Abstract
In this paper we discuss SU(5)3 with cyclic symmetry as a possible grand unified theory (GUT). The basic idea of such a tri-unification is that there is a separate SU(5) for each fermion family, with the light Higgs doublet(s) arising from the third family SU(5), providing a basis for charged fermion mass hierarchies. SU(5)3 tri-unification reconciles the idea of gauge non-universality with the idea of gauge coupling unification, opening the possibility to build consistent non-universal descriptions of Nature that are valid all the way up to the scale of grand unification. As a concrete example, we propose a grand unified embedding of the tri-hypercharge model \({\text{U}}{\left(1\right)}_{Y}^{3}\) based on an SU(5)3 framework with cyclic symmetry. We discuss a minimal tri-hypercharge example which can account for all the quark and lepton (including neutrino) masses and mixing parameters. We show that it is possible to unify the many gauge couplings into a single gauge coupling associated with the cyclic SU(5)3 gauge group, by assuming minimal multiplet splitting, together with a set of relatively light colour octet scalars. We also study proton decay in this example, and present the predictions for the proton lifetime in the dominant e+π0 channel.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
M. Fernández Navarro and S.F. King, Tri-hypercharge: a separate gauged weak hypercharge for each fermion family as the origin of flavour, JHEP 08 (2023) 020 [arXiv:2305.07690] [INSPIRE].
H. Georgi and S.L. Glashow, Unity of All Elementary Particle Forces, Phys. Rev. Lett. 32 (1974) 438 [INSPIRE].
A. Salam, A gauge appreciation of developments in particle physics — 1979, in the proceedings of the 1979 EPS High-Energy Physics Conference, Geneva, Switzerland, 27 June 1979–4 July 1979 [INSPIRE], https://cds.cern.ch/record/875244/files/19399_853-890.pdf.
S. Rajpoot, Some Consequences of Extending the SU(5) Gauge Symmetry to the Generation Symmetry SU(5)e × SU(5)μ × SU(5)τ, Phys. Rev. D 24 (1981) 1890 [INSPIRE].
H. Georgi, Composite/Fundamental Higgs Mesons. Part 2. Model Building, Nucl. Phys. B 202 (1982) 397 [INSPIRE].
R. Barbieri, G.R. Dvali and A. Strumia, Fermion masses and mixings in a flavor symmetric GUT, Nucl. Phys. B 435 (1995) 102 [hep-ph/9407239] [INSPIRE].
C.-L. Chou, Fermion mass hierarchy without flavor symmetry, Phys. Rev. D 58 (1998) 093018 [hep-ph/9804325] [INSPIRE].
T. Asaka and Y. Takanishi, Masses and mixing of quarks and leptons in product-group unification, hep-ph/0409147 [INSPIRE].
K.S. Babu, S.M. Barr and I. Gogoladze, Family Unification with SO(10), Phys. Lett. B 661 (2008) 124 [arXiv:0709.3491] [INSPIRE].
X. Li and E. Ma, Gauge Model of Generation Nonuniversality, Phys. Rev. Lett. 47 (1981) 1788 [INSPIRE].
E. Ma, X. Li and S.F. Tuan, Gauge Model of Generation Nonuniversality Revisited, Phys. Rev. Lett. 60 (1988) 495 [INSPIRE].
E. Ma and D. Ng, Gauge and Higgs Bosons in a Model of Generation Nonuniversality, Phys. Rev. D 38 (1988) 304 [INSPIRE].
X. Li and E. Ma, Gauge model of generation nonuniversality reexamined, J. Phys. G 19 (1993) 1265 [hep-ph/9208210] [INSPIRE].
D.J. Muller and S. Nandi, Top flavor: A Separate SU(2) for the third family, Phys. Lett. B 383 (1996) 345 [hep-ph/9602390] [INSPIRE].
C.-W. Chiang, N.G. Deshpande, X.-G. He and J. Jiang, The Family SU(2)l × SU(2)h × U(1) Model, Phys. Rev. D 81 (2010) 015006 [arXiv:0911.1480] [INSPIRE].
C.D. Carone and H. Murayama, Third family flavor physics in an SU(3)3 × SU(2)L × U(1)Y model, Phys. Rev. D 52 (1995) 4159 [hep-ph/9504393] [INSPIRE].
M. Bordone, C. Cornella, J. Fuentes-Martin and G. Isidori, A three-site gauge model for flavor hierarchies and flavor anomalies, Phys. Lett. B 779 (2018) 317 [arXiv:1712.01368] [INSPIRE].
A. Greljo and B.A. Stefanek, Third family quark-lepton unification at the TeV scale, Phys. Lett. B 782 (2018) 131 [arXiv:1802.04274] [INSPIRE].
L. Allwicher, G. Isidori and A.E. Thomsen, Stability of the Higgs Sector in a Flavor-Inspired Multi-Scale Model, JHEP 01 (2021) 191 [arXiv:2011.01946] [INSPIRE].
J. Fuentes-Martin, G. Isidori, J. Pagès and B.A. Stefanek, Flavor non-universal Pati-Salam unification and neutrino masses, Phys. Lett. B 820 (2021) 136484 [arXiv:2012.10492] [INSPIRE].
J. Fuentes-Martin, G. Isidori, J.M. Lizana, N. Selimovic and B.A. Stefanek, Flavor hierarchies, flavor anomalies, and Higgs mass from a warped extra dimension, Phys. Lett. B 834 (2022) 137382 [arXiv:2203.01952] [INSPIRE].
J. Davighi, G. Isidori and M. Pesut, Electroweak-flavour and quark-lepton unification: a family non-universal path, JHEP 04 (2023) 030 [arXiv:2212.06163] [INSPIRE].
J. Davighi and J. Tooby-Smith, Electroweak flavour unification, JHEP 09 (2022) 193 [arXiv:2201.07245] [INSPIRE].
J. Davighi and G. Isidori, Non-universal gauge interactions addressing the inescapable link between Higgs and flavour, JHEP 07 (2023) 147 [arXiv:2303.01520] [INSPIRE].
S.L. Glashow, Trinification of All Elementary Particle Forces, in the proceedings of the Fifth Workshop on Grand Unification, Providence, U.S.A., 12–14 April 1984 [INSPIRE].
E. Malkawi, T.M.P. Tait and C.P. Yuan, A Model of strong flavor dynamics for the top quark, Phys. Lett. B 385 (1996) 304 [hep-ph/9603349] [INSPIRE].
J. Shu, T.M.P. Tait and C.E.M. Wagner, Baryogenesis from an Earlier Phase Transition, Phys. Rev. D 75 (2007) 063510 [hep-ph/0610375] [INSPIRE].
R. Barbieri, G. Isidori, J. Jones-Perez, P. Lodone and D.M. Straub, U(2) and Minimal Flavour Violation in Supersymmetry, Eur. Phys. J. C 71 (2011) 1725 [arXiv:1105.2296] [INSPIRE].
L. Allwicher, C. Cornella, B.A. Stefanek and G. Isidori, New physics in the third generation. A comprehensive SMEFT analysis and future prospects, JHEP 03 (2024) 049 [arXiv:2311.00020] [INSPIRE].
J. Davighi and B.A. Stefanek, Deconstructed hypercharge: a natural model of flavour, JHEP 11 (2023) 100 [arXiv:2305.16280] [INSPIRE].
H. Georgi and C. Jarlskog, A New Lepton-Quark Mass Relation in a Unified Theory, Phys. Lett. B 86 (1979) 297 [INSPIRE].
L. Ferretti, S.F. King and A. Romanino, Flavour from accidental symmetries, JHEP 11 (2006) 078 [hep-ph/0609047] [INSPIRE].
UTfit collaboration, Model-independent constraints on ∆F = 2 operators and the scale of new physics, JHEP 03 (2008) 049 [arXiv:0707.0636] [INSPIRE].
G. Isidori and F. Teubert, Status of indirect searches for New Physics with heavy flavour decays after the initial LHC run, Eur. Phys. J. Plus 129 (2014) 40 [arXiv:1402.2844] [INSPIRE].
R.M. Fonseca, GroupMath: A Mathematica package for group theory calculations, Comput. Phys. Commun. 267 (2021) 108085 [arXiv:2011.01764] [INSPIRE].
P.F. de Salas et al., 2020 global reassessment of the neutrino oscillation picture, JHEP 02 (2021) 071 [arXiv:2006.11237] [INSPIRE].
M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, NuFIT: Three-Flavour Global Analyses of Neutrino Oscillation Experiments, Universe 7 (2021) 459 [arXiv:2111.03086] [INSPIRE].
M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. Part 1. Wave Function Renormalization, Nucl. Phys. B 222 (1983) 83 [INSPIRE].
Super-Kamiokande collaboration, Search for proton decay via p → e+π0 and p → μ+π0 with an enlarged fiducial volume in Super-Kamiokande I–IV, Phys. Rev. D 102 (2020) 112011 [arXiv:2010.16098] [INSPIRE].
P.N. Bhattiprolu, S.P. Martin and J.D. Wells, Statistical significances and projections for proton decay experiments, Phys. Rev. D 107 (2023) 055016 [arXiv:2210.07735] [INSPIRE].
P. Nath and P. Fileviez Perez, Proton stability in grand unified theories, in strings and in branes, Phys. Rep. 441 (2007) 191 [hep-ph/0601023] [INSPIRE].
J. Chakrabortty, R. Maji and S.F. King, Unification, Proton Decay and Topological Defects in non-SUSY GUTs with Thresholds, Phys. Rev. D 99 (2019) 095008 [arXiv:1901.05867] [INSPIRE].
Y. Aoki, T. Izubuchi, E. Shintani and A. Soni, Improved lattice computation of proton decay matrix elements, Phys. Rev. D 96 (2017) 014506 [arXiv:1705.01338] [INSPIRE].
Acknowledgments
MFN and AV are grateful to Renato Fonseca for many enlightening discussions on group theory, gauge unification and embeddings of SM fermions in GUTs. SFK acknowledges the STFC Consolidated Grant ST/L000296/1 and the European Union’s Horizon 2020 Research and Innovation programme under Marie Sklodowska-Curie grant agreement HIDDeN European ITN project (H2020-MSCA-ITN-2019//860881-HIDDeN). MFN is supported by the STFC under grant ST/X000605/1. AV acknowledges financial support from the Spanish grants PID2020-113775GB-I00 (AEI/10.13039/501100011033) and CIPROM/2021/054 (Generalitat Valenciana), as well as from MINECO through the Ramón y Cajal contract RYC2018-025795-I.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2311.05683
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Navarro, M.F., King, S.F. & Vicente, A. Tri-unification: a separate SU(5) for each fermion family. J. High Energ. Phys. 2024, 130 (2024). https://doi.org/10.1007/JHEP05(2024)130
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP05(2024)130