. Mod. Phys. A 21 (2006) 4627 [hep-th/0602229] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  39. S. Arnone, Y.A. Kubyshin, T.R. Morris and J.F. Tighe, Gauge invariant regularization via SU(N|N), Int. J. Mod. Phys. A 17 (2002) 2283 [hep-th/0106258] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  40. V. Branchina, K.A. Meissner and G. Veneziano, The price of an exact, gauge invariant RG flow equation, Phys. Lett. B 574 (2003) 319 [hep-th/0309234] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  41. J.M. Pawlowski, Geometrical effective action and Wilsonian flows, hep-th/0310018 [INSPIRE].

  42. G.A. Vilkovisky, in B.S. DeWitt Sixtieth Aniversary Volume, S. Christensen eds., Hilger, Bristol U.K. (1983).

  43. G. Vilkovisky, The unique effective action in quantum field theory, Nucl. Phys. B 234 (1984) 125 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. B. De Witt, in Quantum Field Theory and Quantum Statistics, Essays in Honor of the 60th Birthday of E.S. Fradkin, I.A. Batalin, C.J. Isham and G.A. Vilkovisky eds., Institute of Physics, Bristol U.K. (1987) pg. 191.

    Google Scholar 

  45. B. De Witt, The Global Approach to Quantum Field Theory, Oxford University Press, Oxford U.K. (2003).

    Google Scholar 

  46. E. Fradkin and A.A. Tseytlin, On the new definition of off-shell effective action, Nucl. Phys. B 234 (1984) 509 [INSPIRE].

    Article  ADS  Google Scholar 

  47. B.L. Voronov, P.M. Lavrov and I.V. Tyutin, Canonical transformations and the gauge dependence in general gauge theories, Yad. Fiz. 36 (1982) 498 [Sov. J. Nucl. Phys. 36 (1982) 292].

  48. J. Gomis and S. Weinberg, Are nonrenormalizable gauge theories renormalizable?, Nucl. Phys. B 469 (1996) 473 [hep-th/9510087] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. P. Lavrov, Effective action for composite fields in gauge theories, Theor. Math. Phys. 82 (1990) 282 [INSPIRE].

    Article  Google Scholar 

  50. L. Faddeev and V. Popov, Feynman diagrams for the Yang-Mills field, Phys. Lett. B 25 (1967) 29 [INSPIRE].

    ADS  Google Scholar 

  51. B.S. DeWitt, Dynamical Theory of Groups and Fields, Gordon and Breach, New York U.S.A. (1965).

    MATH  Google Scholar 

  52. J. Zinn-Justin, Renormalization of gauge theories, in Lecture Notes in Physics. Vol. 37: Trends in Elementary Particle Theory, H. Rollnik and K. Dietz eds., Springer-Verlag, Berlin Germany (1975).

    Google Scholar 

  53. R. Kallosh and I. Tyutin, The equivalence theorem and gauge invariance in renormalizable theories, Yad. Fiz. 17 (1973) 190 [INSPIRE].

    MathSciNet  Google Scholar 

  54. I. Tyutin, Once again on the equivalence theorem, Phys. Atom. Nucl. 65 (2002) 194 [hep-th/0001050] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  55. U. Ellwanger, Flow equations and BRS invariance for Yang-Mills theories, Phys. Lett. B 335 (1994) 364 [hep-th/9402077] [INSPIRE].

    ADS  Google Scholar 

  56. I.L. Shapiro and J. Solà, On the possible running of the cosmologicalconstant’, Phys. Lett. B 682 (2009) 105 [arXiv:0910.4925] [INSPIRE].

    ADS  Google Scholar 

  57. I.L. Shapiro and J. Solà, Can the cosmologicalconstantrun? - It may run, arXiv:0808.0315 [INSPIRE].

  58. P. Lavrov, Sp(2) covariant quantization of gauge theories, Mod. Phys. Lett. A 6 (1991) 2051 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  59. J.M. Cornwall, R. Jackiw and E. Tomboulis, Effective action for composite operators, Phys. Rev. D 10 (1974) 2428 [INSPIRE].

    ADS  Google Scholar 

  60. J.-P. Blaizot, J.M. Pawlowski and U. Reinosa, Exact renormalization group and ϕ-derivable approximations, Phys. Lett. B 696 (2011) 523 [arXiv:1009.6048] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  61. M. Carrington, Renormalization group flow equations connected to the nPI effective action, arXiv:1211.4127 [INSPIRE].

  62. P. Lavrov and S. Odintsov, The gauge dependence of the effective action of composite fields in general gauge theories, Sov. J. Nucl. Phys. 50 (1989) 332 [INSPIRE].

    Google Scholar 

  63. P. Lavrov, S. Odintsov and A. Reshetnyak, Effective action of composite fields for general gauge theories in BLT covariant formalism, J. Math. Phys. 38 (1997) 3466 [hep-th/9604061] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  64. A. Babic, B. Guberina, R. Horvat and H. Štefančić, Renormalization-group running cosmologies. A Scale-setting procedure, Phys. Rev. D 71 (2005) 124041 [astro-ph/0407572] [INSPIRE].

    ADS  Google Scholar 

  65. S. Domazet and H. Štefančić, Renormalization group scale-setting in astrophysical systems, Phys. Lett. B 703 (2011) 1 [arXiv:1010.3585] [INSPIRE].

    ADS  Google Scholar 

  66. V. Gribov, Quantization of Nonabelian Gauge Theories, Nucl. Phys. B 139 (1978) 1 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  67. D. Zwanziger, Action from the Gribov horizon, Nucl. Phys. B 321 (1989) 591 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  68. D. Zwanziger, Local and renormalizable action from the Gribov horizon, Nucl. Phys. B 323 (1989) 513 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  69. P. Lavrov, O. Lechtenfeld and A. Reshetnyak, Is soft breaking of BRST symmetry consistent?, JHEP 10 (2011) 043 [arXiv:1108.4820] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  70. P.M. Lavrov, O.V. Radchenko and A.A. Reshetnyak, Soft breaking of BRST symmetry and gauge dependence, Mod. Phys. Lett. A 27 (2012) 1250067 [arXiv:1201.4720].

    MathSciNet  ADS  Google Scholar 

  71. P.M. Lavrov, Remarks on the Curci-Ferrari model, Mod. Phys. Lett. A 27 (2012) 1250132.

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya L. Shapiro.

Additional information

ArXiv ePrint: 1212.2577

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavrov, P.M., Shapiro, I.L. On the functional renormalization group approach for Yang-Mills fields. J. High Energ. Phys. 2013, 86 (2013). https://doi.org/10.1007/JHEP06(2013)086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2013)086

Keywords

Navigation