Skip to main content

Exploring Invisible Neutrino Decay at Long-Baseline Experiments

  • Conference paper
  • First Online:
Selected Progresses in Modern Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 265))

  • 411 Accesses

Abstract

Neutrino decay is one of the popular new physics scenarios in the neutrino sector. There are three active neutrinos, and they can decay into lighter active neutrino state and boson(s), or they can decay into a sterile fermion and boson(s). In visible neutrino decay, neutrinos decay into final active states and boson(s) and these are visible to the detectors. These scenarios are highly constrained. On the other hand, if the active neutrinos decay to some final sterile state, these are invisible to the neutrino detectors. Here in this work, we aim to study the possibility of invisible neutrino decay scenarios in long-baseline experiments. Previous studies show that by combining neutrino oscillation experiments it is possible to improve the constraints in invisible neutrino decay. We, here in this work, have measured the bounds on the invisible decay parameters at DUNE and NO\(\nu \)A experiments. We have also combined the two experiments to see the effect of the combination in improving the bounds on invisible neutrino decay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Q.R. Ahmad et al., SNO. Phys. Rev. Lett. 89, 011301 (2002). (nucl-ex/0204008)

    Article  ADS  Google Scholar 

  2. A. Gando et al. (KamLAND), Phys. Rev. D 83, 052002 (2011), 1009.4771

    Google Scholar 

  3. Y. Fukuda et al., Super-Kamiokande. Phys. Rev. Lett. 81, 1562 (1998). (hep-ex/9807003)

    Article  ADS  Google Scholar 

  4. F. P. An et al. (Daya Bay), Phys. Rev. Lett. 108, 171803 (2012), 1203.1669

    Google Scholar 

  5. Y. Abe et al. (Double Chooz), Phys. Rev. Lett. 108, 131801 (2012), 1112.6353

    Google Scholar 

  6. J. K. Ahn et al. (RENO), Phys. Rev. Lett. 108, 191802 (2012), 1204.0626

    Google Scholar 

  7. K. Abe et al. (T2K), Phys. Rev. Lett. 118, 151801 (2017), 1701.00432

    Google Scholar 

  8. P. Adamson et al. (NOvA), Phys. Rev. Lett. 116, 151806 (2016), 1601.05022

    Google Scholar 

  9. P. Adamson et al. (NOvA) (2017), 1703.03328

    Google Scholar 

  10. DUNE collaboration, Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report, Volume 2: The Physics Program for DUNE at LBNF, 1512.06148

    Google Scholar 

  11. Hyper-Kamiokande Proto-collaboration, Physics potential of a long-baseline neutrino oscillation experiment using a J-PARC neutrino beam and Hyper-Kamiokande, PTEP 2015 (2015) 053C02 [1502.05199]

    Google Scholar 

  12. Hyper-Kamiokande collaboration, Physics potentials with the second Hyper-Kamiokande detector in Korea, PTEP 2018 (2018) 063C01 [1611.06118]

    Google Scholar 

  13. ESSnuSB collaboration, A very intense neutrino super beam experiment for leptonic CP violation discovery based on the European spallation source linac, Nucl. Phys. B 885 (2014) 127 [1309.7022]

    Google Scholar 

  14. JUNO collaboration, Neutrino Physics with JUNO, J. Phys. G 43 (2016) 030401 [1507.05613]

    Google Scholar 

  15. I.C.A.L. Collaboration, S. Ahmed et al., Physics potential of the ICAL detector at the India-based Neutrino Observatory (INO). Pramana 88, 79 (2017). ([arXiv:1505.07380])

    Article  Google Scholar 

  16. IceCube PINGU collaboration, Letter of Intent: The Precision IceCube Next Generation Upgrade (PINGU), 1401.2046

    Google Scholar 

  17. KM3NeT collaboration, The KM3NeT deep-sea neutrino telescope, Nucl. Instrum. Meth. A 766 (2014) 83 [1408.1392]

    Google Scholar 

  18. M. Lindner, T. Ohlsson, W. Winter, A combined treatment of neutrino decay and neutrino oscillations. Nucl. Phys. B 607, 326 (2001). ([hep-ph/0103170])

    Article  ADS  Google Scholar 

  19. C. Kim, W. Lam, Some remarks on neutrino decay via a Nambu-Goldstone boson. Mod. Phys. Lett. A 5, 297 (1990)

    Article  ADS  Google Scholar 

  20. A. Acker, A. Joshipura, S. Pakvasa, A Neutrino decay model, solar anti-neutrinos and atmospheric neutrinos. Phys. Lett. B 285, 371 (1992)

    Article  ADS  Google Scholar 

  21. J. N. Bahcall, N. Cabibbo, and A. Yahil, Phys. Rev. Lett. 28, 316 (1972), [285(1972)]

    Google Scholar 

  22. R. Picoreti, M.M. Guzzo, P.C. de Holanda, O.L.G. Peres, Neutrino Decay and Solar Neutrino Seasonal Effect. Phys. Lett. B 761, 70 (2016). ([arXiv:1506.08158] [INSPIRE ])

    Article  ADS  Google Scholar 

  23. Kamiokande-II Collaboration, K. Hirata et al., Observation of a neutrino burst from the supernova SN1987A, Phys. Rev. Lett. 58 (1987) 1490

    Google Scholar 

  24. G.-Y. Huang and S. Zhou, Constraining Neutrino Lifetimes and Magnetic Moments via Solar Neutrinos in the Large Xenon Detectors, JCAP 02 (2019) 024 [1810.03877]

    Google Scholar 

  25. Super-Kamiokande Collaboration, J. Hosaka et al., Three flavor neutrino oscillation analysis of atmospheric neutrinos in Super-Kamiokande, Phys. Rev. D 74 (2006) 032002, [hep-ex/0604011]

    Google Scholar 

  26. S. Choubey, D. Dutta, D. Pramanik, Invisible neutrino decay in the light of NOvA and T2K data. JHEP 08, 141 (2018). ([arXiv:1805.01848])

    Article  ADS  Google Scholar 

  27. S. Choubey, S. Goswami, D. Pramanik, A study of invisible neutrino decay at DUNE and its effects on \(\theta _{23}\) measurement. JHEP 02, 055 (2018). ([arXiv:1705.05820])

    Article  ADS  Google Scholar 

  28. J. Tang, T.-C. Wang, Y. Zhang, Invisible neutrino decays at the MOMENT experiment. JHEP 04, 004 (2019). ([arXiv:1811.05623])

    Article  ADS  Google Scholar 

  29. M. C. Gonzalez-Garcia, and Michele Maltoni, Status of Oscillation plus Decay of Atmospheric and Long-Baseline Neutrinos, Phys. Lett. B 663, 405–409, (2008) [arXiv:0802.3699v2]

  30. R. A. Gomes\(^{a, b}\), A. L. G. Gomes\(^{a}\), and O. L. G. Peres\(^{c, d}\), Constraints on neutrino decay lifetime using long-baseline charged and neutral current data, Phys. Lett. B 740 (2015) 345, [arXiv:1407.5640]

  31. P. Huber, M. Lindner, W. Winter, Simulation of long-baseline neutrino oscillation experiments with GLoBES (General Long Baseline Experiment Simulator). Comput. Phys. Commun. 167, 195 (2005). ([hep-ph/0407333])

    Article  ADS  Google Scholar 

  32. P. Huber, J. Kopp, M. Lindner, M. Rolinec, and W. Winter, New features in the simulation of neutrino oscillation experiments with GLoBES 3.0: General Long Baseline Experiment Simulator, Comput. Phys. Commun. 177 (2007) 432, [hep-ph/0701187]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dey, Z.F., Dutta, D. (2021). Exploring Invisible Neutrino Decay at Long-Baseline Experiments. In: Sengupta, S., Dey, S., Das, S., Saikia, D.J., Panda, S., Podila, R. (eds) Selected Progresses in Modern Physics. Springer Proceedings in Physics, vol 265. Springer, Singapore. https://doi.org/10.1007/978-981-16-5141-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-5141-0_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-5140-3

  • Online ISBN: 978-981-16-5141-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics