Skip to main content

Introduction to the Functional RG and Applications to Gauge Theories

  • Chapter
  • First Online:
Renormalization Group and Effective Field Theory Approaches to Many-Body Systems

Part of the book series: Lecture Notes in Physics ((LNP,volume 852))

Abstract

This lecture course is intended to fill the gap between graduate courses on quantum field theory and specialized reviews or forefront-research articles on functional renormalization group approaches to quantum field theory and gauge theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this short introduction, we use but make no attempt at fully explaining the standard QFT nomenclature; for the latter, we refer the reader to any standard QFT textbook, such as [22, 23].

  2. 2.

    Now, only the “sup” part of \(\varGamma _k\) is convex. For finite \(k\), any non-convexity of \(\varGamma _k\) must be of the form of the last regulator term of Eq. (6.20).

  3. 3.

    In case of fermionic Grassmann-valued fields, the following \(\phi \) derivative should act on Eq. (6.22) from the right.

  4. 4.

    Also the double-well potential with \(\omega ^2<0\) can be studied with RG techniques, see [30, 31].

  5. 5.

    I am grateful to A. Wipf for analytically determining the 2nd-order coefficient.

  6. 6.

    One may wonder whether a gauge-invariant flow can be set up with a gauge-invariant regularization procedure. In fact, this is an active line of research, and various promising formalisms have been developed so far [4042]. However, the price to be paid for the resulting simple gauge constraints comes in the form of nontrivial Nielsen identities, non-localities or extensive algebraic constructions. For practical application, we thus consider the standard formulation described here as the most efficient approach so far.

  7. 7.

    An alternative option could be to use only the flow equation together with a regulator that does automatically suppress artificial relevant operators. In fact, this is conceivable in the framework of optimization [50].

  8. 8.

    In the Dyson-Schwinger literature, the gluon and ghost propagator behavior is often characterized by dressing functions \(Z_{\text{ DSE}},G_{\text{ DSE}}\) which are related to the wave function renormalizations by \(Z_A(p^2)=Z_{\text{ DSE}}^{-1}(p^2)\) and \(Z_{\text{ gh}}(p^2)=G_{\text{ DSE}}^{-1}(p^2)\) for \(k\rightarrow 0\).

  9. 9.

    Be aware of footnote 3 on p. xxx.

  10. 10.

    The occurrence of \(\gamma _5\) in the fermion mass term arises from our fermion conventions [99]; these are related to more standard conventions by a discrete chiral rotation.

  11. 11.

    Of course, in order to avoid any ambiguity with respect to possible Fierz rearrangements of the four-fermion interactions in the point-like limit, all possible linearly-independent four-fermion interactions, in principle, have to be included in the truncation. For simplicity, we confine ourselves here just to the scalar–pseudo-scalar channel, where chiral condensation is expected to occur. For the four-fermion interactions that will be generated by the flow, we use the Fierz decomposition as proposed in [100].

  12. 12.

    The momentum-independent part can, for instance, be fixed such that \(\partial _tZ_\phi (q=k)=0\), ensuring that the approximation of a momentum-independent \(Z_\phi \) is self-consistent.

References

  1. Fisher, M.E.: Rev. Mod. Phys. 70, 653 (1998)

    Article  ADS  MATH  Google Scholar 

  2. Morris, T.R.: Prog. Theor. Phys. Suppl. 131, 395 (1998)

    Article  ADS  Google Scholar 

  3. Litim, D.F., Pawlowski, J.M.: In: Krasnitz, A., et al. (eds.) The Exact Renormalization Group, p. 168. World Scientific, Singapore (1999)

    Google Scholar 

  4. Aoki, K.: Int. J. Mod. Phys. B 14, 1249 (2000)

    ADS  MATH  Google Scholar 

  5. Bagnuls, C., Bervillier, C.: Phys. Rept. 348, 91 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Berges, J., Tetradis, N., Wetterich, C.: Phys. Rept. 363, 223 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Polonyi, J.: Central Eur. J. Phys. 1, 1 (2004)

    Article  ADS  Google Scholar 

  8. Wilson, K.G.: Phys. Rev. B 4, 3174 (1971); ibid., 3184 (1971)

    Google Scholar 

  9. Wilson, K.G., Kogut, J.B.: Phys. Rept. 12, 75 (1974)

    Article  ADS  Google Scholar 

  10. Wegner, F.J., Houghton, A.: Phys. Rev. A 8, 401 (1973)

    Article  ADS  Google Scholar 

  11. Nicoll, J.F., Chang, T.S.: Phys. Lett. A 62, 287 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  12. Polchinski, J.: Nucl. Phys. B 231, 269 (1984)

    Article  ADS  Google Scholar 

  13. Wetterich, C.: Phys. Lett. B 301, 90 (1993)

    Article  ADS  Google Scholar 

  14. Warr, B.J.: Ann. Phys. 183, 1, 59 (1988)

    Google Scholar 

  15. Hurd, T.R.: Commun. Math. Phys. 124, 153 (1989)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Keller, G., Kopper, C., Salmhofer, M.: Helv. Phys. Acta 65, 32 (1992)

    MathSciNet  Google Scholar 

  17. Reuter, M., Wetterich, C.: Nucl. Phys. B 391, 147 (1993)

    Article  ADS  Google Scholar 

  18. Reuter, M., Wetterich, C.: Nucl. Phys. B 417, 181 (1994)

    Article  ADS  Google Scholar 

  19. Bonini, M., D’Attanasio, M., Marchesini, G.: Nucl. Phys. B 418, 81 (1994); Nucl. Phys. B 421, 429 (1994)

    Google Scholar 

  20. Ellwanger, U.: Phys. Lett. B 335, 364 (1994)

    Article  ADS  Google Scholar 

  21. D’Attanasio, M., Morris, T.R.: Phys. Lett. B 378, 213 (1996)

    Article  ADS  Google Scholar 

  22. Peskin, M.E., Schröder, D.V.: An Introduction to Quantum Field Theory. Addison-Wesley, Reading (1995)

    Google Scholar 

  23. Pokorski, S.: Gauge Field Theories. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  24. Alkofer, R., von Smekal, L.: Phys. Rept. 353, 281 (2001)

    Article  ADS  MATH  Google Scholar 

  25. Roberts, C.D., Schmidt, S.M.: Prog. Part. Nucl. Phys. 45, S1 (2000)

    Article  ADS  Google Scholar 

  26. Maris, P., Roberts, C.D.: Int. J. Mod. Phys. E 12, 297 (2003)

    Article  ADS  Google Scholar 

  27. Fischer, C.S.: J. Phys. G 32, R253 (2006)

    Article  ADS  Google Scholar 

  28. Litim, D.F., Pawlowski, J.M.: Phys. Rev. D 66, 025030 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  29. Horikoshi, A., Aoki, K.I., Taniguchi, M.A., Terao, H.: arXiv:hep-th/9812050

    Google Scholar 

  30. Kapoyannis, A.S., Tetradis, N.: Phys. Lett. A 276, 225 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Zappala, D.: Phys. Lett. A 290, 35 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Litim, D.F.: Phys. Lett. B 486, 92 (2000); Phys. Rev. D 64, 105007 (2001)

    Google Scholar 

  33. Bender, C.M., Wu, T.T.: Phys. Rev. 184, 1231 (1969)

    Article  MathSciNet  ADS  Google Scholar 

  34. Janke, W., Kleinert, H.: arXiv:quant-ph/9502019

    Google Scholar 

  35. Galindo, A., Pascual, P.: Quantum Mechanics, vol. 2. Springer, Berlin (1990)

    Google Scholar 

  36. Ball, R.D., Haagensen, P.E., Latorre, J.I., Moreno, E.: Phys. Lett. B 347, 80 (1995) [arXiv:hep-th/9411122]

    Google Scholar 

  37. Liao, S.B., Polonyi, J., Strickland, M.: Nucl. Phys. B 567, 493 (2000) [arXiv:hep-th/9905206]

    Google Scholar 

  38. Singer, I.M.: Commun. Math. Phys. 60, 7 (1978)

    Article  ADS  MATH  Google Scholar 

  39. Gribov, V.N.: Nucl. Phys. B 139, 1 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  40. Morris, T.R.: JHEP 0012, 012 (2000); Arnone, S., Morris, T.R., Rosten, O.J.: arXiv:hep-th/0507154; Rosten, O.J.: arXiv:hep-th/0602229

    Google Scholar 

  41. Branchina, V., Meissner, K.A., Veneziano, G.: Phys. Lett. B 574, 319 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. Pawlowski, J.M.: arXiv:hep-th/0310018

    Google Scholar 

  43. Bonini, M., D’Attanasio, M., Marchesini, G.: Nucl. Phys. B 437, 163 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Litim, D.F., Pawlowski, J.M.: Phys. Lett. B 435, 181 (1998)

    Article  ADS  Google Scholar 

  45. Freire, F., Litim, D.F., Pawlowski, J.M.: Phys. Lett. B 495, 256 (2000)

    Article  ADS  Google Scholar 

  46. Igarashi, Y., Itoh, K., So, H.: Prog. Theor. Phys. 106, 149 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. Ellwanger, U., Hirsch, M., Weber, A.: Z. Phys. C 69, 687 (1996)

    Article  MathSciNet  Google Scholar 

  48. Ellwanger, U., Hirsch, M., Weber, A.: Eur. Phys. J. C 1, 563 (1998)

    Article  ADS  Google Scholar 

  49. Gies, H., Jaeckel, J., Wetterich, C.: Phys. Rev. D 69, 105008 (2004)

    Article  ADS  Google Scholar 

  50. Pawlowski, J.M.: arXiv:hep-th/0512261

    Google Scholar 

  51. Zwanziger, D.: Phys. Rev. D 69, 016002 (2004)

    Google Scholar 

  52. Fischer, C.S., Gies, H.: JHEP 0410, 048 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  53. Blaizot, J.P., Mendez-Galain, R., Wschebor, N.: arXiv:hep-th/0603163; arXiv:hep-th/0512317

    Google Scholar 

  54. von Smekal, L., Alkofer, R., Hauck, A.: Phys. Rev. Lett. 79, 3591 (1997)

    Article  ADS  Google Scholar 

  55. Cucchieri, A.: Nucl. Phys. B 508, 353 (1997)

    ADS  Google Scholar 

  56. Leinweber, D.B., Skullerud, J.I., Williams, A.G., Parrinello, C. [UKQCD Collaboration]: Phys. Rev. D 60, 094507 (1999) [Erratum-ibid. D 61, 079901 (2000)]

    Google Scholar 

  57. Alexandrou, C., de Forcrand, P., Follana, E.: Phys. Rev. D 63, 094504 (2001)

    Article  ADS  Google Scholar 

  58. Langfeld, K., Reinhardt, H., Gattnar, J.: Nucl. Phys. B 621, 131 (2002)

    Article  ADS  MATH  Google Scholar 

  59. Furui, S., Nakajima, H.: Phys. Rev. D 70, 094504 (2004)

    Article  ADS  Google Scholar 

  60. Sternbeck, A., Ilgenfritz, E.M., Mueller-Preussker, M., Schiller, A.: Phys. Rev. D72, 014507 (2005)

    Article  ADS  Google Scholar 

  61. Silva, P.J., Oliveira, O.: hep-lat/0511043

    Google Scholar 

  62. Boucaud, P., et al.: hep-ph/0507104

    Google Scholar 

  63. Taylor, J.C.: Nucl. Phys. B 33, 436 (1971)

    Article  ADS  Google Scholar 

  64. Gattnar, J., Langfeld, K., Reinhardt, H.: Phys. Rev. Lett. 93, 061601 (2004)

    Article  ADS  Google Scholar 

  65. Pawlowski, J.M., Litim, D.F., Nedelko, S., von Smekal, L.: Phys. Rev. Lett. 93, 152002 (2004)

    Article  ADS  Google Scholar 

  66. Lerche, C., von Smekal, L.: Phys. Rev. D 65, 125006 (2002)

    Article  ADS  Google Scholar 

  67. Pawlowski, J.M., Litim, D.F., Nedelko, S., von Smekal, L.: AIP Conf. Proc. 756, 278 (2005)

    Article  ADS  Google Scholar 

  68. Fischer, C.S., Alkofer, R.: Phys. Lett. B 536, 177 (2002)

    Article  ADS  MATH  Google Scholar 

  69. Kugo, T., Ojima, I.: Prog. Theor. Phys. Suppl. 66, 1 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  70. Zwanziger, D.: Nucl. Phys. B 364, 127 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  71. Zwanziger, D.: Nucl. Phys. B 399, 477 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  72. Abbott, L.F.: Nucl. Phys. B 185, 189 (1981)

    Article  ADS  Google Scholar 

  73. Dittrich, W., Reuter, M.: Lect. Notes Phys. 244, 1 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  74. Reuter, M., Wetterich, C.: Phys. Rev. D 56, 7893 (1997)

    Article  ADS  Google Scholar 

  75. Reuter, M.: arXiv:hep-th/9602012

    Google Scholar 

  76. Litim, D.F., Pawlowski, J.M.: Phys. Lett. B 516, 197 (2001); Phys. Rev. D 65, 081701 (2002)

    Google Scholar 

  77. Gies, H.: Phys. Rev. D 66, 025006 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  78. Liao, S.B.: Phys. Rev. D 53, 2020 (1996); Phys. Rev. D 56, 5008 (1997)

    Google Scholar 

  79. Floreanini, R., Percacci, R.: Phys. Lett. B 356, 205 (1995)

    Article  ADS  Google Scholar 

  80. Schaefer, B.J., Pirner, H.J.: Nucl. Phys. A 660, 439 (1999)

    Article  ADS  Google Scholar 

  81. Papp, G., Schaefer, B.J., Pirner, H.J., Wambach, J.: Phys. Rev. D 61, 096002 (2000)

    Article  ADS  Google Scholar 

  82. Bonanno, A., Zappala, D.: Phys. Lett. B 504, 181 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  83. Zappala, D.: Phys. Rev. D 66, 105020 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  84. Pawlowski, J.M.: Int. J. Mod. Phys. A 16, 2105 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  85. Braun, J., Gies, H.: JHEP 0606, 024 (2006); arXiv:hep-ph/0512085

    Google Scholar 

  86. Braun, J.: Contribution to This Volume (2006)

    Google Scholar 

  87. Gies, H.: Phys. Rev. D 68, 085015 (2003)

    Article  ADS  Google Scholar 

  88. Canet, L., Delamotte, B., Mouhanna, D., Vidal, J.: Phys. Rev. D 67, 065004 (2003); Phys. Rev. B 68, 064421 (2003)

    Google Scholar 

  89. Reuter, M.: Phys. Rev. D 57, 971 (1998); Lauscher, O., Reuter, M.: Phys. Rev. D 65, 025013 (2002)

    Google Scholar 

  90. Litim, D., Wetterich, C., Tetradis, N.: Mod. Phys. Lett. A 12, 2287 (1997)

    Google Scholar 

  91. Litim, D.F., Pawlowski, J.M.: JHEP 0209, 049 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  92. Polonyi, J., Sailer, K.: Phys. Rev. D 63, 105006 (2001)

    Article  ADS  Google Scholar 

  93. Gies, H., Wetterich, C.: Phys. Rev. D 65, 065001 (2002); Acta Phys. Slov. 52, 215 (2002)

    Google Scholar 

  94. Schwenk, A., Polonyi, J.: nucl-th/0403011

    Google Scholar 

  95. Schutz, F., Bartosch, L., Kopietz, P.: Phys. Rev. B 72, 035107 (2005)

    Article  ADS  Google Scholar 

  96. Salmhofer, M., Honerkamp, C., Metzner, W., Lauscher, O.: Prog. Theor. Phys. 112, 943 (2004)

    Article  ADS  MATH  Google Scholar 

  97. Harada, K., Inoue, K., Kubo, H.: nucl-th/0511020

    Google Scholar 

  98. Nambu, Y., Jona-Lasinio, G.: Phys. Rev. 122, 345 (1961); ibid. 124, 246 (1961); Vaks, V.G., Larkin, A.I.: Zh. Eksp. Teor. Fiz. 40(1) (1961) [Sov. Phys. JETP 13, 192 (in English)]

    Google Scholar 

  99. Wetterich, C.: Z. Phys. C 48, 693 (1990)

    Article  ADS  Google Scholar 

  100. Gies, H., Wetterich, C.: Phys. Rev. D 69, 025001 (2004)

    Article  ADS  Google Scholar 

  101. Aoki, K.I., Morikawa, K.I., Sumi, J.I., Terao, H., Tomoyose, M.: Prog. Theor. Phys. 97, 479 (1997)

    Article  ADS  Google Scholar 

  102. Gies, H., Jaeckel, J.: Phys. Rev. Lett. 93, 110405 (2004)

    Article  ADS  Google Scholar 

  103. Jungnickel, D.U., Wetterich, C.: Phys. Rev. D 53, 5142 (1996)

    Article  ADS  Google Scholar 

  104. Schaefer, B.J., Wambach, J.: Nucl. Phys. A 757, 479 (2005)

    Article  ADS  Google Scholar 

  105. Jaeckel, J., Wetterich, C.: Phys. Rev. D 68, 025020 (2003); Jäckel, J.: hep-ph/0309090

    Google Scholar 

Download references

Acknowledgments

It is a great pleasure to thank A. Schwenk and J. Polonyi for organizing the ECT\(\ast \) school and for creating such a stimulating atmosphere. I am particularly grateful to the students for their active participation, critical questions and detailed discussions which have left their traces in these lecture notes. I would like to thank J. Braun, C.S. Fischer, J. Jaeckel, J.M. Pawlowski, and C. Wetterich for pleasant and fruitful collaborations on some of the topics presented here, and for numerous intense discussions, some essence of which has condensed into these lecture notes. Critical remarks on the manuscript by J. Braun, M. Ghasemkhani, J.M. Pawlowski, and A. Wipf are gratefully acknowledged. This work was supported by the DFG Gi 328/1-3 (Emmy-Noether program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Gies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gies, H. (2012). Introduction to the Functional RG and Applications to Gauge Theories. In: Schwenk, A., Polonyi, J. (eds) Renormalization Group and Effective Field Theory Approaches to Many-Body Systems. Lecture Notes in Physics, vol 852. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27320-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27320-9_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27319-3

  • Online ISBN: 978-3-642-27320-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics