Skip to main content
Log in

ZZ + jet production via gluon fusion at the LHC

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Pair production of Z bosons in association with a hard jet is an important background for new physics searches at the LHC. The loop-induced gluon-fusion process \( gg \)ZZg contributes formally only at the next-to-next-to-leading order. Nevertheless, it can get enhanced by the large gluon flux at the LHC, and thus should be taken into account in relevant experimental searches. We provide the details and results of this calculation, which involves the manipulation of rank-5 pentagon integrals. Our results show that the gluon-fusion process can contribute more than 10% to the next-to-leading order QCD result and increases the overall scale uncertainty. Moreover, interference effects between Higgs and non-Higgs contributions can become large in phase-space regions where the Higgs is far off-shell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CERN press office, http://press.web.cern.ch/press/PressReleases/Releases2011/PR01.11E.html.

  2. T. Binoth et al., Next-to-leading order multi-leg processes for the Large Hadron Collider, PoS(RAD COR 2007)008 [arXiv:0801.1616] [INSPIRE].

  3. G. Sanguinetti and S. Karg, NLO QCD corrections to the production of a weak boson pair associated by a hard jet, arXiv:0806.1394 [INSPIRE].

  4. T. Binoth et al., Precise predictions for LHC using a GOLEM, Nucl. Phys. Proc. Suppl. 183 (2008) 91 [arXiv:0807.0605] [INSPIRE].

    Article  ADS  Google Scholar 

  5. T. Binoth, T. Gleisberg, S. Karg, N. Kauer and G. Sanguinetti, NLO QCD corrections to ZZ + jet production at hadron colliders, Phys. Lett. B 683 (2010) 154 [arXiv:0911.3181] [INSPIRE].

    ADS  Google Scholar 

  6. D.A. Dicus, C. Kao and W. Repko, Gluon production of gauge bosons, Phys. Rev. D 36 (1987) 1570 [INSPIRE].

    ADS  Google Scholar 

  7. C. Kao and D.A. Dicus, Production of W + W from gluon fusion, Phys. Rev. D 43 (1991) 1555 [INSPIRE].

    ADS  Google Scholar 

  8. T. Matsuura and J. van der Bij, Characteristics of leptonic signals for Z boson pairs at hadron colliders, Z. Phys. C 51 (1991) 259 [INSPIRE].

    Google Scholar 

  9. C. Zecher, T. Matsuura and J. van der Bij, Leptonic signals from off-shell Z boson pairs at hadron colliders, Z. Phys. C 64 (1994) 219 [hep-ph/9404295] [INSPIRE].

    ADS  Google Scholar 

  10. K.L. Adamson, D. de Florian and A. Signer, Gluon induced contributions to WZ and Wγ production at NNLO, Phys. Rev. D 65 (2002) 094041 [hep-ph/0202132] [INSPIRE].

    ADS  Google Scholar 

  11. K. Adamson, D. de Florian and A. Signer, Gluon induced contributions to Zγ production at hadron colliders, Phys. Rev. D 67 (2003) 034016 [hep-ph/0211295] [INSPIRE].

    ADS  Google Scholar 

  12. T. Binoth, M. Ciccolini, N. Kauer and M. Krämer, Gluon-induced WW background to Higgs boson searches at the LHC, JHEP 03 (2005) 065 [hep-ph/0503094] [INSPIRE].

    Article  ADS  Google Scholar 

  13. T. Binoth, M. Ciccolini, N. Kauer and M. Krämer, Gluon-induced W-boson pair production at the LHC, JHEP 12 (2006) 046 [hep-ph/0611170] [INSPIRE].

    Article  ADS  Google Scholar 

  14. T. Binoth, N. Kauer and P. Mertsch, Gluon-induced QCD corrections to ppZZl \( \overline{l} \) l\( \overline{l} \)′, arXiv:0807.0024 [INSPIRE].

  15. N. Kauer and G. Passarino, Inadequacy of zero-width approximation for a light Higgs boson signal, JHEP 08 (2012) 116 [arXiv:1206.4803] [INSPIRE].

    Article  ADS  Google Scholar 

  16. E.N. Glover and J. van der Bij, Vector boson pair production via gluon fusion, Phys. Lett. B 219 (1989) 488 [INSPIRE].

    ADS  Google Scholar 

  17. E.N. Glover and J. van der Bij, Z boson pair production via gluon fusion, Nucl. Phys. B 321 (1989) 561 [INSPIRE].

    Article  ADS  Google Scholar 

  18. T. Melia, K. Melnikov, R. Rontsch, M. Schulze and G. Zanderighi, Gluon fusion contribution to W+W+ jet production, JHEP 08 (2012) 115 [arXiv:1205.6987] [INSPIRE].

    Article  ADS  Google Scholar 

  19. P. Agrawal and A. Shivaji, Di-vector boson + jet production via gluon fusion at hadron colliders, Phys. Rev. D 86 (2012) 073013 [arXiv:1207.2927] [INSPIRE].

    ADS  Google Scholar 

  20. P. Agrawal and A. Shivaji, Production of γZg and associated processes via gluon fusion at hadron colliders, JHEP 01 (2013) 071 [arXiv:1208.2593] [INSPIRE].

    Article  ADS  Google Scholar 

  21. R.N. Cahn and M.S. Chanowitz, Detecting Higgs boson decays into Z pairs, Phys. Rev. Lett. 56 (1986) 1327 [INSPIRE].

    Article  ADS  Google Scholar 

  22. J.A.M. Vermaseren, Axodraw, Comput. Phys. Commun. 83 (1994) 45 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  23. D. Binosi and L. Theussl, JaxoDraw: a graphical user interface for drawing Feynman diagrams, Comput. Phys. Commun. 161 (2004) 76 [hep-ph/0309015] [INSPIRE].

    Article  ADS  Google Scholar 

  24. D. Binosi, J. Collins, C. Kaufhold and L. Theussl, JaxoDraw: a graphical user interface for drawing Feynman diagrams. Version 2.0 release notes, Comput. Phys. Commun. 180 (2009) 1709 [arXiv:0811.4113] [INSPIRE].

    Article  ADS  Google Scholar 

  25. J. Kublbeck, M. Böhm and A. Denner, FEynArts: computer algebraic generation of Feynman graphs and amplitudes, Comput. Phys. Commun. 60 (1990) 165 [INSPIRE].

    Article  ADS  Google Scholar 

  26. T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  27. T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].

    Article  ADS  Google Scholar 

  28. M. Chanowitz, M. Furman, and I. Hinchliffe, The Axial current in dimensional regularization, Nucl. Phys. B 159 (1979) 225 [INSPIRE].

    Article  ADS  Google Scholar 

  29. F. Jegerlehner, Facts of life with γ 5, Eur. Phys. J. C 18 (2001) 673 [hep-th/0005255] [INSPIRE].

    Article  ADS  Google Scholar 

  30. S. Dittmaier, S. Kallweit and P. Uwer, NLO QCD corrections to pp/p \( \overline{p} \)W W + jet + X including leptonic W -boson decays, Nucl. Phys. B 826 (2010) 18 [arXiv:0908.4124] [INSPIRE].

    Article  ADS  Google Scholar 

  31. T. Hahn and M. Rauch, News from FormCalc and LoopTools, Nucl. Phys. Proc. Suppl. 157 (2006) 236 [hep-ph/0601248] [INSPIRE].

    Article  ADS  Google Scholar 

  32. A. Denner and S. Dittmaier, Reduction of one loop tensor five point integrals, Nucl. Phys. B 658 (2003) 175 [hep-ph/0212259] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. G. Passarino and M.J.G. Veltman, One loop corrections for e + e annihilation into μ + μ in the Weinberg model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].

    Article  ADS  Google Scholar 

  34. A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B 734 (2006) 62 [hep-ph/0509141] [INSPIRE].

    Article  ADS  Google Scholar 

  35. G. van Oldenborgh and J. Vermaseren, New algorithms for one loop integrals, Z. Phys. C 46 (1990) 425 [INSPIRE].

    Google Scholar 

  36. G.J. van Oldenborgh, FF: a package to evaluate one loop Feynman diagrams, Comput. Phys. Commun. 66 (1991) 1 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  37. R.K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP 02 (2008) 002 [arXiv:0712.1851] [INSPIRE].

    Article  ADS  Google Scholar 

  38. K. Arnold et al., VBFNLO: a parton level Monte Carlo for processes with electroweak bosons, Comput. Phys. Commun. 180 (2009) 1661 [arXiv:0811.4559] [INSPIRE].

    Article  ADS  Google Scholar 

  39. K. Arnold et al., Release NoteVbfnlo-2.6.0, arXiv:1207.4975 [INSPIRE].

  40. K. Hagiwara and D. Zeppenfeld, Helicity amplitudes for heavy lepton production in e + e annihilation, Nucl. Phys. B 274 (1986) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  41. F. Campanario, Towards ppV V jj at NLO QCD: bosonic contributions to triple vector boson production plus jet, JHEP 10 (2011) 070 [arXiv:1105.0920] [INSPIRE].

    Article  ADS  Google Scholar 

  42. Wolfram Research, Inc., Mathematica, Version 5.2, Champaign, U.S.A. (2005).

  43. R. Mertig, M. Böhm and A. Denner, FEYN CALC: computer algebraic calculation of Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].

    Article  ADS  Google Scholar 

  44. J. Hakkinen and H. Kharraziha, COLOR: a computer program for QCD color factor calculations, Comput. Phys. Commun. 100 (1997) 311 [hep-ph/9603229] [INSPIRE].

    Article  ADS  Google Scholar 

  45. A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  46. J. Butterworth et al., The tools and Monte Carlo working group summary report, arXiv:1003.1643 [INSPIRE].

  47. J. Pumplin et al., New generation of parton distributions with uncertainties from global QCD analysis, JHEP 07 (2002) 012 [hep-ph/0201195] [INSPIRE].

    Article  ADS  Google Scholar 

  48. M. Whalley, D. Bourilkov and R. Group, The Les Houches accord PDFs (LHAPDF) and LHAGLUE, hep-ph/0508110 [INSPIRE].

  49. ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  50. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  51. R.K. Ellis, I. Hinchliffe, M. Soldate and J. van der Bij, Higgs Decay to τ + τ : a possible signature of intermediate mass Higgs bosons at the SSC, Nucl. Phys. B 297 (1988) 221 [INSPIRE].

    Article  ADS  Google Scholar 

  52. U. Langenegger, M. Spira, A. Starodumov and P. Trueb, SM and MSSM Higgs boson production: spectra at large transverse momentum, JHEP 06 (2006) 035 [hep-ph/0604156] [INSPIRE].

    Article  ADS  Google Scholar 

  53. Q. Li, M. Spira, J. Gao and C.S. Li, Higgs boson production via gluon fusion in the standard model with four generations, Phys. Rev. D 83 (2011) 094018 [arXiv:1011.4484] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Campanario.

Additional information

ArXiv ePrint: 1211.5429

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campanario, F., Li, Q., Rauch, M. et al. ZZ + jet production via gluon fusion at the LHC. J. High Energ. Phys. 2013, 69 (2013). https://doi.org/10.1007/JHEP06(2013)069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2013)069

Keywords

Navigation