Abstract
The correlators of free four dimensional conformal field theories (CFT4) have been shown to be given by amplitudes in two-dimensional so(4, 2) equivariant topological field theories (TFT2), by using a vertex operator formalism for the correlators. We show that this can be extended to perturbative interacting conformal field theories, using two representation theoretic constructions. A co-product deformation for the conformal algebra accommodates the equivariant construction of composite operators in the presence of non-additive anomalous dimensions. Explicit expressions for the co-product deformation are given within a sector of \( \mathcal{N} \) = 4 SYM and for the Wilson-Fischer fixed point near four dimensions. The extension of conformal equivariance beyond integer dimensions (relevant for the Wilson-Fischer fixed point) leads to the definition of an associative diagram algebra U★, abstracted from Uso(d) in the limit of large integer d, which admits extension of Uso(d) representation theory to general real (or complex) d. The algebra is related, via oscillator realisations, to so(d) equivariant maps and Brauer category diagrams. Tensor representations are constructed where the diagram algebra acts on tensor products of a fundamental diagram representation. A similar diagrammatic algebra U★, 2, related to a general d extension for Uso(d, 2) is defined, and some of its lowest weight representations relevant to the Wilson-Fischer fixed point are described.
References
J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].
J.A. Minahan and K. Zarembo, The Bethe ansatz for N = 4 super-Yang-Mills, JHEP 03 (2003) 013 [hep-th/0212208] [INSPIRE].
N. Beisert, C. Kristjansen and M. Staudacher, The Dilatation operator of conformal N = 4 superYang-Mills theory, Nucl. Phys. B 664 (2003) 131 [hep-th/0303060] [INSPIRE].
N. Beisert et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].
L.N. Lipatov, Asymptotic behavior of multicolor QCD at high energies in connection with exactly solvable spin models, JETP Lett. 59 (1994) 596 [Pisma Zh. Eksp. Teor. Fiz. 59 (1994) 571] [hep-th/9311037] [INSPIRE].
L.D. Faddeev and G.P. Korchemsky, High-energy QCD as a completely integrable model, Phys. Lett. B 342 (1995) 311 [hep-th/9404173] [INSPIRE].
S. Ferrara, A.F. Grillo and R. Gatto, Tensor representations of conformal algebra and conformally covariant operator product expansion, Annals Phys. 76 (1973) 161 [INSPIRE].
A.M. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor. Fiz. 66 (1974) 23 [Sov. Phys. JETP 39 (1974) 9] [INSPIRE].
A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].
R. Rattazzi, V.S. Rychkov, E. Tonni and A. Vichi, Bounding scalar operator dimensions in 4D CFT, JHEP 12 (2008) 031 [arXiv:0807.0004] [INSPIRE].
S. El-Showk et al., Solving the 3d Ising model with the conformal bootstrap II. c-minimization and precise critical exponents, J. Stat. Phys. 157 (2014) 869 [arXiv:1403.4545] [INSPIRE].
K.G. Wilson and M.E. Fisher, Critical exponents in 3.99 dimensions, Phys. Rev. Lett. 28 (1972) 240 [INSPIRE].
S. Rychkov and Z.M. Tan, The 𝜖-expansion from conformal field theory, J. Phys. A 48 (2015) 29FT01 [arXiv:1505.00963] [INSPIRE].
P. Liendo, Revisiting the dilatation operator of the Wilson–Fisher fixed point, Nucl. Phys. B 920 (2017) 368 [arXiv:1701.04830] [INSPIRE].
S. Corley, A. Jevicki and S. Ramgoolam, Exact correlators of giant gravitons from dual N = 4 SYM theory, Adv. Theor. Math. Phys. 5 (2002) 809 [hep-th/0111222] [INSPIRE].
T.W. Brown, P.J. Heslop and S. Ramgoolam, Diagonal multi-matrix correlators and BPS operators in N = 4 SYM, JHEP 02 (2008) 030 [arXiv:0711.0176] [INSPIRE].
T.W. Brown, P.J. Heslop and S. Ramgoolam, Diagonal free field matrix correlators, global symmetries and giant gravitons, JHEP 04 (2009) 089 [arXiv:0806.1911] [INSPIRE].
R. Bhattacharyya, S. Collins and R. de Mello Koch, Exact multi-matrix correlators, JHEP 03 (2008) 044 [arXiv:0801.2061] [INSPIRE].
R. Bhattacharyya, R. de Mello Koch and M. Stephanou, Exact multi-restricted schur polynomial correlators, JHEP 06 (2008) 101 [arXiv:0805.3025] [INSPIRE].
R. de Mello Koch and S. Ramgoolam, Strings from Feynman graph counting: without large N , Phys. Rev. D 85 (2012) 026007 [arXiv:1110.4858] [INSPIRE].
J. Pasukonis and S. Ramgoolam, Quivers as calculators: counting, correlators and Riemann surfaces, JHEP 04 (2013) 094 [arXiv:1301.1980] [INSPIRE].
Y. Kimura, Multi-matrix models and Noncommutative Frobenius algebras obtained from symmetric groups and Brauer algebras, Commun. Math. Phys. 337 (2015) 1 [arXiv:1403.6572] [INSPIRE].
R. de Mello Koch and S. Ramgoolam, CFT4 as SO(4, 2)-invariant TFT2 , Nucl. Phys. B 890 (2014) 302 [arXiv:1403.6646] [INSPIRE].
R. de Mello Koch, P. Rabambi, R. Rabe and S. Ramgoolam, Free quantum fields in 4D and Calabi-Yau spaces, Phys. Rev. Lett. 119 (2017) 161602 [arXiv:1705.04039] [INSPIRE].
R. de Mello Koch, P. Rabambi, R. Rabe and S. Ramgoolam, Counting and construction of holomorphic primary fields in free CFT4 from rings of functions on Calabi-Yau orbifolds, JHEP 08 (2017) 077 [arXiv:1705.06702] [INSPIRE].
R. De Mello Koch, P. Rambambi and H.J.R. Van Zyl, From spinning primaries to permutation orbifolds, JHEP 04 (2018) 104 [arXiv:1801.10313] [INSPIRE].
R. de Mello Koch and S. Ramgoolam, Free field primaries in general dimensions: counting and construction with rings and modules, JHEP 08 (2018) 088 [arXiv:1806.01085] [INSPIRE].
B. Henning, X. Lu, T. Melia and H. Murayama, Operator bases, S-matrices and their partition functions, JHEP 10 (2017) 199 [arXiv:1706.08520] [INSPIRE].
R. de Mello Koch and S. Ramgoolam, Interactions as intertwiners in 4D QFT, JHEP 03 (2016) 165 [arXiv:1512.00652] [INSPIRE].
I. Frenkel and M. Libine, Quaternionic analysis, representation theory and physics, Adv. Math. 218 (2008) 1806 [arXiv:0711.2699] [INSPIRE].
K.G. Chetyrkin, A.L. Kataev and F.V. Tkachov, New approach to evaluation of multiloop Feynman integrals: the Gegenbauer polynomial x space technique, Nucl. Phys. B 174 (1980) 345 [INSPIRE].
R. Brauer, On algebras which are connected with the semisimple continuous groups, Ann. Math. 38 (1937) 857.
P. Martin, Temperly-Lieb algebras for non-planar statistical mechanics — The partition algebra construction, J. Knot Theor. Ramif. 3 (1994) 51.
P. Martin and H. Saleur, On an algebraic approach to higher dimensional statistical mechanics, Commun. Math. Phys. 158 (1993) 155.
Y. Kimura and S. Ramgoolam, Branes, anti-branes and brauer algebras in gauge-gravity duality, JHEP 11 (2007) 078 [arXiv:0709.2158] [INSPIRE].
Y. Kimura, Quarter BPS classified by Brauer algebra, JHEP 05 (2010) 103 [arXiv:1002.2424] [INSPIRE].
D.J. Binder and S. Rychkov, Deligne categories in lattice models and quantum field theory, or making sense of O(N ) symmetry with non-integer N , JHEP 04 (2020) 117 [arXiv:1911.07895] [INSPIRE].
M. Hogervorst, S. Rychkov and B.C. van Rees, Unitarity violation at the Wilson-Fisher fixed point in 4 − 𝜖 dimensions, Phys. Rev. D 93 (2016) 125025 [arXiv:1512.00013] [INSPIRE].
R. Howe, E. Tan and J.F. Willenbring, Stable branching rules for classical symmetric pairs, Trans. Amer. Math. Soc. 357 (2004) 1601.
J.E. Humphreys, Introduction to Lie algebras and representation theory, Springer, Germany (2012).
K.G. Wilson, Quantum field theory models in less than four-dimensions, Phys. Rev. D 7 (1973) 2911 [INSPIRE].
J.C. Collins, Renormalization: an introduction to renormalization, the renormalization group and the operator-product expansion, Cambridge University Press, Cambridge U.K. (1985).
B. Coecke and E.O. Paquette, Categories for the practising physicist, arXiv:0905.3010.
P. Etingof, S. Gelaki, D. Nikshych and V. Ostrik, Tensor categories, Mathematical Surveys and Monographs volume 205, American Mathematical Society, U.S.A. (2015).
https://en.wikipedia.org/wiki/Quotient (universal algebra)
G. Bergman, An invitation to general algebra and universal constructions, Springer, Germany (2015).
G.I. Lehrer and R.B. Zhang, The Brauer category and invariant theory, arXiv:1207.5889.
T. Cruz, Schur-Weyl duality over commutative rings, Comm. Alg. 47 (2019) 1619.
C. Grood, Brauer algebras and centralizer algebras for SO(2n, C ), Jo. Alg. 222 (19999) 678.
S. Kehrein, F. Wegner and Y. Pismak, Conformal symmetry and the spectrum of anomalous dimensions in the N vector model in four epsilon dimensions, Nucl. Phys. B 402 (1993) 669 [INSPIRE].
S.K. Kehrein and F. Wegner, The structure of the spectrum of anomalous dimensions in the N vector model in (4 − 𝜖)-dimensions, Nucl. Phys. B 424 (1994) 521 [hep-th/9405123] [INSPIRE].
K. Koike and I. Terada, Young diagrammatic methods for the representation of the classical groups of type B, C, D, J. Alg. 107 (1987) 466.
R. Goodman and N. Wallach, Representations and invariants of the classical groups, Cambridge University Press, Cambridge U.K. (1998).
A. Ram, Characters of Brauer’s centralizer algebras, Pacific J. Math. 169 (1995) 173.
C. Procesi, Lie groups: an approach through invariant theory and representations, Springer, Germany (2007).
A. Ram, Representation theory, Dissertation — Chapter 1 (1990).
W. Fulton and J. Harris, Representation theory: a first course, Springer, Germany (2004).
P. Deligne, La Catégorie des Représentations du Groupe Symétrique St, “Lorsque t n’est pas un Entier Naturel” — 2004, in the proceedings of the International Colloquium on Algebraic Groups and Homogeneous Spaces , January 6–14, Mumbai, India (2007).
P. Etingof, Representation theory in complex rank I, Transf. Groups 19 (2014) 359.
P. Etingof, Representation theory in complex rank II, Adv. Math. 300 (2016) 473.
I.E. Aizenbud, Schur Weyl duality in complex rank, disseration, Massachusetts Institute of Technology, U.S.A. (2015).
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 2003.08173
Rights and permissions
This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.
About this article
Cite this article
de Mello Koch, R., Ramgoolam, S. Perturbative 4D conformal field theories and representation theory of diagram algebras. J. High Energ. Phys. 2020, 20 (2020). https://doi.org/10.1007/JHEP05(2020)020
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP05(2020)020
Keywords
- AdS-CFT Correspondence
- Conformal Field Theory