M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev. D 80 (2009) 095002 [arXiv:0811.1030] [INSPIRE].
Article
ADS
Google Scholar
M. Pospelov and A. Ritz, Astrophysical Signatures of Secluded Dark Matter, Phys. Lett. B 671 (2009) 391 [arXiv:0810.1502] [INSPIRE].
Article
ADS
Google Scholar
M. Pospelov, A. Ritz and M. B. Voloshin, Secluded WIMP Dark Matter, Phys. Lett. B 662 (2008) 53 [arXiv:0711.4866] [INSPIRE].
Article
ADS
Google Scholar
R. Essig et al., Working Group Report: New Light Weakly Coupled Particles, in proceedings of the Community Summer Study 2013: Snowmass on the Mississippi, Minneapolis, MN, U.S.A., 29 July–6 August 2013, arXiv:1311.0029 [INSPIRE].
J. Alexander et al., Dark Sectors 2016 Workshop: Community Report, arXiv:1608.08632 [INSPIRE].
M. Battaglieri et al., U.S. Cosmic Visions: New Ideas in Dark Matter 2017: Community Report, in proceedings of the U.S. Cosmic Visions: New Ideas in Dark Matter, College Park, MD, U.S.A., 23–25 March 2017, arXiv:1707.04591 [INSPIRE].
E. D. Carlson, M. E. Machacek and L. J. Hall, Self-interacting dark matter, Astrophys. J. 398 (1992) 43 [INSPIRE].
Article
ADS
Google Scholar
D. N. Spergel and P. J. Steinhardt, Observational evidence for selfinteracting cold dark matter, Phys. Rev. Lett. 84 (2000) 3760 [astro-ph/9909386] [INSPIRE].
Article
ADS
Google Scholar
S. Tulin, H.-B. Yu and K. M. Zurek, Beyond Collisionless Dark Matter: Particle Physics Dynamics for Dark Matter Halo Structure, Phys. Rev. D 87 (2013) 115007 [arXiv:1302.3898] [INSPIRE].
Article
ADS
Google Scholar
S. Tulin and H.-B. Yu, Dark Matter Self-interactions and Small Scale Structure, Phys. Rept. 730 (2018) 1 [arXiv:1705.02358] [INSPIRE].
MathSciNet
MATH
Article
ADS
Google Scholar
T. Gherghetta and B. von Harling, A Warped Model of Dark Matter, JHEP 04 (2010) 039 [arXiv:1002.2967] [INSPIRE].
MATH
Article
ADS
Google Scholar
B. von Harling and K. L. McDonald, Secluded Dark Matter Coupled to a Hidden CFT, JHEP 08 (2012) 048 [arXiv:1203.6646] [INSPIRE].
Article
Google Scholar
M. J. Strassler, Why Unparticle Models with Mass Gaps are Examples of Hidden Valleys, arXiv:0801.0629 [INSPIRE].
C.-H. Chen and C. S. Kim, Sommerfeld Enhancement from Unparticle Exchange for Dark Matter Annihilation, Phys. Lett. B 687 (2010) 232 [arXiv:0909.1878] [INSPIRE].
Article
ADS
Google Scholar
A. Friedland, M. Giannotti and M. Graesser, On the RS2 realization of unparticles, Phys. Lett. B 678 (2009) 149 [arXiv:0902.3676] [INSPIRE].
Article
ADS
Google Scholar
A. Friedland, M. Giannotti and M. L. Graesser, Vector Bosons in the Randall-Sundrum 2 and Lykken-Randall models and unparticles, JHEP 09 (2009) 033 [arXiv:0905.2607] [INSPIRE].
MathSciNet
Article
ADS
Google Scholar
H. M. Lee, Gauged U(1) clockwork theory, Phys. Lett. B 778 (2018) 79 [arXiv:1708.03564] [INSPIRE].
MATH
Article
ADS
Google Scholar
P. Brax, S. Fichet and P. Tanedo, The Warped Dark Sector, Phys. Lett. B 798 (2019) 135012 [arXiv:1906.02199] [INSPIRE].
MathSciNet
Article
Google Scholar
A. Costantino, S. Fichet and P. Tanedo, Effective Field Theory in AdS: Continuum Regime, Soft Bombs, and IR Emergence, Phys. Rev. D 102 (2020) 115038 [arXiv:2002.12335] [INSPIRE].
MathSciNet
Article
ADS
Google Scholar
J. S. Bullock and M. Boylan-Kolchin, Small-Scale Challenges to the ΛCDM Paradigm, Ann. Rev. Astron. Astrophys. 55 (2017) 343 [arXiv:1707.04256] [INSPIRE].
Article
ADS
Google Scholar
P. Fadeev, Y. V. Stadnik, F. Ficek, M. G. Kozlov, V. V. Flambaum and D. Budker, Revisiting spin-dependent forces mediated by new bosons: Potentials in the coordinate-space representation for macroscopic- and atomic-scale experiments, Phys. Rev. A 99 (2019) 022113 [arXiv:1810.10364] [INSPIRE].
Article
ADS
Google Scholar
S. Fichet, Quantum Forces from Dark Matter and Where to Find Them, Phys. Rev. Lett. 120 (2018) 131801 [arXiv:1705.10331] [INSPIRE].
Article
ADS
Google Scholar
A. Costantino, S. Fichet and P. Tanedo, Exotic Spin-Dependent Forces from a Hidden Sector, JHEP 03 (2020) 148 [arXiv:1910.02972] [INSPIRE].
MathSciNet
Article
ADS
Google Scholar
A. Katz, M. Reece and A. Sajjad, Continuum-mediated dark matter-baryon scattering, Phys. Dark Univ. 12 (2016) 24 [arXiv:1509.03628] [INSPIRE].
Article
Google Scholar
L. Randall and R. Sundrum, An Alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].
MathSciNet
MATH
Article
ADS
Google Scholar
W. D. Goldberger and M. B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447] [INSPIRE].
Article
ADS
Google Scholar
A. Manohar and H. Georgi, Chiral Quarks and the Nonrelativistic Quark Model, Nucl. Phys. B 234 (1984) 189 [INSPIRE].
Article
ADS
Google Scholar
H. Georgi and L. Randall, Flavor Conserving CP-violation in Invisible Axion Models, Nucl. Phys. B 276 (1986) 241 [INSPIRE].
Article
ADS
Google Scholar
H. Georgi, Generalized dimensional analysis, Phys. Lett. B 298 (1993) 187 [hep-ph/9207278] [INSPIRE].
Article
ADS
Google Scholar
M. A. Luty, Naive dimensional analysis and supersymmetry, Phys. Rev. D 57 (1998) 1531 [hep-ph/9706235] [INSPIRE].
Article
ADS
Google Scholar
E. E. Jenkins, A. V. Manohar and M. Trott, Naive Dimensional Analysis Counting of Gauge Theory Amplitudes and Anomalous Dimensions, Phys. Lett. B 726 (2013) 697 [arXiv:1309.0819] [INSPIRE].
MATH
Article
ADS
Google Scholar
G. Dvali and C. Gomez, Quantum Information and Gravity Cutoff in Theories with Species, Phys. Lett. B 674 (2009) 303 [arXiv:0812.1940] [INSPIRE].
MathSciNet
Article
ADS
Google Scholar
S. Fichet, Braneworld effective field theories — holography, consistency and conformal effects, JHEP 04 (2020) 016 [arXiv:1912.12316] [INSPIRE].
MathSciNet
MATH
Article
ADS
Google Scholar
H. Davoudiasl, G. Perez and A. Soni, The Little Randall-Sundrum Model at the Large Hadron Collider, Phys. Lett. B 665 (2008) 67 [arXiv:0802.0203] [INSPIRE].
Article
ADS
Google Scholar
P. Breitenlohner and D. Z. Freedman, Positive Energy in anti-de Sitter Backgrounds and Gauged Extended Supergravity, Phys. Lett. B 115 (1982) 197 [INSPIRE].
MathSciNet
Article
ADS
Google Scholar
P. Breitenlohner and D. Z. Freedman, Stability in Gauged Extended Supergravity, Annals Phys. 144 (1982) 249 [INSPIRE].
MathSciNet
MATH
Article
ADS
Google Scholar
J. M. Maldacena, The Large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].
S. S. Gubser, I. R. Klebanov and A. M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].
MathSciNet
MATH
Article
ADS
Google Scholar
E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].
MathSciNet
MATH
Article
ADS
Google Scholar
D. Z. Freedman, S. D. Mathur, A. Matusis and L. Rastelli, Comments on 4 point functions in the CFT/AdS correspondence, Phys. Lett. B 452 (1999) 61 [hep-th/9808006] [INSPIRE].
MathSciNet
MATH
Article
ADS
Google Scholar
H. Liu and A. A. Tseytlin, On four point functions in the CFT/AdS correspondence, Phys. Rev. D 59 (1999) 086002 [hep-th/9807097] [INSPIRE].
MathSciNet
Article
ADS
Google Scholar
D. Z. Freedman, S. D. Mathur, A. Matusis and L. Rastelli, Correlation functions in the CFTd/AdSd+1 correspondence, Nucl. Phys. B 546 (1999) 96 [hep-th/9804058] [INSPIRE].
MathSciNet
MATH
Article
ADS
Google Scholar
E. D’Hoker, D.Z. Freedman and L. Rastelli, AdS/CFT four point functions: How to succeed at z integrals without really trying, Nucl. Phys. B 562 (1999) 395 [hep-th/9905049] [INSPIRE].
MathSciNet
MATH
Article
ADS
Google Scholar
E. D’Hoker, D. Z. Freedman, S. D. Mathur, A. Matusis and L. Rastelli, Graviton exchange and complete four point functions in the AdS/CFT correspondence, Nucl. Phys. B 562 (1999) 353 [hep-th/9903196] [INSPIRE].
MathSciNet
MATH
Article
ADS
Google Scholar
O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, Large N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].
MathSciNet
MATH
Article
ADS
Google Scholar
A. Zaffaroni, Introduction to the AdS-CFT correspondence, Class. Quant. Grav. 17 (2000) 3571 [INSPIRE].
MathSciNet
MATH
Article
ADS
Google Scholar
H. Nastase, Introduction to AdS-CFT, arXiv:0712.0689 [INSPIRE].
J. Kaplan, Lectures on AdS/CFT from the Bottom Up, (2015).
N. Arkani-Hamed, M. Porrati and L. Randall, Holography and phenomenology, JHEP 08 (2001) 017 [hep-th/0012148] [INSPIRE].
MathSciNet
Article
ADS
Google Scholar
P. Creminelli, A. Nicolis and R. Rattazzi, Holography and the electroweak phase transition, JHEP 03 (2002) 051 [hep-th/0107141] [INSPIRE].
Article
ADS
Google Scholar
A. Hebecker and J. March-Russell, Randall-Sundrum II cosmology, AdS/CFT, and the bulk black hole, Nucl. Phys. B 608 (2001) 375 [hep-ph/0103214] [INSPIRE].
D. Langlois, L. Sorbo and M. Rodriguez-Martinez, Cosmology of a brane radiating gravitons into the extra dimension, Phys. Rev. Lett. 89 (2002) 171301 [hep-th/0206146] [INSPIRE].
MathSciNet
MATH
Article
ADS
Google Scholar
D. Langlois and L. Sorbo, Bulk gravitons from a cosmological brane, Phys. Rev. D 68 (2003) 084006 [hep-th/0306281] [INSPIRE].
Article
ADS
Google Scholar
A. Costantino, S. Fichet and F. Tanedo, Dark Radiation from a Cold Conformal Sector, work in progress.
S. B. Giddings, E. Katz and L. Randall, Linearized gravity in brane backgrounds, JHEP 03 (2000) 023 [hep-th/0002091] [INSPIRE].
MathSciNet
MATH
Article
ADS
Google Scholar
J. G. Lee, E. G. Adelberger, T. S. Cook, S. M. Fleischer and B. R. Heckel, New Test of the Gravitational 1/r2 Law at Separations down to 52 μm, Phys. Rev. Lett. 124 (2020) 101101 [arXiv:2002.11761] [INSPIRE].
Article
ADS
Google Scholar
P. Brax, S. Fichet and G. Pignol, Bounding Quantum Dark Forces, Phys. Rev. D 97 (2018) 115034 [arXiv:1710.00850] [INSPIRE].
Article
ADS
Google Scholar
F. Kahlhoefer, K. Schmidt-Hoberg and S. Wild, Dark matter self-interactions from a general spin-0 mediator, JCAP 08 (2017) 003 [arXiv:1704.02149] [INSPIRE].
Article
ADS
Google Scholar
R. Zwicky, A brief Introduction to Dispersion Relations and Analyticity, in proceedings of the Quantum Field Theory at the Limits: from Strong Fields to Heavy Quarks, Dubna, Russian Federation, 18–30 July 2016, Verlag Deutsches Elektronen-Synchrotron, Hamburg Germany (2017), pp. 93–120 [https://doi.org/10.3204/DESY-PROC-2016-04/Zwicky] [arXiv:1610.06090] [INSPIRE].
S. Fichet, Opacity and effective field theory in anti-de Sitter backgrounds, Phys. Rev. D 100 (2019) 095002 [arXiv:1905.05779] [INSPIRE].
MathSciNet
Article
ADS
Google Scholar
A. Costantino and S. Fichet, Opacity from Loops in AdS, JHEP 02 (2021) 089 [arXiv:2011.06603] [INSPIRE].
MathSciNet
MATH
Article
ADS
Google Scholar
M. Kaplinghat, S. Tulin and H.-B. Yu, Dark Matter Halos as Particle Colliders: Unified Solution to Small-Scale Structure Puzzles from Dwarfs to Clusters, Phys. Rev. Lett. 116 (2016) 041302 [arXiv:1508.03339] [INSPIRE].
Article
ADS
Google Scholar
R. Dave, D. N. Spergel, P. J. Steinhardt and B. D. Wandelt, Halo properties in cosmological simulations of selfinteracting cold dark matter, Astrophys. J. 547 (2001) 574 [astro-ph/0006218] [INSPIRE].
Article
ADS
Google Scholar
J. J. Sakurai, Modern quantum mechanics, revised edition, Addison-Wesley, Reading MA U.S.A. (1994).
Google Scholar
D. Chiron and B. Marcos, Classical particle scattering for power-law two-body potentials, arXiv:1601.00064 [INSPIRE].
S. A. Khrapak, A. V. Ivlev, G. E. Morfill and S. K. Zhdanov, Scattering in the Attractive Yukawa Potential in the Limit of Strong Interaction, Phys. Rev. Lett. 90 (2003) 225002 [INSPIRE].
Article
ADS
Google Scholar
B. Colquhoun, S. Heeba, F. Kahlhoefer, L. Sagunski and S. Tulin, Semiclassical regime for dark matter self-interactions, Phys. Rev. D 103 (2021) 035006 [arXiv:2011.04679] [INSPIRE].
MathSciNet
Article
ADS
Google Scholar
R. H. Cyburt, B. D. Fields, K. A. Olive and T.-H. Yeh, Big Bang Nucleosynthesis: Present status, Rev. Mod. Phys. 88 (2016) 015004 [arXiv:1505.01076] [INSPIRE].
Article
ADS
Google Scholar
J. Hisano, S. Matsumoto, M. M. Nojiri and O. Saito, Non-perturbative effect on dark matter annihilation and gamma ray signature from galactic center, Phys. Rev. D 71 (2005) 063528 [hep-ph/0412403] [INSPIRE].
Article
ADS
Google Scholar
N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer and N. Weiner, A Theory of Dark Matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [INSPIRE].
Article
ADS
Google Scholar
M. Lattanzi and J. I. Silk, Can the WIMP annihilation boost factor be boosted by the Sommerfeld enhancement?, Phys. Rev. D 79 (2009) 083523 [arXiv:0812.0360] [INSPIRE].
Article
ADS
Google Scholar
R. Iengo, Sommerfeld enhancement: General results from field theory diagrams, JHEP 05 (2009) 024 [arXiv:0902.0688] [INSPIRE].
MathSciNet
Article
ADS
Google Scholar
R. Iengo, Sommerfeld enhancement for a Yukawa potential, arXiv:0903.0317 [INSPIRE].
S. Cassel, Sommerfeld factor for arbitrary partial wave processes, J. Phys. G 37 (2010) 105009 [arXiv:0903.5307] [INSPIRE].
Article
ADS
Google Scholar
S. Hannestad and T. Tram, Sommerfeld Enhancement of DM Annihilation: Resonance Structure, Freeze-Out and CMB Spectral Bound, JCAP 01 (2011) 016 [arXiv:1008.1511] [INSPIRE].
Article
ADS
Google Scholar
B. Bellazzini, M. Cliche and P. Tanedo, Effective theory of self-interacting dark matter, Phys. Rev. D 88 (2013) 083506 [arXiv:1307.1129] [INSPIRE].
Article
ADS
Google Scholar
I. R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [INSPIRE].
MathSciNet
MATH
Article
ADS
Google Scholar
F. Gross, Relativistic Quantum Mechanics and Field Theory, Wiley (1999).
K. Petraki, M. Postma and J. de Vries, Radiative bound-state-formation cross-sections for dark matter interacting via a Yukawa potential, JHEP 04 (2017) 077 [arXiv:1611.01394] [INSPIRE].
MATH
Article
ADS
Google Scholar
L. D. Landau and E. M. Lifshitz, Mechanics. Course of Theoretical Physics. Volume 1, third edition, Butterworth-Heinemann (1976).
M. R. Buckley and P. J. Fox, Dark Matter Self-Interactions and Light Force Carriers, Phys. Rev. D 81 (2010) 083522 [arXiv:0911.3898] [INSPIRE].
Article
ADS
Google Scholar