Skip to main content
Log in

Higgs boson production in association with a jet at next-to-next-to-leading order in perturbative QCD

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We report on a calculation of the cross-section for Higgs boson production in gluon fusion in association with a hadronic jet at next-to-next-to-leading order (NNLO) in perturbative QCD. The computational technique is discussed in detail. We show explicitly how to employ known soft and collinear limits of scattering amplitudes to construct subtraction terms for NNLO computations. Cancellation of singularities is demonstrated numerically for the collinearly-subtracted ggH + j cross-section through NNLO and the finite σ gg→Hj cross-section is computed through \( \mathcal{O}\left( {\alpha_s^5} \right) \) as a function of the center-of-mass collision energy. We present numerical results for the gluon-fusion contribution to Higgs production in association with a jet at the LHC. The NNLO QCD corrections significantly reduce the residual scale dependence of the cross-section. The computational method that we describe in this paper is applicable to the calculation of NNLO QCD corrections to any other 2 → 2 process at a hadron collider without modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. CMS collaboration, On the mass and spin-parity of the Higgs boson candidate via its decays to Z boson pairs, Phys. Rev. Lett. 110 (2013) 081803 [arXiv:1212.6639] [INSPIRE].

    Article  ADS  Google Scholar 

  4. LHC Higgs Cross section Working Group, A. David et al., LHC HXSWG interim recommendations to explore the coupling structure of a Higgs-like particle, arXiv:1209.0040 [INSPIRE].

  5. S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [INSPIRE].

    Article  ADS  Google Scholar 

  6. A. Djouadi, M. Spira and P. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440 [INSPIRE].

    ADS  Google Scholar 

  7. D. de Florian, M. Grazzini and Z. Kunszt, Higgs production with large transverse momentum in hadronic collisions at next-to-leading order, Phys. Rev. Lett. 82 (1999) 5209 [hep-ph/9902483] [INSPIRE].

    Article  ADS  Google Scholar 

  8. V. Ravindran, J. Smith and W. Van Neerven, Next-to-leading order QCD corrections to differential distributions of Higgs boson production in hadron hadron collisions, Nucl. Phys. B 634 (2002) 247 [hep-ph/0201114] [INSPIRE].

    Article  ADS  Google Scholar 

  9. C.J. Glosser and C.R. Schmidt, Next-to-leading corrections to the Higgs boson transverse momentum spectrum in gluon fusion, JHEP 12 (2002) 016 [hep-ph/0209248] [INSPIRE].

    Article  ADS  Google Scholar 

  10. J.M. Campbell, R.K. Ellis and G. Zanderighi, Next-to-Leading order Higgs + 2 jet production via gluon fusion, JHEP 10 (2006) 028 [hep-ph/0608194] [INSPIRE].

    Article  ADS  Google Scholar 

  11. J.M. Campbell, R.K. Ellis and C. Williams, Hadronic production of a Higgs boson and two jets at next-to-leading order, Phys. Rev. D 81 (2010) 074023 [arXiv:1001.4495] [INSPIRE].

    ADS  Google Scholar 

  12. H. van Deurzen et al., NLO QCD corrections to the production of Higgs plus two jets at the LHC, Phys. Lett. B 721 (2013) 74 [arXiv:1301.0493] [INSPIRE].

    ADS  Google Scholar 

  13. R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [INSPIRE].

    Article  ADS  Google Scholar 

  14. C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD, Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [INSPIRE].

    Article  ADS  Google Scholar 

  15. V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross-section for Higgs boson production in hadron hadron collisions, Nucl. Phys. B 665 (2003) 325 [hep-ph/0302135] [INSPIRE].

    Article  ADS  Google Scholar 

  16. C. Anastasiou, K. Melnikov and F. Petriello, Fully differential Higgs boson production and the di-photon signal through next-to-next-to-leading order, Nucl. Phys. B 724 (2005) 197 [hep-ph/0501130] [INSPIRE].

    Article  ADS  Google Scholar 

  17. S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [INSPIRE].

    Article  ADS  Google Scholar 

  18. M. Grazzini, NNLO predictions for the Higgs boson signal in the HW W → ℓνℓν and HZZ →4ℓ decay channels, JHEP 02 (2008) 043[arXiv:0801.3232] [INSPIRE].

    Article  ADS  Google Scholar 

  19. A. Banfi, G.P. Salam and G. Zanderighi, NLL+NNLO predictions for jet-veto efficiencies in Higgs-boson and Drell-Yan production, JHEP 06 (2012) 159 [arXiv:1203.5773] [INSPIRE].

    Article  ADS  Google Scholar 

  20. A. Banfi, P.F. Monni, G.P. Salam and G. Zanderighi, Higgs and Z-boson production with a jet veto, Phys. Rev. Lett. 109 (2012) 202001 [arXiv:1206.4998] [INSPIRE].

    Article  ADS  Google Scholar 

  21. T. Becher and M. Neubert, Factorization and NNLL Resummation for Higgs Production with a Jet Veto, JHEP 07 (2012) 108 [arXiv:1205.3806] [INSPIRE].

    Article  ADS  Google Scholar 

  22. F.J. Tackmann, J.R. Walsh and S. Zuberi, Resummation Properties of Jet Vetoes at the LHC, Phys. Rev. D 86 (2012) 053011 [arXiv:1206.4312] [INSPIRE].

    ADS  Google Scholar 

  23. X. Liu and F. Petriello, Resummation of jet-veto logarithms in hadronic processes containing jets, Phys. Rev. D 87 (2013) 014018 [arXiv:1210.1906] [INSPIRE].

    ADS  Google Scholar 

  24. T. Kinoshita, Mass singularities of Feynman amplitudes, J. Math. Phys. 3 (1962) 650 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  25. T.D. Lee and M. Nauenberg, Degenerate Systems and Mass Singularities, Phys. Rev. 133 (1964) B1549 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. S. Catani and M. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].

    Article  ADS  Google Scholar 

  27. S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].

    Article  ADS  Google Scholar 

  28. K. Melnikov and F. Petriello, Electroweak gauge boson production at hadron colliders through \( O\left( {\alpha_s^2} \right) \), Phys. Rev. D 74 (2006) 114017 [hep-ph/0609070] [INSPIRE].

    ADS  Google Scholar 

  29. K. Melnikov and F. Petriello, The W boson production cross section at the LHC through \( O\left( {\alpha_s^2} \right) \), Phys. Rev. Lett. 96 (2006) 231803 [hep-ph/0603182] [INSPIRE].

    Article  ADS  Google Scholar 

  30. S. Catani, L. Cieri, G. Ferrera, D. de Florian and M. Grazzini, Vector boson production at hadron colliders: a Fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 103 (2009) 082001 [arXiv:0903.2120] [INSPIRE].

    Article  ADS  Google Scholar 

  31. C. Anastasiou, K. Melnikov and F. Petriello, Higgs boson production at hadron colliders: differential cross sections through next-to-next-to-leading order, Phys. Rev. Lett. 93 (2004) 262002 [hep-ph/0409088] [INSPIRE].

    Article  ADS  Google Scholar 

  32. C. Anastasiou, K. Melnikov and F. Petriello, Real radiation at NNLO: e + e → 2 jets through \( O\left( {\alpha_s^2} \right) \), Phys. Rev. Lett. 93 (2004) 032002 [hep-ph/0402280] [INSPIRE].

    Article  ADS  Google Scholar 

  33. A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, NNLO corrections to event shapes in e + e annihilation, JHEP 12 (2007) 094 [arXiv:0711.4711] [INSPIRE].

    Article  ADS  Google Scholar 

  34. A. Gehrmann-De Ridder, T. Gehrmann, E. Glover and G. Heinrich, Infrared structure of e+e− → 3 jets at NNLO, JHEP 11 (2007) 058 [arXiv:0710.0346] [INSPIRE].

    Article  ADS  Google Scholar 

  35. S. Weinzierl, NNLO corrections to 3-jet observables in electron-positron annihilation, Phys. Rev. Lett. 101 (2008) 162001 [arXiv:0807.3241] [INSPIRE].

    Article  ADS  Google Scholar 

  36. C. Anastasiou, K. Melnikov and F. Petriello, The Electron energy spectrum in muon decay through O2), JHEP 09 (2007) 014 [hep-ph/0505069] [INSPIRE].

    Article  ADS  Google Scholar 

  37. S. Biswas and K. Melnikov, Second order QCD corrections to inclusive semileptonic \( b\to {X_c}\ell {{\overline{\nu}}_{\ell }} \) decays with massless and massive lepton,JHEP 02 (2010) 089 [arXiv:0911.4142] [INSPIRE].

    Article  ADS  Google Scholar 

  38. K. Melnikov, \( O\left( {\alpha_s^2} \right) \) corrections to semileptonic decay \( b\to cl{{\overline{\nu}}_{el }} \), Phys. Lett. B 666 (2008) 336 [arXiv:0803.0951] [INSPIRE].

    ADS  Google Scholar 

  39. G. Ferrera, M. Grazzini and F. Tramontano, Associated WH production at hadron colliders: a fully exclusive QCD calculation at NNLO, Phys. Rev. Lett. 107 (2011) 152003 [arXiv:1107.1164] [INSPIRE].

    Article  ADS  Google Scholar 

  40. C. Anastasiou, F. Herzog and A. Lazopoulos, The Fully differential decay rate of a Higgs boson to bottom-quarks at NNLO in QCD, JHEP 03 (2012) 035 [arXiv:1110.2368] [INSPIRE].

    Article  ADS  Google Scholar 

  41. S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Diphoton production at hadron colliders: a fully-differential QCD calculation at NNLO, Phys. Rev. Lett. 108 (2012) 072001 [arXiv:1110.2375] [INSPIRE].

    Article  ADS  Google Scholar 

  42. S. Catani, D. de Florian and M. Grazzini, Universality of nonleading logarithmic contributions in transverse momentum distributions, Nucl. Phys. B 596 (2001) 299 [hep-ph/0008184] [INSPIRE].

    Article  ADS  Google Scholar 

  43. F.A. Berends and W. Giele, Multiple Soft Gluon Radiation in Parton Processes, Nucl. Phys. B 313 (1989) 595 [INSPIRE].

    Article  ADS  Google Scholar 

  44. J.M. Campbell and E.N. Glover, Double unresolved approximations to multiparton scattering amplitudes, Nucl. Phys. B 527 (1998) 264 [hep-ph/9710255] [INSPIRE].

    Article  ADS  Google Scholar 

  45. S. Catani and M. Grazzini, Collinear factorization and splitting functions for next-to-next-to-leading order QCD calculations, Phys. Lett. B 446 (1999) 143 [hep-ph/9810389] [INSPIRE].

    ADS  Google Scholar 

  46. Z. Bern, V. Del Duca, W.B. Kilgore and C.R. Schmidt, The Infrared behavior of one loop QCD amplitudes at next-to-next-to leading order, Phys. Rev. D 60 (1999) 116001 [hep-ph/9903516] [INSPIRE].

    ADS  Google Scholar 

  47. S. Catani and M. Grazzini, Infrared factorization of tree level QCD amplitudes at the next-to-next-to-leading order and beyond, Nucl. Phys. B 570 (2000) 287 [hep-ph/9908523] [INSPIRE].

    Article  Google Scholar 

  48. S. Catani and M. Grazzini, The soft gluon current at one loop order, Nucl. Phys. B 591 (2000) 435 [hep-ph/0007142] [INSPIRE].

    Article  ADS  Google Scholar 

  49. D.A. Kosower and P. Uwer, One loop splitting amplitudes in gauge theory, Nucl. Phys. B 563 (1999) 477 [hep-ph/9903515] [INSPIRE].

    Article  ADS  Google Scholar 

  50. C. Anastasiou, E.N. Glover, C. Oleari and M. Tejeda-Yeomans, Two-loop QCD corrections to the scattering of massless distinct quarks, Nucl. Phys. B 601 (2001) 318 [hep-ph/0010212] [INSPIRE].

    Article  ADS  Google Scholar 

  51. C. Anastasiou, E.N. Glover, C. Oleari and M. Tejeda-Yeomans, Two loop QCD corrections to massless identical quark scattering, Nucl. Phys. B 601 (2001) 341 [hep-ph/0011094] [INSPIRE].

    Article  ADS  Google Scholar 

  52. C. Anastasiou, E.N. Glover, C. Oleari and M. Tejeda-Yeomans, Two loop QCD corrections to massless quark gluon scattering, Nucl. Phys. B 605 (2001) 486 [hep-ph/0101304] [INSPIRE].

    Article  ADS  Google Scholar 

  53. E.N. Glover, C. Oleari and M. Tejeda-Yeomans, Two loop QCD corrections to gluon-gluon scattering, Nucl. Phys. B 605 (2001) 467 [hep-ph/0102201] [INSPIRE].

    Article  ADS  Google Scholar 

  54. C. Anastasiou, E.N. Glover and M. Tejeda-Yeomans, Two loop QED and QCD corrections to massless fermion boson scattering, Nucl. Phys. B 629 (2002) 255 [hep-ph/0201274] [INSPIRE].

    Article  ADS  Google Scholar 

  55. E.N. Glover and M. Tejeda-Yeomans, Two loop QCD helicity amplitudes for massless quark massless gauge boson scattering, JHEP 06 (2003) 033 [hep-ph/0304169] [INSPIRE].

    Article  ADS  Google Scholar 

  56. E.N. Glover, Two loop QCD helicity amplitudes for massless quark quark scattering, JHEP 04 (2004) 021 [hep-ph/0401119] [INSPIRE].

    Article  ADS  Google Scholar 

  57. Z. Bern, A. De Freitas and L.J. Dixon, Two loop amplitudes for gluon fusion into two photons, JHEP 09 (2001) 037 [hep-ph/0109078] [INSPIRE].

    Article  ADS  Google Scholar 

  58. Z. Bern, A. De Freitas and L.J. Dixon, Two loop helicity amplitudes for gluon-gluon scattering in QCD and supersymmetric Yang-Mills theory, JHEP 03 (2002) 018 [hep-ph/0201161] [INSPIRE].

    Article  ADS  Google Scholar 

  59. Z. Bern, A. De Freitas and L.J. Dixon, Two loop helicity amplitudes for quark gluon scattering in QCD and gluino gluon scattering in supersymmetric Yang-Mills theory, JHEP 06 (2003) 028 [hep-ph/0304168] [INSPIRE].

    Article  ADS  Google Scholar 

  60. A. De Freitas and Z. Bern, Two-loop helicity amplitudes for quark-quark scattering in QCD and gluino-gluino scattering in supersymmetric Yang-Mills theory, JHEP 09 (2004) 039 [hep-ph/0409007] [INSPIRE].

    Article  Google Scholar 

  61. L. Garland, T. Gehrmann, E.N. Glover, A. Koukoutsakis and E. Remiddi, The Two loop QCD matrix element for e + e → 3 jets, Nucl. Phys. B 627 (2002) 107 [hep-ph/0112081] [INSPIRE].

    Article  ADS  Google Scholar 

  62. L. Garland, T. Gehrmann, E.N. Glover, A. Koukoutsakis and E. Remiddi, Two loop QCD helicity amplitudes for e + e → 3 jets, Nucl. Phys. B 642 (2002) 227 [hep-ph/0206067] [INSPIRE].

    Article  ADS  Google Scholar 

  63. G. Somogyi, Z. Trócsányi and V. Del Duca, A Subtraction scheme for computing QCD jet cross sections at NNLO: regularization of doubly-real emissions, JHEP 01 (2007) 070 [hep-ph/0609042] [INSPIRE].

    Article  ADS  Google Scholar 

  64. G. Somogyi and Z. Trócsányi, A Subtraction scheme for computing QCD jet cross sections at NNLO: regularization of real-virtual emission, JHEP 01 (2007) 052 [hep-ph/0609043] [INSPIRE].

    Article  ADS  Google Scholar 

  65. G. Somogyi, A subtraction scheme for computing QCD jet cross sections at NNLO: integrating the doubly unresolved subtraction terms, JHEP 04 (2013) 010 [arXiv:1301.3919] [INSPIRE].

    Article  ADS  Google Scholar 

  66. M. Czakon, A novel subtraction scheme for double-real radiation at NNLO, Phys. Lett. B 693 (2010) 259 [arXiv:1005.0274] [INSPIRE].

    ADS  Google Scholar 

  67. M. Czakon, Double-real radiation in hadronic top quark pair production as a proof of a certain concept, Nucl. Phys. B 849 (2011) 250 [arXiv:1101.0642] [INSPIRE].

    Article  ADS  Google Scholar 

  68. T. Binoth and G. Heinrich, An Automatized algorithm to compute infrared divergent multiloop integrals, Nucl. Phys. B 585 (2000) 741 [hep-ph/0004013] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  69. T. Binoth and G. Heinrich, Numerical evaluation of phase space integrals by sector decomposition, Nucl. Phys. B 693 (2004) 138.

    ADS  Google Scholar 

  70. C. Anastasiou, K. Melnikov and F. Petriello, A New method for real radiation at NNLO, Phys. Rev. D 69 (2004) 076010 [hep-ph/0311311] [INSPIRE].

    ADS  Google Scholar 

  71. P. Baernreuther, M. Czakon and A. Mitov, Percent Level Precision Physics at the Tevatron: first Genuine NNLO QCD Corrections to \( q\overline{q}\to t\overline{t}+X \), Phys. Rev. Lett. 109 (2012) 132001 [arXiv:1204.5201] [INSPIRE].

    Article  ADS  Google Scholar 

  72. M. Czakon and A. Mitov, NNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channels, JHEP 12 (2012) 054 [arXiv:1207.0236] [INSPIRE].

    Article  ADS  Google Scholar 

  73. M. Czakon and A. Mitov, NNLO corrections to top pair production at hadron colliders: the quark-gluon reaction, JHEP 01 (2013) 080 [arXiv:1210.6832] [INSPIRE].

    Article  ADS  Google Scholar 

  74. R. Boughezal, K. Melnikov and F. Petriello, A subtraction scheme for NNLO computations, Phys. Rev. D 85 (2012) 034025 [arXiv:1111.7041] [INSPIRE].

    ADS  Google Scholar 

  75. A. Gehrmann-De Ridder, T. Gehrmann and E.N. Glover, Antenna subtraction at NNLO, JHEP 09 (2005) 056 [hep-ph/0505111] [INSPIRE].

    Article  ADS  Google Scholar 

  76. A. Daleo, T. Gehrmann and D. Maître, Antenna subtraction with hadronic initial states, JHEP 04 (2007) 016 [hep-ph/0612257] [INSPIRE].

    Article  ADS  Google Scholar 

  77. J. Currie, E. Glover and S. Wells, Infrared Structure at NNLO Using Antenna Subtraction, JHEP 04 (2013) 066 [arXiv:1301.4693] [INSPIRE].

    Article  ADS  Google Scholar 

  78. R. Boughezal, A. Gehrmann-De Ridder and M. Ritzmann, Antenna subtraction at NNLO with hadronic initial states: double real radiation for initial-initial configurations with two quark flavours, JHEP 02 (2011) 098 [arXiv:1011.6631] [INSPIRE].

    Article  ADS  Google Scholar 

  79. A. Gehrmann-De Ridder, T. Gehrmann and M. Ritzmann, Antenna subtraction at NNLO with hadronic initial states: double real initial-initial configurations, JHEP 10 (2012) 047 [arXiv:1207.5779] [INSPIRE].

    Article  ADS  Google Scholar 

  80. A.G.-D. Ridder, T. Gehrmann, E. Glover and J. Pires, Second order QCD corrections to jet production at hadron colliders: the all-gluon contribution, arXiv:1301.7310 [INSPIRE].

  81. M. Spira, A. Djouadi, D. Graudenz and P. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].

    Article  ADS  Google Scholar 

  82. S. Marzani, R.D. Ball, V. Del Duca, S. Forte and A. Vicini, Higgs production via gluon-gluon fusion with finite top mass beyond next-to-leading order, Nucl. Phys. B 800 (2008) 127 [arXiv:0801.2544] [INSPIRE].

    Article  ADS  Google Scholar 

  83. S. Marzani, R.D. Ball, V. Del Duca, S. Forte and A. Vicini, Finite-top-mass effects in NNLO Higgs production, Nucl. Phys. Proc. Suppl. 186 (2009) 98 [arXiv:0809.4934] [INSPIRE].

    Article  ADS  Google Scholar 

  84. R.V. Harlander and K.J. Ozeren, Finite top mass effects for hadronic Higgs production at next-to-next-to-leading order, JHEP 11 (2009) 088 [arXiv:0909.3420] [INSPIRE].

    Article  ADS  Google Scholar 

  85. A. Pak, M. Rogal and M. Steinhauser, Finite top quark mass effects in NNLO Higgs boson production at LHC, JHEP 02 (2010) 025 [arXiv:0911.4662] [INSPIRE].

    Article  ADS  Google Scholar 

  86. R.V. Harlander, H. Mantler, S. Marzani and K.J. Ozeren, Higgs production in gluon fusion at next-to-next-to-leading order QCD for finite top mass, Eur. Phys. J. C 66 (2010) 359 [arXiv:0912.2104] [INSPIRE].

    Article  ADS  Google Scholar 

  87. F. Caola, S. Forte and S. Marzani, Small x resummation of rapidity distributions: the Case of Higgs production, Nucl. Phys. B 846 (2011) 167 [arXiv:1010.2743] [INSPIRE].

    Article  ADS  Google Scholar 

  88. R.V. Harlander, T. Neumann, K.J. Ozeren and M. Wiesemann, Top-mass effects in differential Higgs production through gluon fusion at order \( \alpha_s^4 \), JHEP 08 (2012) 139 [arXiv:1206.0157] [INSPIRE].

    Article  ADS  Google Scholar 

  89. M. Krämer, E. Laenen and M. Spira, Soft gluon radiation in Higgs boson production at the LHC, Nucl. Phys. B 511 (1998) 523 [hep-ph/9611272] [INSPIRE].

    Article  ADS  Google Scholar 

  90. K. Chetyrkin, B.A. Kniehl and M. Steinhauser, Hadronic Higgs decay to order αS 4, Phys. Rev. Lett. 79 (1997) 353 [hep-ph/9705240] [INSPIRE].

    Article  ADS  Google Scholar 

  91. K. Chetyrkin, B.A. Kniehl and M. Steinhauser, Decoupling relations to OS 3) and their connection to low-energy theorems, Nucl. Phys. B 510 (1998) 61 [hep-ph/9708255] [INSPIRE].

    ADS  Google Scholar 

  92. M. Spira, QCD effects in Higgs physics, Fortsch. Phys. 46 (1998) 203 [hep-ph/9705337] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  93. T. Gehrmann, M. Jaquier, E. Glover and A. Koukoutsakis, Two-Loop QCD Corrections to the Helicity Amplitudes for H → 3 partons, JHEP 02 (2012) 056 [arXiv:1112.3554] [INSPIRE].

    Article  ADS  Google Scholar 

  94. S. Badger, E. Nigel Glover, P. Mastrolia and C. Williams, One-loop Higgs plus four gluon amplitudes: full analytic results, JHEP 01 (2010) 036 [arXiv:0909.4475] [INSPIRE].

    Article  ADS  Google Scholar 

  95. V. Del Duca, A. Frizzo and F. Maltoni, Higgs boson production in association with three jets, JHEP 05 (2004) 064 [hep-ph/0404013] [INSPIRE].

    Article  ADS  Google Scholar 

  96. L.J. Dixon, E.N. Glover and V.V. Khoze, MHV rules for Higgs plus multi-gluon amplitudes, JHEP 12 (2004) 015 [hep-th/0411092] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  97. J.M. Campbell and R.K. Ellis, Radiative corrections to Zbb production, Phys. Rev. D 62 (2000) 114012 [hep-ph/0006304] [INSPIRE].

    ADS  Google Scholar 

  98. S. Weinzierl, Does one need the O()- and O( 2)-terms of one-loop amplitudes in an NNLO calculation ?, Phys. Rev. D 84 (2011) 074007 [arXiv:1107.5131] [INSPIRE].

    ADS  Google Scholar 

  99. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    Article  ADS  Google Scholar 

  100. P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  101. J. Vermaseren, New features of FORM, math-ph/0010025 [INSPIRE].

  102. C.R. Schmidt, \( H\to ggg\left( {gq\overline{q}} \right) \) at two loops in the large M t limit, Phys. Lett. B 413 (1997) 391 [hep-ph/9707448] [INSPIRE].

    ADS  Google Scholar 

  103. R.K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP 02 (2008) 002 [arXiv:0712.1851] [INSPIRE].

    Article  ADS  Google Scholar 

  104. G.P. Lepage, Vegas: an Adaptive Multidimensional Integration Program, Cornella University preprint CLNS-80/447 (1990) [INSPIRE].

  105. T. Hahn, CUBA: a Library for multidimensional numerical integration, Comput. Phys. Commun. 168 (2005) 78 [hep-ph/0404043] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  106. M. Brucherseifer, F. Caola and K. Melnikov, \( \mathcal{O}\left( {\alpha_s^2} \right) \) corrections to fully-differential top quark decays, JHEP 04 (2013) 059 [arXiv:1301.7133] [INSPIRE].

    Article  ADS  Google Scholar 

  107. M. Brucherseifer, F. Caola and K. Melnikov, On the \( \mathcal{O}\left( {\alpha_s^2} \right) \) corrections to \( b\to {X_u}e\overline{\nu} \) inclusive decays, Phys. Lett. B 721 (2013) 107 [arXiv:1302.0444] [INSPIRE].

    ADS  Google Scholar 

  108. R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].

    Article  ADS  Google Scholar 

  109. NNPDF collaboration, R.D. Ball et al., Unbiased global determination of parton distributions and their uncertainties at NNLO and at LO, Nucl. Phys. B 855 (2012) 153 [arXiv:1107.2652] [INSPIRE].

    Article  ADS  Google Scholar 

  110. J. Huston, The Les Houches NNLO wishlist/extending NLO predictions, talk given at LoopFest XI, University of Pittsburgh, Pittsburgh, U.S.A., 10–12 May 2012, http://indico.cern.ch/getFile.py/access?contribId=11&sessionId=0&resId=0&materialId=slides&confId=156078.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Caola.

Additional information

ArXiv ePrint: 1302.6216

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boughezal, R., Caola, F., Melnikov, K. et al. Higgs boson production in association with a jet at next-to-next-to-leading order in perturbative QCD. J. High Energ. Phys. 2013, 72 (2013). https://doi.org/10.1007/JHEP06(2013)072

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2013)072

Keywords

Navigation