Skip to main content
Log in

Thermodynamics of SU(N) Yang-Mills theories in 2 + 1 dimensions I — The confining phase

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We compute the equation of state in the confining phase of SU(N) Yang-Mills theories with N = 2, 3, 4, 5 and 6 colors in 2 + 1 dimensions, via lattice simulations. At low enough temperatures, the results are accurately described by a gas of glueballs, including all known states below the two-particle threshold. Close to the deconfinement temperature, however, this prediction underestimates the numerical results, and the contribution from heavier glueballs has to be included. We show that the spectral density of the latter can be accurately described using a simple bosonic string model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Cabibbo and G. Parisi, Exponential hadronic spectrum and quark liberation, Phys. Lett. B 59 (1975) 67 [SPIRES].

    ADS  Google Scholar 

  2. J.C. Collins and M.J. Perry, Superdense matter: neutrons or asymptotically free quarks?, Phys. Rev. Lett. 34 (1975) 1353 [SPIRES].

    Article  ADS  Google Scholar 

  3. A.D. Linde, Infrared problem in thermodynamics of the Yang-Mills gas, Phys. Lett. B 96 (1980) 289 [SPIRES].

    ADS  Google Scholar 

  4. D.J. Gross, R.D. Pisarski and L.G. Yaffe, QCD and instantons at finite temperature, Rev. Mod. Phys. 53 (1981) 43 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. M. Cheng et al., Equation of state for physical quark masses, Phys. Rev. D 81 (2010) 054504 [arXiv:0911.2215] [SPIRES].

    ADS  Google Scholar 

  6. S. Borsányi et al., The QCD equation of state with dynamical quarks, JHEP 11 (2010) 077 [arXiv:1007.2580] [SPIRES].

    Article  ADS  Google Scholar 

  7. S. Gupta, QCD at finite density, PoS LATTICE2010 (2010) 007 [arXiv:1101.0109] [SPIRES].

  8. K. Kanaya, Finite temperature QCD on the lattice — status 2010, PoS LATTICE2010 (2010) 012 [arXiv:1012.4247] [SPIRES].

  9. C. De Tar, QCD thermodynamics on the lattice: recent results, arXiv:1101.0208 [SPIRES].

  10. U.W. Heinz and M. Jacob, Evidence for a new state of matter: an assessment of the results from the CERN lead beam programme, nucl-th/0002042 [SPIRES].

  11. M. Gyulassy and L. McLerran, New forms of QCD matter discovered at RHIC, Nucl. Phys. A 750 (2005) 30 [nucl-th/0405013] [SPIRES].

    ADS  Google Scholar 

  12. PHENIX collaboration, K. Adcox et al., Formation of dense partonic matter in relativistic nucleus nucleus collisions at RHIC: experimental evaluation by the PHENIX collaboration, Nucl. Phys. A 757 (2005) 184 [nucl-ex/0410003] [SPIRES].

    ADS  Google Scholar 

  13. BRAHMS collaboration, I. Arsene et al., Quark gluon plasma an color glass condensate at RHIC? The perspective from the BRAHMS experiment, Nucl. Phys. A 757 (2005) 1 [nucl-ex/0410020] [SPIRES].

    ADS  Google Scholar 

  14. B.B. Back et al., The PHOBOS perspective on discoveries at RHIC, Nucl. Phys. A 757 (2005) 28 [nucl-ex/0410022] [SPIRES].

    ADS  Google Scholar 

  15. STAR collaboration, J. Adams et al., Experimental and theoretical challenges in the search for the quark gluon plasma: the STAR collaboration’s critical assessment of the evidence from RHIC collisions, Nucl. Phys. A 757 (2005) 102 [nucl-ex/0501009] [SPIRES].

    ADS  Google Scholar 

  16. ATLAS collaboration, G. Aad et al., Observation of a centrality-dependent dijet asymmetry in lead-lead collisions at \( \sqrt {{{S_{NN}}}} = 2.76 \) TeV with the ATLAS detector at the LHC, Phys. Rev. Lett. 105 (2010) 252303 [arXiv:1011.6182] [SPIRES].

    Article  ADS  Google Scholar 

  17. CMS collaboration, S. Chatrchyan et al., Observation and studies of jet quenching in PbPb collisions at nucleon-nucleon center-of-mass energy = 2.76 TeV, arXiv:1102.1957 [SPIRES].

  18. The ALICE collaboration, K. Aamodt et al., Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV, Phys. Rev. Lett. 105 (2010) 252302 [arXiv:1011.3914] [SPIRES].

    Article  ADS  Google Scholar 

  19. The ALICE collaboration, B. Abelev et al., Charged-particle multiplicity density at mid-rapidity in central Pb-Pb collisions at \( \sqrt {{{s_{NN}}}} = 2.76 \) TeV, Phys. Rev. Lett. 105 (2010) 252301 [arXiv:1011.3916] [SPIRES].

    Article  ADS  Google Scholar 

  20. ALICE collaboration, K. Aamodt et al., Suppression of charged particle production at large transverse momentum in central Pb-Pb collisions at \( \sqrt {{{s_{NN}}}} = 2.76 \) TeV, Phys. Lett. B 696 (2011) 30 [arXiv:1012.1004] [SPIRES].

    ADS  Google Scholar 

  21. ALICE collaboration, K. Aamodt et al., Centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at \( \sqrt {{{s_{NN}}}} = 2.76 \) TeV, Phys. Rev. Lett. 106 (2011) 032301 [arXiv:1012.1657] [SPIRES].

    Article  ADS  Google Scholar 

  22. ALICE collaboration, K. Aamodt et al., Two-pion Bose-Einstein correlations in central PbPb collisions at \( \sqrt {{{s_{NN}}}} = 2.76 \) TeV, Phys. Lett. B 696 (2011) 328 [arXiv:1012.4035] [SPIRES].

    ADS  Google Scholar 

  23. A. Andronic, P. Braun-Munzinger and J. Stachel, Thermal hadron production in relativistic nuclear collisions, Acta Phys. Polon. B 40 (2009) 1005 [arXiv:0901.2909] [SPIRES].

    ADS  Google Scholar 

  24. R. Hagedorn, Statistical thermodynamics of strong interactions at high energies, Nuovo Cim. Suppl. 3 (1965) 147.

    Google Scholar 

  25. R. Hagedorn and J. Rafelski, Hot hadronic matter and nuclear collisions, Phys. Lett. B 97 (1980) 136 [SPIRES].

    ADS  Google Scholar 

  26. C.J. Morningstar and M.J. Peardon, The glueball spectrum from an anisotropic lattice study, Phys. Rev. D 60 (1999) 034509 [hep-lat/9901004] [SPIRES].

    ADS  Google Scholar 

  27. H.B. Meyer and M.J. Teper, Glueball Regge trajectories in (2 + 1) dimensional gauge theories, Nucl. Phys. B 668 (2003) 111 [hep-lat/0306019] [SPIRES].

    Article  ADS  Google Scholar 

  28. H.B. Meyer, Glueball Regge trajectories, hep-lat/0508002 [SPIRES].

  29. B. Lucini, A. Rago and E. Rinaldi, Glueball masses in the large-N limit, JHEP 08 (2010) 119 [arXiv:1007.3879] [SPIRES].

    Article  ADS  Google Scholar 

  30. R.W. Johnson and M.J. Teper, String models of glueballs and the spectrum of SU(N) gauge theories in 2 + 1 dimensions, Phys. Rev. D 66 (2002) 036006 [hep-ph/0012287] [SPIRES].

    ADS  Google Scholar 

  31. N. Isgur and J.E. Paton, A flux tube model for hadrons in QCD, Phys. Rev. D 31 (1985) 2910 [SPIRES].

    ADS  Google Scholar 

  32. G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72 (1974) 461 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  33. E. Witten, Baryons in the 1/n Expansion, Nucl. Phys. B 160 (1979) 57 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  34. A.V. Manohar, Large-N QCD, hep-ph/9802419 [SPIRES].

  35. Y. Makeenko, Large-N gauge theories, hep-th/0001047 [SPIRES].

  36. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  37. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].

    Article  MathSciNet  MATH  Google Scholar 

  38. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from non-critical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  39. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [SPIRES].

    MathSciNet  MATH  Google Scholar 

  40. T.D. Cohen and V. Krejˇciˇrík, The Hagedorn spectrum and large-N c QCD in 2 + 1 and 3 + 1 dimensions, arXiv:1104.4783 [SPIRES].

  41. M.J. Teper, SU(N) gauge theories in 2 + 1 dimensions, Phys. Rev. D 59 (1999) 014512 [hep-lat/9804008] [SPIRES].

    ADS  Google Scholar 

  42. M. Teper, Large-N and confining flux tubes as strings — a view from the lattice, Acta Phys. Polon. B 40 (2009) 3249 [arXiv:0912.3339] [SPIRES].

    Google Scholar 

  43. H.B. Meyer, High-precision thermodynamics and Hagedorn density of states, Phys. Rev. D 80 (2009) 051502 [arXiv:0905.4229] [SPIRES].

    ADS  Google Scholar 

  44. B. Lucini, M. Teper and U. Wenger, The deconfinement transition in SU(N) gauge theories, Phys. Lett. B 545 (2002) 197 [hep-lat/0206029] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  45. B. Lucini, M. Teper and U. Wenger, The high temperature phase transition in SU(N) gauge theories, JHEP 01 (2004) 061 [hep-lat/0307017] [SPIRES].

    Article  ADS  Google Scholar 

  46. B. Lucini, M. Teper and U. Wenger, Topology of SU(N) gauge theories at T ≈ 0 and T ≈ T c , Nucl. Phys. B 715 (2005) 461 [hep-lat/0401028] [SPIRES].

    Article  ADS  Google Scholar 

  47. B. Lucini, M. Teper and U. Wenger, Properties of the deconfining phase transition in SU(N) gauge theories, JHEP 02 (2005) 033 [hep-lat/0502003] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  48. B. Bringoltz and M. Teper, The pressure of the SU(N) lattice gauge theory at large-N, Phys. Lett. B 628 (2005) 113 [hep-lat/0506034] [SPIRES].

    ADS  Google Scholar 

  49. B. Bringoltz and M. Teper, In search of a Hagedorn transition in SU(N) lattice gauge theories at large-N, Phys. Rev. D 73 (2006) 014517 [hep-lat/0508021] [SPIRES].

    ADS  Google Scholar 

  50. M. Panero, Thermodynamics of the QCD plasma and the large-N limit, Phys. Rev. Lett. 103 (2009) 232001 [arXiv:0907.3719] [SPIRES].

    Article  ADS  Google Scholar 

  51. M. Panero, Thermodynamics of the strongly interacting gluon plasma in the large-N limit, PoS LAT2009 (2009) 172 [arXiv:0912.2448] [SPIRES].

    Google Scholar 

  52. S. Datta and S. Gupta, Scaling and the continuum limit of gluoN c plasmas, Phys. Rev. D 80 (2009) 114504 [arXiv:0909.5591] [SPIRES].

    ADS  Google Scholar 

  53. S. Datta and S. Gupta, Continuum thermodynamics of the GluoN c plasma, Phys. Rev. D 82 (2010) 114505 [arXiv:1006.0938] [SPIRES].

    ADS  Google Scholar 

  54. G. Boyd et al., Thermodynamics of SU(3) lattice gauge theory, Nucl. Phys. B 469 (1996) 419 [hep-lat/9602007] [SPIRES].

    Article  ADS  Google Scholar 

  55. S. Borsányi, G. Endrodi, Z. Fodor, S.D. Katz and K.K. Szabó, Lattice SU(3) thermodynamics and the onset of perturbative behaviour, arXiv:1104.0013 [SPIRES].

  56. D.T. Son and A.O. Starinets, Viscosity, black holes and quantum field theory, Ann. Rev. Nucl. Part. Sci. 57 (2007) 95 [arXiv:0704.0240] [SPIRES].

    Article  ADS  Google Scholar 

  57. D. Mateos, String theory and quantum chromodynamics, Class. Quant. Grav. 24 (2007) S713 [arXiv:0709.1523] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. J. Erdmenger, N. Evans, I. Kirsch and E. Threlfall, Mesons in gauge/gravity duals — a review, Eur. Phys. J. A 35 (2008) 81 [arXiv:0711.4467] [SPIRES].

    ADS  Google Scholar 

  59. S.S. Gubser and A. Karch, From gauge-string duality to strong interactions: a pedestrian’s guide, Ann. Rev. Nucl. Part. Sci. 59 (2009) 145 [arXiv:0901.0935] [SPIRES].

    Article  ADS  Google Scholar 

  60. U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Deconfinement and gluon plasma dynamics in improved holographic QCD, Phys. Rev. Lett. 101 (2008) 181601 [arXiv:0804.0899] [SPIRES].

    Article  ADS  Google Scholar 

  61. U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Improved holographic Yang-Mills at finite temperature: comparison with data, Nucl. Phys. B 820 (2009) 148 [arXiv:0903.2859] [SPIRES].

    Article  ADS  Google Scholar 

  62. J. Alanen, K. Kajantie and V. Suur-Uski, A gauge/gravity duality model for gauge theory thermodynamics, Phys. Rev. D 80 (2009) 126008 [arXiv:0911.2114] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  63. O. Andreev and V.I. Zakharov, The spatial string tension, thermal phase transition and AdS/QCD, Phys. Lett. B 645 (2007) 437 [hep-ph/0607026] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  64. O. Andreev, Some thermodynamic aspects of pure glue, fuzzy bags and gauge/string duality, Phys. Rev. D 76 (2007) 087702 [arXiv:0706.3120] [SPIRES].

    ADS  Google Scholar 

  65. E. Megías, H.J. Pirner and K. Veschgini, QCD-thermodynamics using 5-dim gravity, Phys. Rev. D 83 (2011) 056003 [arXiv:1009.2953] [SPIRES].

    ADS  Google Scholar 

  66. K. Veschgini, E. Megias and H.J. Pirner, Trouble finding the optimal AdS/QCD, Phys. Lett. B 696 (2011) 495 [arXiv:1009.4639] [SPIRES].

    ADS  Google Scholar 

  67. A. Peshier, B. Kämpfer, O.P. Pavlenko and G. Soff, A massive quasiparticle model of the SU(3) gluon plasma, Phys. Rev. D 54 (1996) 2399 [SPIRES].

    ADS  Google Scholar 

  68. F. Buisseret and G. Lacroix, A minimal quasiparticle approach for the QGP and its large-N c limits, Eur. Phys. J. C 70 (2010) 1051 [arXiv:1006.0655] [SPIRES].

    Article  ADS  Google Scholar 

  69. F. Buisseret and G. Lacroix, Comments on Yang-Mills thermodynamics, the Hagedorn spectrum and the gluon gas, arXiv:1105.1092 [SPIRES].

  70. F. Giacosa, Analytical study of a gas of gluonic quasiparticles at high temperature: effective mass, pressure and trace anomaly, Phys. Rev. D 83 (2011) 114002 [arXiv:1009.4588] [SPIRES].

    ADS  Google Scholar 

  71. P. Castorina, D.E. Miller and H. Satz, Trace anomaly and quasi-particles in finite temperature SU(N) gauge theory, Eur. Phys. J. C 71 (2011) 1673 [arXiv:1101.1255] [SPIRES].

    Article  ADS  Google Scholar 

  72. P. Castorina, V. Greco, D. Jaccarino and D. Zappalà, A reanalysis of finite temperature SU(N) gauge theory, arXiv:1105.5902 [SPIRES].

  73. P. Bialas, L. Daniel, A. Morel and B. Petersson, Thermodynamics of SU(3) gauge theory in 2 + 1 dimensions, Nucl. Phys. B 807 (2009) 547 [arXiv:0807.0855] [SPIRES].

    Article  ADS  Google Scholar 

  74. M. Caselle, L. Castagnini, A. Feo, F. Gliozzi and M. Panero, Thermodynamics of SU(N) gauge theories in 2 + 1 dimensions in the T < T c regime, PoS LATTICE2010 (2010) 184 [arXiv:1011.4883] [SPIRES].

    Google Scholar 

  75. M. Reuter and C. Wetterich, Running gauge coupling in three-dimensions and the electroweak phase transition, Nucl. Phys. B 408 (1993) 91 [SPIRES].

    Article  ADS  Google Scholar 

  76. K. Farakos, K. Kajantie, K. Rummukainen and M.E. Shaposhnikov, 3 − D physics and the electroweak phase transition: a framework for lattice Monte Carlo analysis, Nucl. Phys. B 442 (1995) 317 [hep-lat/9412091] [SPIRES].

    ADS  Google Scholar 

  77. K. Holland, Another weak first order deconfinement transition: three-dimensional SU(5) gauge theory, JHEP 01 (2006) 023 [hep-lat/0509041] [SPIRES].

    Article  ADS  Google Scholar 

  78. P. de Forcrand and O. Jahn, Deconfinement transition in 2 + 1-dimensional SU(4) lattice gauge theory, Nucl. Phys. Proc. Suppl. 129 (2004) 709 [hep-lat/0309153] [SPIRES].

    Article  ADS  Google Scholar 

  79. K. Holland, M. Pepe and U.-J. Wiese, Revisiting the deconfinement phase transition in SU(4) Yang-Mills theory in 2 + 1 dimensions, JHEP 02 (2008) 041 [arXiv:0712.1216] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  80. L. von Smekal, S.R. Edwards and N. Strodthoff, Universal aspects of deconfinement in 2 + 1 dimensions, AIP Conf. Proc. 1343 (2011) 212 [arXiv:1012.1712] [SPIRES].

    Article  ADS  Google Scholar 

  81. J. Liddle and M. Teper, The deconfining phase transition in D = 2 + 1 SU(N) gauge theories, arXiv:0803.2128 [SPIRES].

  82. M. Creutz, Monte Carlo study of quantized SU(2) gauge theory, Phys. Rev. D 21 (1980) 2308 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  83. A.D. Kennedy and B.J. Pendleton, Improved heat bath method for Monte Carlo calculations in lattice gauge theories, Phys. Lett. B 156 (1985) 393 [SPIRES].

    ADS  Google Scholar 

  84. S.L. Adler, An overrelaxation method for the Monte Carlo evaluation of the partition function for multiquadratic actions, Phys. Rev. D 23 (1981) 2901 [SPIRES].

    ADS  Google Scholar 

  85. F.R. Brown and T.J. Woch, Overrelaxed heat bath and metropolis algorithms for accelerating pure gauge Monte Carlo calculations, Phys. Rev. Lett. 58 (1987) 2394 [SPIRES].

    Article  ADS  Google Scholar 

  86. N. Cabibbo and E. Marinari, A new method for updating SU(N) matrices in computer simulations of gauge theories, Phys. Lett. B 119 (1982) 387 [SPIRES].

    ADS  Google Scholar 

  87. SciDAC collaboration, R.G. Edwards and B. Joó, The chroma software system for lattice QCD, Nucl. Phys. Proc. Suppl. 140 (2005) 832 [hep-lat/0409003] [SPIRES].

    Article  ADS  Google Scholar 

  88. M. Caselle, M. Pepe and A. Rago, Static quark potential and effective string corrections in the (2 + 1)-d SU(2) Yang-Mills theory, JHEP 10 (2004) 005 [hep-lat/0406008] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  89. F. Gliozzi, The Stefan-Boltzmann law in a small box and the pressure deficit in hot SU(N) lattice gauge theory, J. Phys. A 40 (2007) F375 [hep-lat/0701020] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  90. M. Panero, Geometric effects in lattice QCD thermodynamics, PoS LATTICE2008 (2008) 175 [arXiv:0808.1672] [SPIRES].

    Google Scholar 

  91. T. Umeda et al., Fixed scale approach to equation of state in lattice QCD, Phys. Rev. D 79 (2009) 051501 [arXiv:0809.2842] [SPIRES].

    ADS  Google Scholar 

  92. J. Engels, J. Fingberg, F. Karsch, D. Miller and M. Weber, Nonperturbative thermodynamics of SU(N) gauge theories, Phys. Lett. B 252 (1990) 625 [SPIRES].

    ADS  Google Scholar 

  93. M. Caselle, M. Hasenbusch and M. Panero, The interface free energy: comparison of accurate Monte Carlo results for the 3D Ising model with effective interface models, JHEP 09 (2007) 117 [arXiv:0707.0055] [SPIRES].

    Article  ADS  Google Scholar 

  94. G. Karl and J.E. Paton, Gluonic states in two space dimensions, Phys. Rev. D 61 (2000) 074002 [hep-ph/9910413] [SPIRES].

    ADS  Google Scholar 

  95. G. Karl and J.E. Paton, Gluelump spectrum in the bag model, Phys. Rev. D 60 (1999) 034015 [hep-ph/9904407] [SPIRES].

    ADS  Google Scholar 

  96. P. Bialas, L. Daniel, A. Morel and B. Petersson, Three dimensional finite temperature SU(3) gauge theory in the confined region and the string picture, Nucl. Phys. B 836 (2010) 91 [arXiv:0912.0206] [SPIRES].

    Article  ADS  Google Scholar 

  97. B. Zwiebach, A first course in string theory, Cambridge University Press, Cambridge U.K. (2004).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Panero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caselle, M., Castagnini, L., Feo, A. et al. Thermodynamics of SU(N) Yang-Mills theories in 2 + 1 dimensions I — The confining phase. J. High Energ. Phys. 2011, 142 (2011). https://doi.org/10.1007/JHEP06(2011)142

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2011)142

Keywords

Navigation