Skip to main content

Advertisement

SpringerLink
  • Journal of High Energy Physics
  • Journal Aims and Scope
  • Submit to this journal
Exploring invisible neutrino decay at ESSnuSB
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Invisible neutrino decays at the MOMENT experiment

01 April 2019

Jian Tang, Tse-Chun Wang & Yibing Zhang

Physics potential of ESSνSB in the presence of a light sterile neutrino

30 December 2019

Sanjib Kumar Agarwalla, Sabya Sachi Chatterjee & Antonio Palazzo

Invisible neutrino decay: first vs second oscillation maximum

12 May 2021

Kaustav Chakraborty, Debajyoti Dutta, … Dipyaman Pramanik

Sensitivity to light sterile neutrinos at ESSnuSB

04 March 2020

Monojit Ghosh, Tommy Ohlsson & Salvador Rosauro-Alcaraz

Physics potential of the ESS$$\nu $$νSB

02 March 2020

M. Blennow, E. Fernandez-Martinez, … S. Rosauro-Alcaraz

Model-independent constraints on non-unitary neutrino mixing from high-precision long-baseline experiments

19 July 2022

Sanjib Kumar Agarwalla, Sudipta Das, … Davide Meloni

Improving CP measurement with THEIA and muon decay at rest

30 June 2022

Shao-Feng Ge, Chui-Fan Kong & Pedro Pasquini

Measuring the sterile neutrino CP phase at DUNE and T2HK

26 April 2018

Sandhya Choubey, Debajyoti Dutta & Dipyaman Pramanik

Matter effects in neutrino visible decay at future long-baseline experiments

04 October 2018

M. V. Ascencio-Sosa, A. M. Calatayud-Cadenillas, … J. Jones-Pérez

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 17 May 2021

Exploring invisible neutrino decay at ESSnuSB

  • Sandhya Choubey1,2,
  • Monojit Ghosh  ORCID: orcid.org/0000-0003-3540-65481,2,3,
  • Daniel Kempe1,2 &
  • …
  • Tommy Ohlsson1,2,4 

Journal of High Energy Physics volume 2021, Article number: 133 (2021) Cite this article

  • 195 Accesses

  • 4 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We explore invisible neutrino decay in which a heavy active neutrino state decays into a light sterile neutrino state and present a comparative analysis of two baseline options, 540 km and 360 km, for the ESSnuSB experimental setup. Our analysis shows that ESSnuSB can put a bound on the decay parameter τ3/m3 = 2.64 (1.68) × 10−11 s/eV for the baseline option of 360 (540) km at 3σ. The expected bound obtained for 360 km is slightly better than the corresponding one of DUNE for a charged current (CC) analysis. Furthermore, we show that the capability of ESSnuSB to discover decay, and to measure the decay parameter precisely, is better for the baseline option of 540 km than that of 360 km. Regarding effects of decay in δCP measurements, we find that in general the CP violation discovery potential is better in the presence of decay. The change in CP precision is significant if one assumes decay in data but no decay in theory.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. I. Esteban, M. C. Gonzalez-Garcia, M. Maltoni, T. Schwetz and A. Zhou, The fate of hints: updated global analysis of three-flavor neutrino oscillations, JHEP 09 (2020) 178 [arXiv:2007.14792] [INSPIRE].

    Article  ADS  Google Scholar 

  2. M. Lindner, T. Ohlsson and W. Winter, A combined treatment of neutrino decay and neutrino oscillations, Nucl. Phys. B 607 (2001) 326 [hep-ph/0103170] [INSPIRE].

    Article  ADS  Google Scholar 

  3. A. Acker and S. Pakvasa, Solar neutrino decay, Phys. Lett. B 320 (1994) 320 [hep-ph/9310207] [INSPIRE].

    Article  ADS  Google Scholar 

  4. Y. Chikashige, R. N. Mohapatra and R. D. Peccei, Are there real goldstone bosons associated with broken lepton number?, Phys. Lett. B 98 (1981) 265 [INSPIRE].

    Article  ADS  Google Scholar 

  5. A. Bandyopadhyay, S. Choubey and S. Goswami, Neutrino decay confronts the SNO data, Phys. Lett. B 555 (2003) 33 [hep-ph/0204173] [INSPIRE].

    Article  ADS  Google Scholar 

  6. Kamiokande-II collaboration, Observation of a neutrino burst from the supernova SN1987A, Phys. Rev. Lett. 58 (1987) 1490 [INSPIRE].

  7. J. A. Frieman, H. E. Haber and K. Freese, Neutrino mixing, decays and supernova 1987A, Phys. Lett. B 200 (1988) 115 [INSPIRE].

    Article  ADS  Google Scholar 

  8. M. Lindner, T. Ohlsson and W. Winter, Decays of supernova neutrinos, Nucl. Phys. B 622 (2002) 429 [astro-ph/0105309] [INSPIRE].

    Article  ADS  Google Scholar 

  9. T2K collaboration, T2K measurements of muon neutrino and antineutrino disappearance using 3.13 × 1021 protons on target, Phys. Rev. D 103 (2021) L011101 [arXiv:2008.07921] [INSPIRE].

  10. NOvA Collaboration, T. Nosek, Results on Neutrino and Antineutrino Oscillations from the NOvA Experiment, Ukr. J. Phys. 64 (2019) 613.

  11. MINOS collaboration, The magnetized steel and scintillator calorimeters of the MINOS experiment, Nucl. Instrum. Meth. A 596 (2008) 190 [arXiv:0805.3170] [INSPIRE].

  12. DUNE collaboration, Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics, arXiv:2002.03005 [INSPIRE].

  13. J. Cao et al., Muon-decay medium-baseline neutrino beam facility, Phys. Rev. ST Accel. Beams 17 (2014) 090101 [arXiv:1401.8125] [INSPIRE].

    Article  ADS  Google Scholar 

  14. S. Choubey, D. Dutta and D. Pramanik, Invisible neutrino decay in the light of NOvA and T2K data, JHEP 08 (2018) 141 [arXiv:1805.01848] [INSPIRE].

    Article  ADS  Google Scholar 

  15. R. A. Gomes, A. L. G. Gomes and O. L. G. Peres, Constraints on neutrino decay lifetime using long-baseline charged and neutral current data, Phys. Lett. B 740 (2015) 345 [arXiv:1407.5640] [INSPIRE].

    Article  ADS  Google Scholar 

  16. S. Choubey, S. Goswami and D. Pramanik, A study of invisible neutrino decay at DUNE and its effects on θ23 measurement, JHEP 02 (2018) 055 [arXiv:1705.05820] [INSPIRE].

    Article  ADS  Google Scholar 

  17. A. Ghoshal, A. Giarnetti and D. Meloni, Neutrino Invisible Decay at DUNE: a multi-channel analysis, J. Phys. G 48 (2021) 055004 [arXiv:2003.09012] [INSPIRE].

    Article  ADS  Google Scholar 

  18. J. Tang, T.-C. Wang and Y. Zhang, Invisible neutrino decays at the MOMENT experiment, JHEP 04 (2019) 004 [arXiv:1811.05623] [INSPIRE].

    Article  ADS  Google Scholar 

  19. Super-Kamiokande collaboration, Three flavor neutrino oscillation analysis of atmospheric neutrinos in Super-Kamiokande, Phys. Rev. D 74 (2006) 032002 [hep-ex/0604011] [INSPIRE].

  20. ICAL collaboration, Physics Potential of the ICAL detector at the India-based Neutrino Observatory (INO), Pramana 88 (2017) 79 [arXiv:1505.07380] [INSPIRE].

  21. M. C. Gonzalez-Garcia and M. Maltoni, Status of Oscillation plus Decay of Atmospheric and Long-Baseline Neutrinos, Phys. Lett. B 663 (2008) 405 [arXiv:0802.3699] [INSPIRE].

    Article  ADS  Google Scholar 

  22. S. Choubey, S. Goswami, C. Gupta, S. M. Lakshmi and T. Thakore, Sensitivity to neutrino decay with atmospheric neutrinos at the INO-ICAL detector, Phys. Rev. D 97 (2018) 033005 [arXiv:1709.10376] [INSPIRE].

    Article  ADS  Google Scholar 

  23. L. S. Mohan, Probing the sensitivity to leptonic δCP in presence of invisible decay of ν3 using atmospheric neutrinos, J. Phys. G 47 (2020) 115004 [arXiv:2006.04233] [INSPIRE].

    Article  ADS  Google Scholar 

  24. KM3Net collaboration, Letter of intent for KM3NeT 2.0, J. Phys. G 43 (2016) 084001 [arXiv:1601.07459] [INSPIRE].

  25. P. F. de Salas, S. Pastor, C. A. Ternes, T. Thakore and M. Tórtola, Constraining the invisible neutrino decay with KM3NeT-ORCA, Phys. Lett. B 789 (2019) 472 [arXiv:1810.10916] [INSPIRE].

    Article  ADS  Google Scholar 

  26. JUNO collaboration, Neutrino Physics with JUNO, J. Phys. G 43 (2016) 030401 [arXiv:1507.05613] [INSPIRE].

  27. T. Abrahão, H. Minakata, H. Nunokawa and A. A. Quiroga, Constraint on Neutrino Decay with Medium-Baseline Reactor Neutrino Oscillation Experiments, JHEP 11 (2015) 001 [arXiv:1506.02314] [INSPIRE].

    Article  ADS  Google Scholar 

  28. ESSnuSB collaboration, A very intense neutrino super beam experiment for leptonic CP-violation discovery based on the European spallation source linac, Nucl. Phys. B 885 (2014) 127 [arXiv:1309.7022] [INSPIRE].

  29. E. Wildner et al., The Opportunity Offered by the ESSnuSB Project to Exploit the Larger Leptonic CP-violation Signal at the Second Oscillation Maximum and the Requirements of This Project on the ESS Accelerator Complex, Adv. High Energy Phys. 2016 (2016) 8640493 [arXiv:1510.00493] [INSPIRE].

    Article  Google Scholar 

  30. M. Ghosh and T. Ohlsson, A comparative study between ESSnuSB and T2HK in determining the leptonic CP phase, Mod. Phys. Lett. A 35 (2020) 2050058 [arXiv:1906.05779] [INSPIRE].

    Article  ADS  Google Scholar 

  31. S. K. Agarwalla, S. Choubey and S. Prakash, Probing neutrino oscillation parameters using high power superbeam from ESS, JHEP 12 (2014) 020 [arXiv:1406.2219] [INSPIRE].

    Article  ADS  Google Scholar 

  32. K. Chakraborty, K. N. Deepthi and S. Goswami, Spotlighting the sensitivities of Hyper-Kamiokande, DUNE and ESSνSB, Nucl. Phys. B 937 (2018) 303 [arXiv:1711.11107] [INSPIRE].

    Article  ADS  Google Scholar 

  33. K. Chakraborty, S. Goswami, C. Gupta and T. Thakore, Enhancing the hierarchy and octant sensitivity of ESSνSB in conjunction with T2K, NOνA and ICAL@INO, JHEP 05 (2019) 137 [arXiv:1902.02963] [INSPIRE].

    Article  ADS  Google Scholar 

  34. M. Blennow, E. Fernandez-Martinez, T. Ota and S. Rosauro-Alcaraz, Physics potential of the ESSνSB, Eur. Phys. J. C 80 (2020) 190 [arXiv:1912.04309] [INSPIRE].

    Article  ADS  Google Scholar 

  35. T. Hahn, Routines for the diagonalization of complex matrices, physics/0607103 [INSPIRE].

  36. C. Giunti and C. W. Kim, Fundamentals of Neutrino Physics and Astrophysics, Oxford University Press, Oxford U.K. (2007) [DOI].

  37. E. K. Akhmedov, R. Johansson, M. Lindner, T. Ohlsson and T. Schwetz, Series expansions for three flavor neutrino oscillation probabilities in matter, JHEP 04 (2004) 078 [hep-ph/0402175] [INSPIRE].

  38. P. Huber, M. Lindner and W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator), Comput. Phys. Commun. 167 (2005) 195 [hep-ph/0407333] [INSPIRE].

  39. P. Huber, J. Kopp, M. Lindner, M. Rolinec and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 432 [hep-ph/0701187] [INSPIRE].

  40. MEMPHYS collaboration, Study of the performance of a large scale water-Cherenkov detector (MEMPHYS), JCAP 01 (2013) 024 [arXiv:1206.6665] [INSPIRE].

  41. P. Coloma, P. Huber, J. Kopp and W. Winter, Systematic uncertainties in long-baseline neutrino oscillations for large θ13, Phys. Rev. D 87 (2013) 033004 [arXiv:1209.5973] [INSPIRE].

    Article  ADS  Google Scholar 

  42. T2K collaboration, Measurement of neutrino and antineutrino oscillations by the T2K experiment including a new additional sample of νe interactions at the far detector, Phys. Rev. D 96 (2017) 092006 [Erratum ibid. 98 (2018) 019902] [arXiv:1707.01048] [INSPIRE].

  43. NOvA collaboration, Constraints on Oscillation Parameters from νe Appearance and νμ Disappearance in NOvA, Phys. Rev. Lett. 118 (2017) 231801 [arXiv:1703.03328] [INSPIRE].

  44. T2K collaboration, Precise Measurement of the Neutrino Mixing Parameter θ23 from Muon Neutrino Disappearance in an Off-Axis Beam, Phys. Rev. Lett. 112 (2014) 181801 [arXiv:1403.1532] [INSPIRE].

  45. MINOS collaboration, Search for sterile neutrino mixing in the MINOS long baseline experiment, Phys. Rev. D 81 (2010) 052004 [arXiv:1001.0336] [INSPIRE].

  46. MINOS collaboration, Measurement of Neutrino and Antineutrino Oscillations Using Beam and Atmospheric Data in MINOS, Phys. Rev. Lett. 110 (2013) 251801 [arXiv:1304.6335] [INSPIRE].

  47. Super-Kamiokande collaboration, Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].

  48. Super-Kamiokande collaboration, A measurement of atmospheric neutrino oscillation parameters by Super-Kamiokande I, Phys. Rev. D 71 (2005) 112005 [hep-ex/0501064] [INSPIRE].

  49. J. Nelson, MINOS Oscillation Results, talk at Neutrino 2006, Santa Fe, U.S.A., 17 June 2006.

  50. A. Weber, New Results from the MINOS Experiment, talk at EPS-HEP 2007, Manchester, U.K., 20 July 2007, J. Phys. Conf. Ser. 110 (2008) 082021.

Download references

Author information

Authors and Affiliations

  1. Department of Physics, School of Engineering Sciences, KTH Royal Institute of Technology, AlbaNova University Center, Roslagstullsbacken 21, SE-106 91, Stockholm, Sweden

    Sandhya Choubey, Monojit Ghosh, Daniel Kempe & Tommy Ohlsson

  2. The Oskar Klein Centre, AlbaNova University Center, Roslagstullsbacken 21, SE-106 91, Stockholm, Sweden

    Sandhya Choubey, Monojit Ghosh, Daniel Kempe & Tommy Ohlsson

  3. Center of Excellence for Advanced Materials and Sensing Devices, Ruder Bošković Institute, 10000, Zagreb, Croatia

    Monojit Ghosh

  4. University of Iceland, Science Institute, Dunhaga 3, IS-107, Reykjavik, Iceland

    Tommy Ohlsson

Authors
  1. Sandhya Choubey
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Monojit Ghosh
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Daniel Kempe
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Tommy Ohlsson
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Monojit Ghosh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2010.16334

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Choubey, S., Ghosh, M., Kempe, D. et al. Exploring invisible neutrino decay at ESSnuSB. J. High Energ. Phys. 2021, 133 (2021). https://doi.org/10.1007/JHEP05(2021)133

Download citation

  • Received: 11 November 2020

  • Revised: 02 March 2021

  • Accepted: 25 April 2021

  • Published: 17 May 2021

  • DOI: https://doi.org/10.1007/JHEP05(2021)133

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Neutrino Physics
  • CP violation
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.