Skip to main content
Log in

Mesons in large-N QCD

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We present the results of a systematic, first-principles study of the spectrum and decay constants of mesons for different numbers of color charges N, via lattice computations. We restrict our attention to states in the non-zero isospin sector, evaluating the masses associated with the ground-state and first excitation in the pseudoscalar, vector, scalar, and axial vector channels. Our results are based on a new set of simulations of four dimensional SU(N) Yang-Mills theories with the number of colors ranging from N = 2 to N =17;thespectraandthedecayconstantsarecomputedinthequenchedapproximation (which becomes exact in the ’t Hooft limit) using Wilson fermions. After discussing the extrapolations to the chiral and large-N limits, we present a comparison of our results to some of the numerical computations and analytical predictions available in the literature — including, in particular, those from holographic computations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.G. Wilson, Confinement of quarks, Phys. Rev. D 10 (1974) 2445 [INSPIRE].

    ADS  Google Scholar 

  2. A.S. Kronfeld, Twenty-first Century Lattice Gauge Theory: Results from the QCD Lagrangian, Ann. Rev. Nucl. Part. Sci. 62 (2012) 265 [arXiv:1203.1204] [INSPIRE].

    Article  ADS  Google Scholar 

  3. G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72 (1974) 461 [INSPIRE].

    ADS  Google Scholar 

  4. B. Lucini and M. Panero, SU(N) gauge theories at large-N , Phys. Rept. 526 (2013) 93 [arXiv:1210.4997] [INSPIRE].

    Article  ADS  Google Scholar 

  5. M. Panero, Recent results in large-N lattice gauge theories, PoS (LATTICE 2012) 010 [arXiv:1210.5510] [INSPIRE].

  6. R. Narayanan and H. Neuberger, Large-N reduction in continuum, Phys. Rev. Lett. 91 (2003) 081601 [hep-lat/0303023] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. R. Narayanan and H. Neuberger, Chiral symmetry breaking at large-N c, Nucl. Phys. B 696 (2004) 107 [hep-lat/0405025] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  8. O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van Raamsdonk, The Hagedorndeconfinement phase transition in weakly coupled large-N gauge theories, Adv. Theor. Math. Phys. 8 (2004) 603 [hep-th/0310285] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  9. M. Ünsal and L.G. Yaffe, Center-stabilized Yang-Mills theory: confinement and large-N volume independence, Phys. Rev. D 78 (2008) 065035 [arXiv:0803.0344] [INSPIRE].

    ADS  Google Scholar 

  10. P. Kovtun, M. Ünsal and L.G. Yaffe, Volume independence in large-N c QCD-like gauge theories, JHEP 06 (2007) 019 [hep-th/0702021] [INSPIRE].

    Article  ADS  Google Scholar 

  11. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  12. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  13. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  14. J. Erdmenger, N. Evans, I. Kirsch and E. Threlfall, Mesons in gauge/gravity dualsa review, Eur. Phys. J. A 35 (2008) 81 [arXiv:0711.4467] [INSPIRE].

    ADS  Google Scholar 

  15. B. Lucini and M. Teper, SU(N) gauge theories in four-dimensions: exploring the approach to N =∞,JHEP 06 (2001) 050 [hep-lat/0103027] [INSPIRE].

    Article  ADS  Google Scholar 

  16. B. Lucini, M. Teper and U. Wenger, The high temperature phase transition in SU(N) gauge theories, JHEP 01 (2004) 061 [hep-lat/0307017] [INSPIRE].

    Article  ADS  Google Scholar 

  17. B. Lucini, M. Teper and U. Wenger, Topology of SU(N) gauge theories at T ≃ 0 and TT(c),Nucl. Phys. B 715 (2005) 461 [hep-lat/0401028] [INSPIRE].

    Article  ADS  Google Scholar 

  18. B. Lucini, M. Teper and U. Wenger, Glueballs and k-strings in SU(N) gauge theories: Calculations with improved operators, JHEP 06 (2004) 012 [hep-lat/0404008] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. B. Lucini and G. Moraitis, The running of the coupling in SU(N) pure gauge theories, Phys. Lett. B 668 (2008) 226 [arXiv:0805.2913] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  20. L. Del Debbio, H. Panagopoulos, P. Rossi and E. Vicari, Spectrum of confining strings in SU(N) gauge theories, JHEP 01 (2002) 009 [hep-th/0111090] [INSPIRE].

    Article  ADS  Google Scholar 

  21. L. Del Debbio, H. Panagopoulos and E. Vicari, θ dependence of SU(N) gauge theories, JHEP 08 (2002) 044 [hep-th/0204125] [INSPIRE].

    Article  ADS  Google Scholar 

  22. L. Del Debbio, H. Panagopoulos and E. Vicari, Topological susceptibility of SU(N) gauge theories at finite temperature, JHEP 09 (2004) 028 [hep-th/0407068] [INSPIRE].

    Article  ADS  Google Scholar 

  23. L. Del Debbio, G.M. Manca, H. Panagopoulos, A. Skouroupathis and E. Vicari, Theta-dependence of the spectrum of SU(N) gauge theories, JHEP 06 (2006) 005 [hep-th/0603041] [INSPIRE].

    Article  ADS  Google Scholar 

  24. F. Bursa and M. Teper, Casimir scaling of domain wall tensions in the deconfined phase of D=3+1 SU(N) gauge theories,JHEP 08 (2005) 060 [hep-lat/0505025] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. H.B. Meyer, Glueball Regge trajectories, hep-lat/0508002 [INSPIRE].

  26. B. Lucini, A. Rago and E. Rinaldi, Glueball masses in the large-N limit, JHEP 08 (2010) 119 [arXiv:1007.3879] [INSPIRE].

    Article  ADS  Google Scholar 

  27. B. Bringoltz and M. Teper, The pressure of the SU(N) lattice gauge theory at large-N , Phys. Lett. B 628 (2005) 113 [hep-lat/0506034] [INSPIRE].

    ADS  Google Scholar 

  28. M. Panero, Thermodynamics of the QCD plasma and the large-N limit, Phys. Rev. Lett. 103 (2009) 232001 [arXiv:0907.3719] [INSPIRE].

    Article  ADS  Google Scholar 

  29. M. Panero, Geometric effects in lattice QCD thermodynamics, PoS (LATTICE 2008) 175 [arXiv:0808.1672] [INSPIRE].

  30. S. Datta and S. Gupta, Continuum Thermodynamics of the SU(N c) Plasma, Phys. Rev. D 82 (2010) 114505 [arXiv:1006.0938] [INSPIRE].

    ADS  Google Scholar 

  31. A. Mykkänen, M. Panero and K. Rummukainen, Casimir scaling and renormalization of Polyakov loops in large-N gauge theories, JHEP 05 (2012) 069 [arXiv:1202.2762] [INSPIRE].

    ADS  Google Scholar 

  32. A. Mykkänen, M. Panero and K. Rummukainen, Renormalization of Polyakov loops in different representations and the large-N limit, PoS (Lattice 2011) 211.

  33. C. Bonati, M. D’Elia, H. Panagopoulos and E. Vicari, Change of theta dependence in 4D SU(N) gauge theories across the deconfinement transition, arXiv:1301.7640 [INSPIRE].

  34. B. Lucini, A. Rago and E. Rinaldi, SU(N c) gauge theories at deconfinement, Phys. Lett. B 712 (2012) 279 [arXiv:1202.6684] [INSPIRE].

    ADS  Google Scholar 

  35. M.J. Teper, SU(N) gauge theories in (2 + 1)-dimensions, Phys. Rev. D 59 (1999) 014512 [hep-lat/9804008] [INSPIRE].

    ADS  Google Scholar 

  36. J. Liddle and M. Teper, The Deconfining phase transition in D = 2 + 1 SU(N) gauge theories, arXiv:0803.2128 [INSPIRE].

  37. R.W. Johnson and M.J. Teper, String models of glueballs and the spectrum of SU(N) gauge theories in (2 + 1)-dimensions, Phys. Rev. D 66 (2002) 036006 [hep-ph/0012287] [INSPIRE].

    ADS  Google Scholar 

  38. H.B. Meyer and M.J. Teper, Glueball Regge trajectories in (2 + 1)-dimensional gauge theories, Nucl. Phys. B 668 (2003) 111 [hep-lat/0306019] [INSPIRE].

    Article  ADS  Google Scholar 

  39. F. Bursa and M. Teper, Strong to weak coupling transitions of SU(N) gauge theories in 2 + 1 dimensions, Phys. Rev. D 74 (2006) 125010 [hep-th/0511081] [INSPIRE].

    ADS  Google Scholar 

  40. M. Caselle, L. Castagnini, A. Feo, F. Gliozzi and M. Panero, Thermodynamics of SU(N) Yang-Mills theories in 2 + 1 dimensions Ithe confining phase, JHEP 06 (2011) 142 [arXiv:1105.0359] [INSPIRE].

    Article  ADS  Google Scholar 

  41. A. Athenodorou, B. Bringoltz and M. Teper, The closed string spectrum of SU(N) gauge theories in 2 + 1 dimensions, Phys. Lett. B 656 (2007) 132 [arXiv:0709.0693] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  42. M. Caselle, A. Feo, M. Panero and R. Pellegrini, Universal signatures of the effective string in finite temperature lattice gauge theories, JHEP 04 (2011) 020 [arXiv:1102.0723] [INSPIRE].

    Article  ADS  Google Scholar 

  43. M. Caselle et al., Thermodynamics of SU(N) Yang-Mills theories in 2 + 1 dimensions II. The Deconfined phase, JHEP 05 (2012) 135 [arXiv:1111.0580] [INSPIRE].

    Article  ADS  Google Scholar 

  44. CP-PACS collaboration, S. Aoki et al., Quenched light hadron spectrum, Phys. Rev. Lett. 84 (2000) 238 [hep-lat/9904012] [INSPIRE].

    Article  ADS  Google Scholar 

  45. L. Del Debbio, B. Lucini, A. Patella and C. Pica, Quenched mesonic spectrum at large-N, JHEP 03 (2008) 062 [arXiv:0712.3036] [INSPIRE].

    Article  ADS  Google Scholar 

  46. G.S. Bali and F. Bursa, Mesons at large-N c from lattice QCD, JHEP 09 (2008) 110 [arXiv:0806.2278] [INSPIRE].

    Article  ADS  Google Scholar 

  47. G. Bali and F. Bursa, Meson masses at large-N c, PoS (LATTICE 2007) 050 [arXiv:0708.3427] [INSPIRE].

  48. T. DeGrand, Lattice baryons in the 1/N expansion, Phys. Rev. D 86 (2012) 034508 [arXiv:1205.0235] [INSPIRE].

    ADS  Google Scholar 

  49. A. Hietanen, R. Narayanan, R. Patel and C. Prays, The vector meson mass in the large-N limit of QCD, Phys. Lett. B 674 (2009) 80 [arXiv:0901.3752] [INSPIRE].

    ADS  Google Scholar 

  50. G.S. Bali et al., The meson spectrum in large-N QCD, PoS (Confinement X) 278 [arXiv:1302.1502] [INSPIRE].

  51. SciDAC, LHPC and UKQCD collaborations, R.G. Edwards and B. Joó, The Chroma software system for lattice QCD, Nucl. Phys. Proc. Suppl. 140 (2005) 832 [hep-lat/0409003] [INSPIRE].

    Article  ADS  Google Scholar 

  52. M. Creutz, Monte Carlo Study of Quantized SU(2) Gauge Theory, Phys. Rev. D 21 (1980) 2308 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  53. K. Fabricius and O. Haan, Heat bath method for the twisted Eguchi-Kawai model, Phys. Lett. B 143 (1984) 459 [INSPIRE].

    ADS  Google Scholar 

  54. A. Kennedy and B. Pendleton, Improved Heat Bath Method for Monte Carlo Calculations in Lattice Gauge Theories, Phys. Lett. B 156 (1985) 393 [INSPIRE].

    ADS  Google Scholar 

  55. S.L. Adler, An overrelaxation method for the Monte Carlo evaluation of the partition function for multiquadratic actions, Phys. Rev. D 23 (1981) 2901 [INSPIRE].

    ADS  Google Scholar 

  56. F.R. Brown and T.J. Woch, Overrelaxed Heat Bath and Metropolis Algorithms for Accelerating Pure Gauge Monte Carlo Calculations, Phys. Rev. Lett. 58 (1987) 2394 [INSPIRE].

    Article  ADS  Google Scholar 

  57. N. Cabibbo and E. Marinari, A New Method for Updating SU(N) Matrices in Computer Simulations of Gauge Theories, Phys. Lett. B 119 (1982) 387 [INSPIRE].

    ADS  Google Scholar 

  58. B. Lucini, M. Teper and U. Wenger, Properties of the deconfining phase transition in SU(N) gauge theories, JHEP 02 (2005) 033 [hep-lat/0502003] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  59. C. Allton, M. Teper and A. Trivini, On the running of the bare coupling in SU(N) lattice gauge theories, JHEP 07 (2008) 021 [arXiv:0803.1092] [INSPIRE].

    Article  ADS  Google Scholar 

  60. A. Bode and H. Panagopoulos, The three loop β-function of QCD with the clover action, Nucl. Phys. B 625 (2002) 198 [hep-lat/0110211] [INSPIRE].

    Article  ADS  Google Scholar 

  61. M. Lüscher and P. Weisz, Computation of the relation between the bare lattice coupling and the MS coupling in SU(N) gauge theories to two loops, Nucl. Phys. B 452 (1995) 234 [hep-lat/9505011] [INSPIRE].

    Article  ADS  Google Scholar 

  62. W.A. Bardeen, A. Duncan, E. Eichten, G. Hockney and H. Thacker, Light quarks, zero modes and exceptional configurations, Phys. Rev. D 57 (1998) 1633 [hep-lat/9705008] [INSPIRE].

    ADS  Google Scholar 

  63. S. Güsken, A Study of smearing techniques for hadron correlation functions, Nucl. Phys. Proc. Suppl. 17 (1990) 361 [INSPIRE].

    Article  ADS  Google Scholar 

  64. M. Falcioni, M. Paciello, G. Parisi and B. Taglienti, Again on SU(3) glueball mass, Nucl. Phys. B 251 (1985) 624 [INSPIRE].

    Article  ADS  Google Scholar 

  65. C. Michael, Adjoint Sources in Lattice Gauge Theory, Nucl. Phys. B 259 (1985) 58 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  66. M. Lüscher and U. Wolff, How to calculate the elastic scattering matrix in two-dimensional quantum field theories by numerical simulation, Nucl. Phys. B 339 (1990) 222 [INSPIRE].

    Article  ADS  Google Scholar 

  67. Bern-Graz-Regensburg collaboration, T. Burch et al., Spatially improved operators for excited hadrons on the lattice, Phys. Rev. D 70 (2004) 054502 [hep-lat/0405006] [INSPIRE].

    ADS  Google Scholar 

  68. V. Giménez, L. Giusti, F. Rapuano and M. Talevi, Nonperturbative renormalization of quark bilinears, Nucl. Phys. B 531 (1998) 429 [hep-lat/9806006] [INSPIRE].

    Article  ADS  Google Scholar 

  69. S.R. Sharpe, Quenched chiral logarithms, Phys. Rev. D 46 (1992) 3146 [hep-lat/9205020] [INSPIRE].

    ADS  Google Scholar 

  70. Y. Chen et al., Chiral logarithms in quenched QCD, Phys. Rev. D 70 (2004) 034502 [hep-lat/0304005] [INSPIRE].

    ADS  Google Scholar 

  71. W.A. Bardeen, A. Duncan, E. Eichten and H. Thacker, Anomalous chiral behavior in quenched lattice QCD, Phys. Rev. D 62 (2000) 114505 [hep-lat/0007010] [INSPIRE].

    ADS  Google Scholar 

  72. M. Booth, G. Chiladze and A.F. Falk, Quenched chiral perturbation theory for vector mesons, Phys. Rev. D 55 (1997) 3092 [hep-ph/9610532] [INSPIRE].

    ADS  Google Scholar 

  73. N.R. Constable and R.C. Myers, Exotic scalar states in the AdS/CFT correspondence, JHEP 11 (1999) 020 [hep-th/9905081] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  74. W.A. Bardeen, A. Duncan, E. Eichten, N. Isgur and H. Thacker, Chiral loops and ghost states in the quenched scalar propagator, Phys. Rev. D 65 (2001) 014509 [hep-lat/0106008] [INSPIRE].

    ADS  Google Scholar 

  75. M. Göckeler et al., Scaling of nonperturbatively O(a) improved Wilson fermions: Hadron spectrum, quark masses and decay constants, Phys. Rev. D 57 (1998) 5562 [hep-lat/9707021] [INSPIRE].

    ADS  Google Scholar 

  76. M. Göckeler et al., Nonperturbative renormalization of composite operators in lattice QCD, Nucl. Phys. B 544 (1999) 699 [hep-lat/9807044] [INSPIRE].

    Article  ADS  Google Scholar 

  77. A. Skouroupathis and H. Panagopoulos, Two-loop renormalization of scalar and pseudoscalar fermion bilinears on the lattice, Phys. Rev. D 76 (2007) 094514 [Erratum ibid. D 78 (2008) 119901] [arXiv:0707.2906] [INSPIRE].

    ADS  Google Scholar 

  78. A. Skouroupathis and H. Panagopoulos, Two-loop renormalization of vector, axial-vector and tensor fermion bilinears on the lattice, Phys. Rev. D 79 (2009) 094508 [arXiv:0811.4264] [INSPIRE].

    ADS  Google Scholar 

  79. T. Eguchi and H. Kawai, Reduction of Dynamical Degrees of Freedom in the Large-N Gauge Theory, Phys. Rev. Lett. 48 (1982) 1063 [INSPIRE].

    Article  ADS  Google Scholar 

  80. J. Kiskis, R. Narayanan and H. Neuberger, Does the crossover from perturbative to nonperturbative physics in QCD become a phase transition at infinite N?, Phys. Lett. B 574 (2003) 65 [hep-lat/0308033] [INSPIRE].

    ADS  Google Scholar 

  81. G. Colangelo and S. Dürr, The pion mass in finite volume, Eur. Phys. J. C 33 (2004) 543 [hep-lat/0311023] [INSPIRE].

    Article  ADS  Google Scholar 

  82. G. Colangelo, A. Fuhrer and C. Haefeli, The pion and proton mass in finite volume, Nucl. Phys. Proc. Suppl. 153 (2006) 41 [hep-lat/0512002] [INSPIRE].

    Article  ADS  Google Scholar 

  83. H. Neuberger, Topological effects in matrix models representing lattice gauge theories at large-N, Annales Henri Poincaré 4 (2003) S147 [hep-th/0212097] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  84. J. Peláez and G. Ríos, Nature of the f0(600) from its N(c) dependence at two loops in unitarized Chiral Perturbation Theory, Phys. Rev. Lett. 97 (2006) 242002 [hep-ph/0610397] [INSPIRE].

    Article  ADS  Google Scholar 

  85. L. Geng, E. Oset, J. Peláez and L. Roca, Nature of the axial-vector mesons from their N(c) behavior within the chiral unitary approach, Eur. Phys. J. A 39 (2009) 81 [arXiv:0811.1941] [INSPIRE].

    ADS  Google Scholar 

  86. J. Nieves and E. Ruiz Arriola, Properties of the rho and sigma Mesons from Unitary Chiral Dynamics, Phys. Rev. D 80 (2009) 045023 [arXiv:0904.4344] [INSPIRE].

    ADS  Google Scholar 

  87. J. Nieves, A. Pich and E. Ruiz Arriola, Large-Nc Properties of the rho and f0(600) Mesons from Unitary Resonance Chiral Dynamics, Phys. Rev. D 84 (2011) 096002 [arXiv:1107.3247] [INSPIRE].

    ADS  Google Scholar 

  88. FLAG Working Group collaboration, G. Colangelo et al., Review of lattice results concerning low energy particle physics, Eur. Phys. J. C 71 (2011) 1695 [arXiv:1011.4408] [INSPIRE].

    Article  ADS  Google Scholar 

  89. R. Narayanan and H. Neuberger, The Quark mass dependence of the pion mass at infinite N, Phys. Lett. B 616 (2005) 76 [hep-lat/0503033] [INSPIRE].

    ADS  Google Scholar 

  90. RBC-UKQCD collaboration, C. Allton et al., Physical Results from 2 + 1 Flavor Domain Wall QCD and SU(2) Chiral Perturbation Theory, Phys. Rev. D 78 (2008) 114509 [arXiv:0804.0473] [INSPIRE].

    ADS  Google Scholar 

  91. R. Baron et al., Light hadrons from lattice QCD with light (u,d), strange and charm dynamical quarks, JHEP 06 (2010) 111 [arXiv:1004.5284] [INSPIRE].

    Article  ADS  Google Scholar 

  92. MILC collaboration, A. Bazavov et al., Results for light pseudoscalar mesons, PoS (LATTICE 2010) 074 [arXiv:1012.0868] [INSPIRE].

  93. P. Masjuan, E. Ruiz Arriola and W. Broniowski, Systematics of radial and angular-momentum Regge trajectories of light non-strange q q-states, Phys. Rev. D 85 (2012) 094006 [arXiv:1203.4782] [INSPIRE].

    ADS  Google Scholar 

  94. A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  95. J. Babington, J. Erdmenger, N.J. Evans, Z. Guralnik and I. Kirsch, Chiral symmetry breaking and pions in nonsupersymmetric gauge / gravity duals, Phys. Rev. D 69 (2004) 066007 [hep-th/0306018] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  96. M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Meson spectroscopy in AdS/CFT with flavor, JHEP 07 (2003) 049 [hep-th/0304032] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  97. C. Morningstar, Exploring Excited Hadrons, PoS (LATTICE 2008) 009 [arXiv:0810.4448] [INSPIRE].

  98. I.R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  99. J. Polchinski and M.J. Strassler, The string dual of a confining four-dimensional gauge theory, hep-th/0003136 [INSPIRE].

  100. J. Polchinski and M.J. Strassler, Hard scattering and gauge/string duality, Phys. Rev. Lett. 88 (2002) 031601 [hep-th/0109174] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  101. T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  102. J.M. Maldacena and C. Núñez, Towards the large-N limit of pure N = 1 super Yang-Mills, Phys. Rev. Lett. 86 (2001) 588 [hep-th/0008001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  103. T. Sakai and J. Sonnenschein, Probing flavored mesons of confining gauge theories by supergravity, JHEP 09 (2003) 047 [hep-th/0305049] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  104. Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    ADS  Google Scholar 

  105. J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a holographic model of hadrons, Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128] [INSPIRE].

    Article  ADS  Google Scholar 

  106. L. Da Rold and A. Pomarol, Chiral symmetry breaking from five dimensional spaces, Nucl. Phys. B 721 (2005) 79 [hep-ph/0501218] [INSPIRE].

    Article  ADS  Google Scholar 

  107. L. Da Rold and A. Pomarol, The scalar and pseudoscalar sector in a five-dimensional approach to chiral symmetry breaking, JHEP 01 (2006) 157 [hep-ph/0510268] [INSPIRE].

    Article  ADS  Google Scholar 

  108. U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Deconfinement and Gluon Plasma Dynamics in Improved Holographic QCD, Phys. Rev. Lett. 101 (2008) 181601 [arXiv:0804.0899] [INSPIRE].

    Article  ADS  Google Scholar 

  109. U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Improved holographic Yang-Mills at finite temperature: comparison with data, Nucl. Phys. B 820 (2009) 148 [arXiv:0903.2859] [INSPIRE].

    Article  ADS  Google Scholar 

  110. U. Gürsoy, E. Kiritsis, L. Mazzanti, G. Michalogiorgakis and F. Nitti, Improved Holographic QCD, Lect. Notes Phys. 828 (2011) 79 [arXiv:1006.5461] [INSPIRE].

    Article  ADS  Google Scholar 

  111. J. Alanen, K. Kajantie and V. Suur-Uski, A gauge/gravity duality model for gauge theory thermodynamics, Phys. Rev. D 80 (2009) 126008 [arXiv:0911.2114] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  112. M. Järvinen and E. Kiritsis, Holographic Models for QCD in the Veneziano Limit, JHEP 03 (2012) 002 [arXiv:1112.1261] [INSPIRE].

    Article  Google Scholar 

  113. T. Alho, M. Järvinen, K. Kajantie, E. Kiritsis and K. Tuominen, On finite-temperature holographic QCD in the Veneziano limit, JHEP 01 (2013) 093 [arXiv:1210.4516] [INSPIRE].

    Article  ADS  Google Scholar 

  114. A.M. Polyakov, The wall of the cave, Int. J. Mod. Phys. A 14 (1999) 645 [hep-th/9809057] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  115. I.R. Klebanov and J.M. Maldacena, Superconformal gauge theories and non-critical superstrings, Int. J. Mod. Phys. A 19 (2004) 5003 [hep-th/0409133] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  116. I. Iatrakis, E. Kiritsis and A. Paredes, An AdS/QCD model from Sens tachyon action, Phys. Rev. D 81 (2010) 115004 [arXiv:1003.2377] [INSPIRE].

    ADS  Google Scholar 

  117. I. Iatrakis, E. Kiritsis and A. Paredes, An AdS/QCD model from tachyon condensation: II, JHEP 11 (2010) 123 [arXiv:1010.1364] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  118. J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Annals Phys. 158 (1984) 142 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  119. J. Gasser and H. Leutwyler, Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark, Nucl. Phys. B 250 (1985) 465 [INSPIRE].

    Article  ADS  Google Scholar 

  120. H. Leutwyler, On the foundations of chiral perturbation theory, Annals Phys. 235 (1994) 165 [hep-ph/9311274] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  121. G. Ecker, Chiral perturbation theory, Prog. Part. Nucl. Phys. 35 (1995) 1 [hep-ph/9501357] [INSPIRE].

    Article  ADS  Google Scholar 

  122. A. Pich, Chiral perturbation theory, Rept. Prog. Phys. 58 (1995) 563 [hep-ph/9502366] [INSPIRE].

    Article  ADS  Google Scholar 

  123. S. Scherer and M.R. Schindler, A chiral perturbation theory primer, hep-ph/0505265 [INSPIRE].

  124. R. Kaiser and H. Leutwyler, Large-N c in chiral perturbation theory, Eur. Phys. J. C 17 (2000) 623 [hep-ph/0007101] [INSPIRE].

    Article  ADS  Google Scholar 

  125. E.E. Jenkins, Chiral Lagrangian for baryons in the 1/n(c) expansion, Phys. Rev. D 53 (1996) 2625 [hep-ph/9509433] [INSPIRE].

    ADS  Google Scholar 

  126. E. Follana and H. Panagopoulos, The critical mass of Wilson fermions: a comparison of perturbative and Monte Carlo results, Phys. Rev. D 63 (2001) 017501 [hep-lat/0006001] [INSPIRE].

    ADS  Google Scholar 

  127. S. Caracciolo, A. Pelissetto and A. Rago, Two loop critical mass for Wilson fermions, Phys. Rev. D 64 (2001) 094506 [hep-lat/0106013] [INSPIRE].

    ADS  Google Scholar 

  128. Y. Makeenko and M. Polikarpov, Phase diagram of mixed lattice gauge theory from viewpoint of large-N , Nucl. Phys. B 205 (1982) 386 [INSPIRE].

    Article  ADS  Google Scholar 

  129. S. Samuel, O. Martin and K. Moriarty, Seeing asymptotic freedom in SU(3) lattice gauge theory, Phys. Lett. B 153 (1985) 87 [INSPIRE].

    ADS  Google Scholar 

  130. A. Di Giacomo and G. Rossi, Extracting the Vacuum Expectation Value of the Quantity alpha/pi G G from Gauge Theories on a Lattice, Phys. Lett. B 100 (1981) 481 [INSPIRE].

    ADS  Google Scholar 

  131. A. Athenodorou, H. Panagopoulos and A. Tsapalis, The Lattice Free Energy of QCD with Clover Fermions, up to Three-Loops, Phys. Lett. B 659 (2008) 252 [arXiv:0710.3856] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Castagnini.

Additional information

ArXiv ePrint: 1304.4437

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bali, G., Bursa, F., Castagnini, L. et al. Mesons in large-N QCD. J. High Energ. Phys. 2013, 71 (2013). https://doi.org/10.1007/JHEP06(2013)071

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2013)071

Keywords

Navigation