Skip to main content
Log in

Small black holes in the large D limit

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The large D limit of AdS2 × S D−2 solutions in the particular higher-derivative Lovelock-type theory is analyzed. The theory and the solutions were originally considered in an attempt to effectively describe near-horizon behavior of D-dimensional spherically symmetric 2-charge small extremal black holes which in superstring theory context are assumed to correspond to configurations in S 1 × T 9−D compactification schemes in which fundamental string is wound around circle S 1. Though in D → ∞ limit the action contains infinite number of higher-derivative terms, their contributions to equations of motion sum into simple exponential form which allows us to find explicit solutions. A simplicity of this example gives us the opportunity to study some connections between α′ and 1/D expansions. In the leading order in 1/D the relation between the string parameter α′ and the radius of the horizon r h (in the string frame) satisfies r h\( D\sqrt{{\alpha \prime }} \), i.e., we obtain an explicit realization of the relation inferred by Emparan et al. in the different context of large black holes in the ordinary Einstein gravity where α′ is not manifestly present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Strominger, The inverse dimensional expansion in quantum gravity, Phys. Rev. D 24 (1981) 3082 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  2. N. Bjerrum-Bohr, Quantum gravity at a large number of dimensions, Nucl. Phys. B 684 (2004) 209 [hep-th/0310263] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. H.W. Hamber and R.M. Williams, Quantum gravity in large dimensions, Phys. Rev. D 73 (2006) 044031 [hep-th/0512003] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  4. J. Soda, Hierarchical dimensional reduction and gluing geometries, Prog. Theor. Phys. 89 (1993) 1303 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. H. Yoshino and Y. Nambu, High-energy headon collisions of particles and hoop conjecture, Phys. Rev. D 66 (2002) 065004 [gr-qc/0204060] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. B. Kol and E. Sorkin, On black-brane instability in an arbitrary dimension, Class. Quant. Grav. 21 (2004) 4793 [gr-qc/0407058] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. V. Asnin et al., High and low dimensions in the black hole negative mode, Class. Quant. Grav. 24 (2007) 5527 [arXiv:0706.1555] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. M.M. Caldarelli, O.J. Dias, R. Emparan and D. Klemm, Black holes as lumps of fluid, JHEP 04 (2009) 024 [arXiv:0811.2381] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. F. Canfora, A. Giacomini and A.R. Zerwekh, Kaluza-Klein theory in the limit of large number of extra dimensions, Phys. Rev. D 80 (2009) 084039 [arXiv:0908.2077] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  10. S. Hod, Quantum buoyancy, generalized second law and higher-dimensional entropy bounds, JHEP 12 (2010) 033 [arXiv:1101.3151] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. S. Hod, Higher-dimensional violations of the holographic entropy bound, Phys. Lett. B 695 (2011) 294 [arXiv:1106.3817] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  12. S. Hod, Bulk emission by higher-dimensional black holes: Almost perfect blackbody radiation, Class. Quant. Grav. 28 (2011) 105016 [arXiv:1107.0797] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. S. Hod, Hyperentropic systems and the generalized second law of thermodynamics, Phys. Lett. B 700 (2011) 75 [arXiv:1108.0744] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  14. F.S. Coelho, C. Herdeiro and M.O. Sampaio, Radiation from a D-dimensional collision of shock waves: a remarkably simple fit formula, Phys. Rev. Lett. 108 (2012) 181102 [arXiv:1203.5355] [INSPIRE].

    Article  ADS  Google Scholar 

  15. M.M. Caldarelli, J. Camps, B. Gouteraux and K. Skenderis, AdS/Ricci-flat correspondence and the Gregory-Laflamme instability, Phys. Rev. D 87 (2013) 061502 [arXiv:1211.2815] [INSPIRE].

    ADS  Google Scholar 

  16. R. Emparan, R. Suzuki and K. Tanabe, The large D limit of general relativity, JHEP 06 (2013) 009 [arXiv:1302.6382] [INSPIRE].

    Article  Google Scholar 

  17. R. Emparan, D. Grumiller and K. Tanabe, Large D gravity and low D strings, arXiv:1303.1995 [INSPIRE].

  18. G. Giribet, The large D limit of dimensionally continued gravity, Phys. Rev. D 87 (2013) 107504 [arXiv:1303.1982] [INSPIRE].

    ADS  Google Scholar 

  19. A. Dabholkar, Exact counting of black hole microstates, Phys. Rev. Lett. 94 (2005) 241301 [hep-th/0409148] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  20. A. Dabholkar, R. Kallosh and A. Maloney, A stringy cloak for a classical singularity, JHEP 12 (2004) 059 [hep-th/0410076] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. A. Sen, How does a fundamental string stretch its horizon?, JHEP 05 (2005) 059 [hep-th/0411255] [INSPIRE].

    Article  ADS  Google Scholar 

  22. V. Hubeny, A. Maloney and M. Rangamani, String-corrected black holes, JHEP 05 (2005) 035 [hep-th/0411272] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. A. Sen, Stretching the horizon of a higher dimensional small black hole, JHEP 07 (2005) 073 [hep-th/0505122] [INSPIRE].

    Article  ADS  Google Scholar 

  24. P. Prester, Lovelock type gravity and small black holes in heterotic string theory, JHEP 02 (2006) 039 [hep-th/0511306] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. G. Lopes Cardoso, B. de Wit, J. Kappeli and T. Mohaupt, Black hole partition functions and duality, JHEP 03 (2006) 074 [hep-th/0601108] [INSPIRE].

    Article  Google Scholar 

  26. L. Cornalba, M.S. Costa, J. Penedones and P. Vieira, From fundamental strings to small black holes, JHEP 12 (2006) 023 [hep-th/0607083] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. A. Giveon and D. Kutasov, Fundamental strings and black holes, JHEP 01 (2007) 071 [hep-th/0611062] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. A. Dabholkar, A. Sen and S.P. Trivedi, Black hole microstates and attractor without supersymmetry, JHEP 01 (2007) 096 [hep-th/0611143] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. A. Castro, J.L. Davis, P. Kraus and F. Larsen, 5D black holes and strings with higher derivatives, JHEP 06 (2007) 007 [hep-th/0703087] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. M. Cvitan, P.D. Prester, S. Pallua and I. Smolic, Extremal black holes in D = 5: SUSY vs. Gauss-Bonnet corrections, JHEP 11 (2007) 043 [arXiv:0706.1167] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. J.M. Lapan, A. Simons and A. Strominger, Nearing the horizon of a heterotic string, arXiv:0708.0016 [INSPIRE].

  32. M. Alishahiha, On R 2 corrections for 5D black holes, JHEP 08 (2007) 094 [hep-th/0703099] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. R.-G. Cai, C.-M. Chen, K.-i. Maeda, N. Ohta and D.-W. Pang, Entropy function and universality of entropy-area relation for small black holes, Phys. Rev. D 77 (2008) 064030 [arXiv:0712.4212] [INSPIRE].

    ADS  Google Scholar 

  34. A. Sen, Two charge system revisited: small black holes or horizonless solutions?, JHEP 05 (2010) 097 [arXiv:0908.3402] [INSPIRE].

    Article  ADS  Google Scholar 

  35. A. Sen, Black hole entropy function, attractors and precision counting of microstates, Gen. Rel. Grav. 40 (2008) 2249 [arXiv:0708.1270] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  36. F. Larsen, Resolving gravitational singularities, arXiv:0808.0840 [INSPIRE].

  37. P.D. Prester, α-corrections and heterotic black holes, arXiv:1001.1452 [INSPIRE].

  38. A.W. Peet, Entropy and supersymmetry of D-dimensional extremal electric black holes versus string states, Nucl. Phys. B 456 (1995) 732 [hep-th/9506200] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  39. D.J. Gross and J.H. Sloan, The quartic effective action for the heterotic string, Nucl. Phys. B 291 (1987) 41 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. J.T. Liu and R. Minasian, Higher-derivative couplings in string theory: dualities and the B-field, arXiv:1304.3137 [INSPIRE].

  41. P.D. Prester and T. Terzić, α-exact entropies for BPS and non-BPS extremal dyonic black holes in heterotic string theory from ten-dimensional supersymmetry, JHEP 12 (2008) 088 [arXiv:0809.4954] [INSPIRE].

    Article  Google Scholar 

  42. M. Cvitan, P.D. Prester and A. Ficnar, α2 -corrections to extremal dyonic black holes in heterotic string theory, JHEP 05 (2008) 063 [arXiv:0710.3886] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. P.D. Prester, AdS 3 backgrounds from 10D effective action of heterotic string theory, Phys. Rev. D 81 (2010) 044014 [arXiv:0912.0030] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  44. A. Sen, Black hole entropy function and the attractor mechanism in higher derivative gravity, JHEP 09 (2005) 038 [hep-th/0506177] [INSPIRE].

    Article  ADS  Google Scholar 

  45. C.-M. Chen, D.V. Gal’tsov, N. Ohta and D.G. Orlov, Global solutions for higher-dimensional stretched small black holes, Phys. Rev. D 81 (2010) 024002 [arXiv:0910.3488] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  46. V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  47. P. Kraus and F. Larsen, Microscopic black hole entropy in theories with higher derivatives, JHEP 09 (2005) 034 [hep-th/0506176] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. P. Kraus and F. Larsen, Holographic gravitational anomalies, JHEP 01 (2006) 022 [hep-th/0508218] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Predrag Dominis Prester.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prester, P.D. Small black holes in the large D limit. J. High Energ. Phys. 2013, 70 (2013). https://doi.org/10.1007/JHEP06(2013)070

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2013)070

Keywords

Navigation