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1 Introduction

Conformal field theories in dimensions higher than two have attracted a lot of interest mo-

tivated by the AdS/CFT correspondence [1]. The calculation of loop-corrected dilatation

operators in N = 4 SYM [2, 3] revealed a link to integrable spin chains which has launched

an active and successful programme [4]. Integrable spin chains were also found in high

energy scattering in QCD [5, 6]. Loop-corrected dilatation operators provide an elegant

algebraic way of thinking about anomalous dimensions and loop-corrected primary states.

In recent years, the bootstrap programme [7–9] has been revived [10] and achieved no-

table results on the operator spectrum of the 3D Ising model [11]. The epsilon-expansion

near four dimensions [12] has been treated with the perspective of the bootstrap pro-

gramme [13]: a set of axioms are used to obtain results on anomalous dimensions without
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the use of the usual methods of perturbative Feynman integrals. The loop-corrected di-

latation operator for the Wilson-Fischer fixed point near four dimensions has been stud-

ied in [14].

The study of supersymmetric sectors of the AdS/CFT correspondence for four-

dimensional N = 4 SYM has led to the recognition that much of the colour-combinatorics

of general gauge invariant operators [15–19] in these sectors can be captured by two-

dimensional topological field theories (TFT2) based on group algebras [20–22]. A natural

question is whether the TFT2 perspective can be adapted to capture, not just the colour-

combinatorics, but also the space-time dependence in CFTs. This question was addressed

in the context of the free scalar field theory in [23].

In free 4D scalar quantum field theory, the states corresponding to the field φ and its

derivatives span the representation V+ which contains a lowest weight state |v+〉 of dimen-

sion 1, annihilated by the special conformal generators Kµ. There is a dual representation

with a highest weight state of dimension −1, annihilated by Pµ. There is an so(4, 2) invari-

ant map η : V+ ⊗ V− → C. The CFT4/TFT2 construction of free scalar field correlators

starts with the formula

Φ =
1√
2

(
eiP.x|v+〉+ (x′)2e−iK.x

′ |v−〉
)

(1.1)

which expresses the basic field as a linear combination of states in V = V+ ⊕ V−, and

exploits the so(4, 2) invariant map η : V+ ⊗ V− → C. Correlators of composite fields made

from n copies of φ and derivatives, are constructed by extending the invariant map η to an

invariant map

η : Symn(V )⊗ Symn(V )→ C (1.2)

for general n, using the combinatorics of Wick contractions. The space Symn(V ) is the

subspace of V ⊗n which is invariant under Sn permutations of the n tensor factors. This

construction of correlators of composite fields using standard tensor products of so(4, 2)

representations is possible because the classical dimension of φn is n times the dimension

of φ. This representation theoretic construction of correlators was also described for vector

and matrix scalar fields in [23].

Further investigation of the algebraic structure of the space of states in free field theory

led to the development of a many-body perspective on the description of primary fields

made from n scalars in d dimensions, where it was found that the primaries are given

by a simple system of linear equations, and symmetry constraints, for functions of nd

variables [24–27]. An interesting corollary is that the primary fields at fixed n form a

ring [27, 28], which also has applications in the classification of effective actions modulo

equations of motion and integration by parts [28].

The first steps in generalizing the CFT4-TFT2 programme to perturbatively interact-

ing theories were given in [29]. We developed the equivariant interpretation of Feynman

integrals given in [30] using the harmonic expansion method for Feynman integrals [31].

One of the observations was the role of indecomposable representations of so(4, 2).

In this paper, we will set aside Feynman integrals. In the present discussion, we will

be content to take the input of operator dimensions and OPE coefficients from Feynman
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integrals. Instead we will address and resolve some basic issues with the notion that CFT4-

TFT2 can be extended beyond free fields. In CFT4-TFT2, composite operators (e.g. φ2)of

the CFT correspond to states in tensor products of the basic representation of the conformal

algebra corresponding to single field operator φ and its derivatives.

One immediate objection is that using tensor products of so(4, 2) representations to

describe composite operators in free CFT makes sense, but is bound to fail for perturbative

interacting theories, and the usual treatment of tensor products implies that dimensions

are additive, whereas the anomalous dimension corrections to the dimension of φ2 in WF

theory for example, it is no longer true that this dimension is twice the dimension of φ.

On the other hand, given two representations V,W of so(4, 2), the dilatation operator D

acts on V ⊗W in the simplest representation theoretic constructions as D⊗ 1 + 1⊗D. In

the presence of non-additive anomalous dimensions, the description of the compositeness

structure of quantum fields in an so(4, 2) equivariant manner requires that the action of

so(4, 2) on the tensor product of two representation spaces involves a deformation of the

standard action via L ⊗ 1 + 1 ⊗ L for the Lie algebra element L ∈ so(4, 2). We refer to

the deformation as a “co-product deformation”. We build on loop dilatation operators and

describe the deformed co-product, which we illustrate with a discussion on N = 4 SYM

and the WF fixed point.

The example of the WF fixed point, which is defined in d = 4 − ε dimensions, raises

another important issue for the possibility of giving a conformally equivariant description of

perturbative scalar field correlators. Calculations at generic d are done using an algorithm

for so(d) tensors which includes a rule for evaluating Kronecker deltas as δµµ = d in index

notation. The second challenge is to make sense of this rule as a construction within

an appropriate extension of conformal representation theory. To address this challenge,

we define two algebras U? and U?,2, based on diagrams and develop elements of their

representation theory, also based on diagrams. This approach starts from the fact that

the Brauer algebras Bd(n) of operators commuting with orthogonal groups in dimension d

acting on tensor spaces V ⊗nd (the n-fold tensor product of the fundamental Vd) are known

to have a diagrammatic formulation which allows the extension of the definition of Brauer

algebras beyond integer dimensions [32]. Brauer algebras have applications in statistical

physics [33, 34] and have also been used to solve enumeration and combinatorics problems

of multi-matrix gauge invariants in N = 4 SYM [35, 36]. The key is that the dimension

d arises from the Brauer algebra point of view, as the evaluation of a loop occurring in

the composition of Brauer algebra diagrams. The definition of the algebra U?, an infinite

dimensional associative algebra which can be viewed as a generalization of Uso(d) beyond

integer d, along with its representation V? (the analog of Vd at integer d) allows us to show

that the action of U? on V? ⊗ V? commutes with the generators of the Brauer algebra

Bd(2) for generic d (section 7.2).

The paper is organised as follows. In section 2 we discuss the role of indecomposable

representations in the free CFT. This point of view on the free CFT is needed to prop-

erly understand the process of turning on interactions in the free theory, during which

short representations that include null states are replaced by long representations. The

basic indecomposable representation of interest for W.F scalar field theory is denoted Ṽ .
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To account for the fact that the dimension of a composite operator is not in general the

sum of the dimensions of its constituents, section 3 introduces a deformed co-product. An

example illustrating how the deformed co-product correctly reproduces non-trivial anoma-

lous dimensions at one loop in N = 4 SYM is developed in section 4. We then turn

to an analogous treatment of the Wilson-Fisher fixed point in section 5. To develop the

construction of primary fields, we adapt, in the framework of vertex operators for pertur-

bative CFT4-TFT2 the usual physics rules for tensor calculus beyond integer d. This rule

is described as the ACRTDC (analytically continued representation theory with deformed

co-product) algorithm allowing concrete calculations to be carried out in section 5, in par-

ticular reproducing the conserved symmetric traceless stress tensor at first order in ε as a

state in Ṽ ⊗ Ṽ . The question of how to understand the meaning of so(d) for non-integer

d is answered in section 6 in terms of a diagram algebra U?. We discuss a representation

V? of this diagram algebra that is the natural generalization of the vector representation

of so(d) in section 7. The algebra U? and its representations provide a representation

theoretic framework for ACRTDC. We present evidence that the structure of V?⊗n as a

representation is similar to that of V ⊗nd as a representation of Uso(d) in a large d limit. In

section 8, we present concrete conjectures on the representation theory of U?. In section 9,

we explain the key elements of the diagram algebra that implements conformal symmetry

for non-integer d, i.e. we define an algebra U?,2 and discuss elements of its representation

theory, which mirrors Uso(d, 2) rep theory and extends it to non-integer d. Our conclusions

and some avenues for further exploration are outlined in section 10.

An interesting recent paper [37] also takes up the question of continuing O(d) symme-

tries to non-integer dimensions in physical models. Our results are aligned in one important

respect: to make sense of conformal symmetry in general dimensions, we interpret d as the

evaluation of a loop as in Brauer algebras and Brauer categories. This point of view is

then developed in [37] in terms of diagrams and further, symmetries are expressed in terms

of Deligne categories. This makes contact with general perspectives from category theory,

which have inspired a rich literature exploring many aspects of complex d in mathematics

(see for example [58–61]). The perspective in focus in the present paper is to work within

the framework of physical symmetry operations being realised as elements of an algebra

and quantum states as forming linear representations of the algebra. Finally, a clarification

regarding the diagrams we draw, which form part of the bases for the algebras and state

spaces we define: we will often, for clarity, draw diagrams (e.g. 6.32) on the page with

over-crossings or under-crossings to avoid intersections, there is no distinction between

over- and under-crossings as in knot theory and quantum groups. As in classical (without

quantum group q-deformation) Brauer algebras, the key information in the diagrams is in

the start and end-points of the lines.

2 Indecomposable representations in the interacting theory

Perturbative interacting CFTs start from the Hilbert space of the free theory and switches

on the interaction, e.g. we can start with the free scalar field and then turn on the φ4

interactions. When the interaction is turned on, the generators of the conformal group are
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corrected and the state space is modified because there is some multiplet recombination.

The dimension of the free field saturates the unitarity bound, and consequently, it has

null states and belongs to a short representation of the conformal group. The null state

corresponds to the equation of motion

∂µ∂µφ = 0 (2.1)

and its descendants. The interaction contributes an anomalous dimension to φ, the uni-

tarity bound is no longer saturated and the null state is no longer null. For the CFT we

consider

L =
1

2
∂µφ∂

µφ− g

4!
φ4 (2.2)

so the equation of motion is

∂µ∂
µφ = − g

3!
φ3 (2.3)

We see that in the interacting theory the null state is related to φ3, which itself was a

primary in the free theory. This is simply reflecting the fact that the short ∆ = 1 spin zero

multiplet and the ∆ = 3 spin zero multiplet combine to give a single long multiplet in the

interacting theory.

In the CFT4-TFT2 construction of free field correlators, the free scalar field corre-

sponds to a state labelled by the space-time position x living in a direct sum of represen-

tations V+ ⊕ V−. In the following, we will rename V+ to V . This representation contains

a lowest weight state v obeying

Dv = v

Kµv = 0

Mµνv = 0 (2.4)

and states of dimension 1 + n are spanned by Pµ1 · · ·Pµnv. The free equation of motion

corresponds to setting to zero P 2v.

In the interacting theory, it is helpful to consider the full state space Ṽ spanned all

polynomials Pµ1 · · ·Pµnv, without setting P 2v to zero from the beginning. The represen-

tation Ṽ contains a state v, defined by the conditions

Kµv = 0

Mµνv = 0

Dv = v (2.5)

The representation is spanned by states of the form

Pµ1 · · ·Pµkv (2.6)

At level k these states span the space of symmetric tensors of degree k in 4 variables. Since

we do not impose PµPµv = 0, there is no restriction to symmetric traceless tensors. Ṽ is a
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representation of so(4, 2). Pµ acts by multiplication. The action of Kµ,Mµν is defined by

using commutators defining the so(4, 2) algebra.

This representation also admits the linear operators

∂

∂Pν
(2.7)

which annihilate v, act as

∂

∂Pν
Pµv = δµνv (2.8)

and on higher polynomials by using the Leibniz rule. Together with the Pµ, these form a

Heisenberg algebra

[
∂

∂Pν
, Pµ] = δµν (2.9)

This demonstrates that Ṽ is an irreducible representation of this Heisenberg algebra. The

Heisenberg algebra structure will be a necessary ingredient below when we consider how

the generators of the conformal group are corrected when interactions are turned on. The

operators ∂
∂Pν

can be interpreted as position operators, which are well-defined as opera-

tors on Ṽ .

The representation Ṽ is an indecomposable representation of so(4, 2). To demonstrate

this point, one checks that

KµP
2v = 0 (2.10)

This implies that the states spanned by

Pµ1 · · ·PµkP
2v (2.11)

form a sub-representation of Ṽ , which we denote as V (p2). There is an exact sequence

0→ V (p2) → Ṽ → V → 0 (2.12)

The quotient representation V is not a sub-representation, i.e. we are not able to write Ṽ

as a direct sum of V with another subspace.

The equation of motion of the interacting theory sets P 2v to be proportional v⊗v⊗v ∈
V ⊗3. This is compatible with so(4, 2) equivariance since V (p2) and V ⊗3 are isomorphic

representations of so(4, 2). Thus the quantum equation of motion is naturally described as

a mixing between Ṽ and V ⊗ V ⊗ V .

3 Deformation of co-product for so(4, 2) from anomalous dimensions

A key feature of interacting theories is that anomalous dimensions of composite operators

are typically not additive. This feature is visible already at first order in ε for the WF

theory. This means that the compositeness structure of the state space, when described
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in an so(4, 2) covariant way, involves a deformed co-product. The deformed co-product is

given by a formula involving a position operator.

The field φ2 picks up an anomalous dimension of ε
3 at first order in ε. We want to

describe the structure of the state space using representation theory constructions. The

state corresponding to φ is v ∈ V with the properties in (2.5). The state corresponding to

φ2 is v ⊗ v ∈ V ⊗ V — the multiplet of states spanned by all the derivatives of φ2 forms a

representation we will call V0 here, and the projector for V0 in V ⊗ V is denoted P0. This

means that

D(v ⊗ v) = (D ⊗ 1 + 1⊗D)(v ⊗ v) +
ε

3
P0(v ⊗ v) (3.1)

The anomalous dimensions of the WF theory thus motivate the study of the deformed

co-product

∆(D) = D ⊗ 1 + 1⊗D +
ε

3
P0 (3.2)

compatible with the fact that the one-loop dilatation operator is proportional to P0 [14,

50, 51]. The deformed co-product means that we have an action of the algebra generators

in a tensor product space V ⊗W , which is a deformation of the standard action. So we

have, for each generator La of so(4, 2), linear operators

∆(La) ∈ End(V ⊗W ) , ∆ε(La) ∈ End(V ⊗W ) (3.3)

with

∆(La) = ∆0(La) + ε∆ε(La)
∆0(La) = La ⊗ 1 + 1⊗ La (3.4)

such that

[La,Lb] = f cabLc
[∆(La),∆(Lb)] = f cab∆(Lc) (3.5)

In other words, the ∆(La) give the tensor product space V ⊗W the structure of a repre-

sentation of the Lie algebra g = so(4, 2). We will shortly extend the formula (3.2) to all

the generators of so(4, 2).

The structure of deformed co-products also arises in quantum groups for q = 1 + h+

O(h2), where the correction from the standard co-product is given in terms of U(g)⊗U(g),

the tensor product of the universal enveloping algebras of g. For example, in Uq(sl(2) we

have ∆(J+) = (J+⊗1+1⊗J+)+h(J+⊗J3−J3⊗J+). In the case at hand, the correction

is not constructed from U(g).

A comment of the definition of P0, when we are thinking about states in the tensor

product Ṽ ⊗ Ṽ , is in order. To discuss representation theory at order ε, we need to think

about Ṽ and not V . In V ⊗ V , which has an orthogonal decomposition into irreps, it is

clear what we mean by P0.

V0 → V ⊗ V → Ṽ ⊗ Ṽ (3.6)

– 7 –
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V0 is a subspace of V ⊗ V and hence a subspace of Ṽ ⊗ Ṽ . When we are thinking about

P0 as an operator in V ⊗ V , then we can exploit the fact that the free field inner product

allows an orthogonal decomposition of V ⊗ V , which allows us to identify the orthogonal

complement of V0 as a subspace of V ⊗ V . The states of vanishing norm (under the free

field inner product) in Ṽ ⊗ Ṽ are orthogonal to everything, so in particular to V0. So when

thinking about P0 as an operator in Ṽ ⊗ Ṽ , we may define it to be 1 on all states in V0,

and 0 on all states which are orthogonal to V0 → Ṽ ⊗ Ṽ using the free field inner product.

The co-products for the complete set of generators are

∆(D) = D ⊗ 1 + 1⊗D +
ε

3
P0

∆(Pµ) = Pµ ⊗ 1 + 1⊗ Pµ

∆(Kµ) = Kµ ⊗ 1 + 1⊗Kµ −
ε

3
P0

(
∂

∂Pµ
⊗ 1 + 1⊗ ∂

∂Pµ

)
P0

∆(Mµν) = Mµν ⊗ 1 + 1⊗Mµν (3.7)

It is a straightforward exercise to verify that the above co-products are consistent with the

commutation relations of so(4, 2). We check, for example, that

[∆(Kµ),∆(Pν)] = 2∆(Mµν)− 2δµν∆(D) . (3.8)

It is useful to note ∆0(La)P0 = P0∆0(La) and P 2
0 = P0.

3.1 Co-product for so(4, 2) and the Heisenberg algebra

Consider the indecomposable rep Ṽ , which has the same states as an irreducible represen-

tation with lowest weight not equal to 1. The states are of the form

Pµ1 · · ·Pµn v (3.9)

where

Dv = δ v

Mµν v = 0 (3.10)

This vector space is isomorphic to the space of polynomials in the variables Pµ. Each

monomial

Pµ1 · · ·Pµn (3.11)

maps to a state

Pµ1 · · ·Pµnv (3.12)

On this space, Pµ acts by multiplication on the vectors in (3.9), equivalently Pµ acts

on the polynomials by multiplication. The other generators act by using commutation

– 8 –
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relations. These actions can all be expressed in terms of differential operators.

Mµν = Pµ
∂

∂Pν
− Pν

∂

∂Pµ

D = Pµ
∂

∂Pµ
+ δ

Kµ = 2Pµ
∂2

∂Pα∂Pα
− 2

∂

∂Pµ

(
Pα

∂

∂Pα
+ δ − 1

)
(3.13)

We defined a deformed co-product to account for the anomalous dimensions which

included the operator ∂
∂Pµ

. With the above differential expressions of the generators, it is

easy to work out the commutators

[
∂

∂Pµ
, Pν ] = δµν

[Mµν ,
∂

∂Pα
] = −δµα

∂

∂Pν
+ δνα

∂

∂Pµ

[Kµ,
∂

∂Pα
] = −2δµα

∂2

∂Pβ∂Pβ
+ 2

∂

∂Pµ

∂

∂Pα
≡M (−2)

µα (3.14)

Note that M
(−2)
µα = M

(−2)
αµ .

[Mµν ,M
(−2)
αβ ] = [Mµν , 2

∂

∂Pα

∂

∂Pβ
]

= δνα
∂

∂Pµ

∂

∂Pβ
− δµα

∂

∂Pν

∂

∂Pβ
+ δνβ

∂

∂Pµ

∂

∂Pα
− δµβ

∂

∂Pν

∂

∂Pα
(3.15)

The form of Kµ might not be entirely obvious. Since it is second order in derivatives

with respect to Pµ, it is useful to consider

KαPµ1Pµ2 |v > = (2Mαµ1 − 2Dδαµ1)Pµ2 |v > +Pµ1(2Mαµ2 − 2Dδαµ2)|v >
= (2δµ1µ2Pα − 2δαµ2Pµ1 − 2(δ + 1)δαµ1Pµ2 − 2δ δαµ2Pµ1) |v >
= (2δµ1µ2Pα − 2(δ + 1)(δαµ1Pµ2 + δαµ2Pµ1)) |v > (3.16)

This result was obtained using the commutators of the algebra and nothing else. It is

clear that the differential operator for Kα in (3.13) reproduces this. To prove that this

expression is correct, apply the differential operator for Kα to a general state

Pµ1 · · ·Pµn |v > (3.17)

to get

2Pα

n∑
i<j=1

δµiµjPµ1···µn\{µi,µj}|v > −2(n+ δ − 1)

n∑
i=1

δαµiPµ1···µn\{µi}|v > (3.18)

= 2Pα

n∑
i<j=1

∏
k/∈{i,j}

Pµk |v > −2(n+ δ − 1)

n∑
i=1

δαµi
∏
k 6=i

Pµk |v >

– 9 –
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where Pµ1···µn\{µi,µj} stands for the product Pµ1 · · ·Pµn with Pµi and Pµj removed and

similarly the obvious interpretation for Pµ1···µn\{µi}. On the other hand, we have

Kα

n∏
i=1

Pµi |v > =
n∑
i=1

Pµ1 · · ·Pµi−1 [Kα, Pµi ]Pµi+1 · · ·Pµn |v >

=

n∑
i=1

Pµ1 · · ·Pµi−1(2Mαµi − 2Dδαµi)Pµi+1 · · ·Pµn |v >

=

n∑
i=1

Pµ1 · · ·Pµi−1

(
2
∑
j=i+1

(δµiµjPα − δαµjPµi)

×
n∏
k 6=j
k=i+1

Pµk − 2δαµi(n+ δ − 1)

n∏
k=i+1

Pµi

)
|v >

= 2Pα
∑
i<j

∏
k/∈{i,j}

Pµk |v > −2
n∑
i=1

n∑
j=i+1

δαµj

n∏
k 6=j
k=1

Pµk |v >

−2

n∑
i=1

(n− i+ δ)δαµi

n∏
k 6=i
k=1

Pµk |v >

= 2Pα
∑
i<j

∏
k/∈{i,j}

Pµk |v > −2
n∑
j=1

δαµj (j − 1)
∏
k 6=j

Pµk |v >

−2
n∑
j=1

(n− j + δ)δαµj
∏
k 6=j

Pµk |v >

= 2Pα
∑
i<j

∏
k/∈{i,j}

Pµk |v > −2(n+ δ − 1)
∑
i

δαµi
∏
k 6=i

Pµk |v > (3.19)

This proves the form of the differential operator for K. The first order operator for M ,

follows from the basic [M,P ] commutation relation and the Leibniz rule of commutators.

Likewise for D.

The above formulae clarify the proof of one aspect of the homomorphism property of

the co-product. According to (3.7), we consider co-products of the form

∆(Kµ) = ∆0(Kµ) + λεP0∆0

(
∂

∂Pµ

)
P0 (3.20)

The commutator of any two components of Kµ must vanish. It is straightforward to see that

[∆(Kµ),∆(Kν)] = λεP0∆0

(
[
∂

∂Pµ
,Kν ]

)
P0 + λεP0∆0

(
[Kµ,

∂

∂Pν
]

)
P0

= −λεP0M
(−2)
νµ P0 + λεP0M

(−2)
µν P0 = 0 (3.21)

In the last step, we used the symmetry of M
(−2)
µν . Note that this is exactly zero, even

though our primary interest is in terms up to order ε. The commutation relations for

so(4, 2) are satisfied exactly.
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Figure 1. Sub-algebra representation consistency.

3.2 Deformed co-product and a pair of algebras

We can give the co-product an algebraic characterization, but it involves two algebras not

one. We have an algebra A (the universal enveloping algebra of the Lie algebra L - in our

case this is so(4, 2)) and a representation W of A. W also happens to be a representation of

B and A is a sub-algebra of B - in fact the representation structure of W as a representation

of A follows from that of B: in other words we have expressions for the action of A in terms

of the action of B as in (3.13).

We can express this in terms of diagrams as in figure 1. The map i is the embedding

of A as a sub-algebra of B. The maps ρA, ρB give the linear representation of A,B on W .

The commutativity of the diagram expresses the consistency of the sub-algebra embedding

with the representation maps.

We define a co-product for A, which deforms the Lie algebra co-product, but is ex-

pressed in terms of the algebra B. The co-product still obeys the commutation relations

of A but is constructed from the larger set of generators of B. Consider a quadruple of

A,L, B as above. For a ∈ L ⊂ A we have the standard co-product

∆0(a) = a⊗ 1 + 1⊗ a (3.22)

obeying

[∆0(a),∆0(b)] = f cab∆0(c) . (3.23)

For any a outside L, the co-product follows as usual using the product in A. We can ask

for co-products ∆ : A→ B such that

∆ : A→ B ⊗B (3.24)

of the form

∆(a) = ∆0(a) + ε∆1(a) (3.25)

such that

[∆(a),∆(b)] = f cab∆(c) (3.26)

Given such a deformed co-product ∆ for A, whenever W is a representation of A obtained

from a representation W of B, as in figure 1, we can use this co-product to turn W ⊗W
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into a representation of A. The deformed co-product needed to give an so(4, 2) equivariant

description of composite operators in perturbative CFT is an instance of this construction,

with A = U(so(4, 2)) and B is the Heisenberg algebra generated by Pµ,
∂
∂Pν

.

4 Deformed co-product in N = 4 SYM

Another simple example of deformed co-products associated with anomalous dimensions

in a perturbative CFT comes from the planar SU(2) sector in N = 4 SYM. Consider the

three operators

Oz =
1√
2N

Tr(Z2) Oy =
1√
2N

Tr(Y 2)

Ozy =
1√
3N2

(
Tr(Y ZY Z)− Tr(Y 2Z2)

)
(4.1)

These operators are all eigenstates of the one loop dilatation operator. Ozy has a non-zero

anomalous dimension δ = 3λ
4π2 in the planar limit [3]. The anomalous dimensions of both Oz

and Oy vanish. The normalization of the operators is chosen so that they have normalized

two point functions

〈Oz(x1)O†z(x2)〉 =
1

|x1 − x2|4
= 〈Oy(x1)O†y(x2)〉 (4.2)

〈Ozy(x1)O†zy(x2)〉 =
1

|x1 − x2|8
(4.3)

Consider the correlator

〈Oz(x1)Oy(x2)O†zy(x3)〉 = c(x1 − x3)−4−2δ(x2 − x3)−4−2δ (4.4)

c is a spatial constant and a function of λ, given by the OPE coefficient

Oz(x)Oy(0) = cOzy(0) + · · · (4.5)

At tree level c = − 2√
3N

. The order λ correction is scheme dependent. δ is the anomalous

dimension of Ozy, proportional to the ’t Hooft λ = g2YMN . At zero coupling,

Dim(Oz) + Dim(Oy) = Dim(Ozy) (4.6)

At first order in the interaction

Dim(Oz) + Dim(Oy) = Dim(Ozy)− δ (4.7)

In the operator-state correspondence, the operator Oz corresponds to a tower of

operators

Oz(0) → vz

∂µ1Oz(0) → Pµ1vz

∂µ1∂µ2Oz(0) → Pµ1Pµ2vz
... (4.8)
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The states live in a representation Vz of so(4, 2). The lowest weight state vz has the

properties

Dvz = 2vz

Mµνvz = 0

Kµvz = 0 (4.9)

At dimension (2 + k) we have states

Vk = Span{Pµ1 · · ·Pµkvz} (4.10)

The direct sum forms the so(4, 2) irrep V (z)

V =

∞⊕
k=0

Vk (4.11)

There is a similar representation V (y) built on the primary Oy and it is an isomorphic

representation of so(4, 2). Let us denote this so(4, 2) irrep as V2. We can also represent

the states as polynomials in the variables xµ appearing in the vertex operator as explained

in [23]. The generators are then given by the following differential operators acting on the

polynomials

Pµ = 2xµ (2 + xρ∂ρ)− x · x ∂µ Kµ = ∂µ

D = 2 + xρ
∂

∂xρ
Mµν = xµ

∂

∂xν
− xν

∂

∂xµ
(4.12)

Now, Vzy is a representation containing a vector

Dvzy = (4 + δ)vzy

Kµvzy = 0

Mµνvzy = 0 (4.13)

States at D = 4 + δ+k are obtained by acting with k P ’s. The action of all the generators

on a generic state follow by action of the commutators. We can again also represent the

states as polynomials in the variables xµ [23]. The generators are now given by the following

differential operators acting on the polynomials

Pµ = 2xµ (4 + δ + xρ∂ρ)− x · x ∂µ Kµ = ∂µ

D = 4 + δ + xρ
∂

∂xρ
Mµν = xµ

∂

∂xν
− xν

∂

∂xµ
(4.14)

Given the non-additivity of the anomalous dimensions, we cannot model the 3-point

correlator with the standard action of the Lie algebra on V2 ⊗ V2. If we use the standard

action, we would have

∆0(D)(vz ⊗ vy) = (D ⊗ 1 + 1⊗D)(vz ⊗ vy) = 4vz ⊗ vy (4.15)
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whereas the dimension of vzy is 4 + δ. The map f : vzy → vz ⊗ vy

∆0(D)f(vzy) = f∆0(D)(vzy) (4.16)

can be extended to an equivariant map Vzy → Vz ⊗ Vy at zero coupling, but cannot be

so extended when we turn on δ at non-zero coupling. Let P4 be the projector to V4 - the

so(4, 2) representation with scalar lowest weight of dimension 4 - in the standard tensor

product decomposition of V2 ⊗ V2. We can define a deformed co-product

∆(D) = ∆0(D) + δ P4

∆(Pµ) = ∆0(Pµ)

∆(Mµν) = ∆0(Mµν)

∆(Kµ) = ∆0(Kµ)− δ

2
P4∆0

(
∂

∂Pµ

)
P4 (4.17)

With so(4, 2) action on Vz ⊗ Vy given by

La : v1 ⊗ v2 → ∆(La)(v1 ⊗ v2) (4.18)

and the so(4, 2) action on Vzy which we will refer to as ρzy, we can extend f

f : Vzy → Vz ⊗ Vy (4.19)

such that

fρzy(La) = ∆(La)f (4.20)

Now we can construct the correlator as follows

g((e−iP.x1v+ ⊗ e−iP.x2v+), (x′3)
2f(e−iP.x3v+zy)) (4.21)

The inner product g on Vz ⊗ Vy is related by using the an anti-automorphism on so(4, 2)

to the invariant pairing on η : (V+ ⊗ V+)⊗ (V− ⊗ V−)→ C.

5 ACRTDC and the construction of primaries of WF using tensor prod-

ucts

In this section we will consider the Wilson-Fisher fixed point theory. Conformal invariance

is realized in this theory by balancing the growth with scale of the coupling due to the

classical dimension of the relevant operator φ4 in 4− ε dimensions against loop corrections

which decrease the coupling, to obtain a vanishing β function. There is a recipe that dic-

tates how calculations are carried out, which we name analytically continued representation

theory with a deformed co-product (ACRTDC). As explained above, the correct setting to

describe how to deform the free theory to obtain the interacting theory is the representa-

tion Ṽ . ACRTDC is needed to construct the stress tensor with the right properties as a

state in Ṽ ⊗ Ṽ .
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In 4− ε dimensions with ACRTDC we have

Dv =

(
1− ε

2

)
v Mαβ v = 0 δµµ = 4− ε (5.1)

The first equation gives the dimension of the free scalar field in d = 4 − ε dimensions, so

the dimension of the scalar field still saturates the unitarity bound and there is still a null

state. Indeed, its simple to verify that

KαPµPµv = (2Mαµ − 2Dδαµ)Pµv − Pµ(−2Dδαµ)v

= (2δµµPα − 2Pα − 2DPα − 2PαD)v

= 0 (5.2)

Notice that both the first and last of the relations in (5.1) are needed to get this zero: the

ε dependence in the dimension of v cancels against the ε dependence in δµµ. The state

corresponding to the energy momentum tensor of the free theory is given by

Tµν =
1

2
(Pµv ⊗ Pνv + Pνv ⊗ Pµv − δµνPτv ⊗ Pτv)− α

6
∆(PµPν − P 2δµν)v ⊗ v (5.3)

where

α =
1− ε

2

1− ε
3

(5.4)

The above α is needed so that the trace vanishes after setting P 2v = 0. Indeed with the

above choice for α we have

δµνTµν =
1− ε

2

2
(P 2v ⊗ v + v ⊗ P 2v) (5.5)

It is easy to verify that

∆(Kα)Tµν = 0 (5.6)

is identically obeyed, and that

∆(Pµ)Tµν =
1

2
(P 2v ⊗ Pνv + Pνv ⊗ P 2v) (5.7)

Thus the stress tensor is conserved after we set P 2v = 0. This demonstrates that we have

a sensible stress tensor for the free theory in 4−ε dimensions. The advantage of continuing

away from 4 dimensions is that we can now add an interaction with coupling g∗ of order ε,

without spoiling conformal invariance. When interactions are turned on, the generators of

the conformal group are modified. There is a non-trivial correction to Kµ

∆(Kµ)→ ∆(Kµ) +
ε

3

∑
i<j

ρij

(
P0∆0

(
∂

∂Pµ

)
P0

)
(5.8)

and a non-trivial correction to the dilatation operator

∆(D)→ ∆(D) +
ε

3

∑
i<j

ρij (P0) (5.9)
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P0 projects onto the representation built on top of the v ⊗ v primary. Also, ρij(·) acts

as the identity on all factors in the tensor product, and with its argument on the tensor

product of the ith and jth factors. All of the generators of spacetime symmetries can be

constructed from the energy momentum tensor. The above corrections to D and Kµ are

both accounted for by correcting Tµν as follows

Tµν =
1

2
(Pµv ⊗ Pνv + Pνv ⊗ Pµv − δµνPτv ⊗ Pτv)− α

6
∆(PµPν − P 2δµν)v ⊗ v

+δµνg
∗v ⊗ v ⊗ v ⊗ v (5.10)

where α is what it was above and g∗ is order ε. The trace of the energy momentum tensor

is given by

δµνTµν =
1− ε

2

2
(P 2v ⊗ v + v ⊗ P 2v) + (4− ε)g∗v ⊗ v ⊗ v ⊗ v

=
1

2
(P 2v ⊗ v + v ⊗ P 2v) + 4g∗v ⊗ v ⊗ v ⊗ v (5.11)

which vanishes upon using the equation of motion

P 2v = −4g∗v ⊗ v ⊗ v (5.12)

demonstrating that conformal invariance is preserved to this order in ε.

To verify that Tµν is a primary operator is straight forwards: the order 1 pieces are as

above. The order ε piece has P0 hitting the old Tµν which vanishes, and the old Kµ hitting

v ⊗ v ⊗ v ⊗ v which also vanishes. To check that Tµν remains conserved, we verify that

∆(Pµ)Tµν =
1

2
(P 2v ⊗s Pνv + Pνv ⊗s P 2v) + ∆(Pµ)(g∗v ⊗ v ⊗ v ⊗ v) (5.13)

vanishes. We have used ⊗s to denote the operation of taking the tensor product and

symmetrising the factors after the equation of motion has been used.

6 QFT algorithm (ACRTDC) and diagram algebras

Formulating the construction of composite primary fields of Wilson-Fischer theory in gen-

eral dimension d = (4 − ε) requires a deformed co-product explained in section 3 as well

as “the rule δµµ = d = 4 − ε”. In section 5 we explained this algorithm using an analytic

continuation from general d, which we have described as ACRTDC (analytically continued

representation theory with deformed co-product). While ACRTDC is a well-defined algo-

rithm based on the usual physics extension of tensor calculus beyond integer d, it naturally

raises the question: what algebra are we representing for general d ? What do we mean by

Uso(d, 2) for non-integer d ? In fact since primary fields in CFT are labelled by a scaling

dimension along with representation labels for Uso(d), we need to define an extension of

Uso(d) representation theory to non-integer d in order to have a TFT2 construction for

CFTd. It has been observed that going beyond integer d can be done in terms of diagrams

and further that symmetries should be expressed in terms of Deligne catagories [37]. We
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Figure 2. Diagram representing the generator Mij .

take a similar point of view regarding the need for a diagrammatic formulation. However,

we take a more conservative point of view on how the symmetries are realized. We pro-

pose to formulate the CFTd/TFT2 correspondence by defining an associative algebra U?,

generically infinite dimensional, and its linear representation theory.

We will introduce an associative algebra of diagrams F and a quotient of this algebra

U?. We will specify a set of diagrams and define a vector space F consisting of linear

combinations of these diagrams, with coefficients in the field of complex numbers C. An

associative product on this space, a map F ⊗ F → F is defined by juxtaposition of the

diagrams. The product leads to a well-defined product on the quotient so we have a map

U? ⊗ U? → U?. The definition is motivated by a process of associating diagrams to

tensorial expressions we encounter when working with Uso(d) Lie algebras for generic d.

For example the generators Mij are associated, in either F or U? with the diagram in

figure 2. Note that the diagram does not keep track of the labels i, j: in a sense, we may

think of the diagram as being obtained by forgetting the labels and consequently forgetting

the range of values they take — which is necessary if we want to have a framework that

makes sense for non-integer d.

If we depict the product MijMkl in the universal enveloping algebra Uso(d) by juxta-

posing two boxes side to side, we can express

MijMkl −MklMij = δjkMil + δilMjk − δjlMik − δikMjl (6.1)

as a relation between diagrams as follows

− = + − − (6.2)

To go from the diagrammatic relation to the equation in Uso(d), we attach the labels i, j, k, l

to the crosses starting with i for the left-most cross and proceeding with j, k, l as we go to

the crosses towards the right.

The antisymmetry can be expressed diagrammatically as follows

= − (6.3)

The quadratic Casimir MijMij is associated to the diagram shown below

= (6.4)
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The examples above illustrate the key features appearing in the diagrams defining F
and U?. The diagrams include a number of crosses arranged horizontally in a line, a number

of M -boxes each of which has two incident lines. In addition a diagram can have some cups

as in the Casimir diagram, or caps as in the diagram describing the commutation relation.

As in Brauer algebras, a quantity d can be introduced to keep track of loops arising

when manipulating algebra elements in F and U?. This quantity d should not be thought

as a specific integer, but rather as an indeterminate. Loops arise when U? acts on itself

(through an action we will define shortly, generalizing the action of Uso(d) on itself by

commutators) or on a representation V? (as well as its tensor powers) which we will define.

The quotienting construction that takes us from F to U? is modelled on the fact that the

enveloping algebra Uso(d) can be defined as a quotient of the free algebra generated by

Mij( for i, j ∈ {1, · · · , d}) by the commutation relation. We will subsequently define a

specialization where we go from treating d as a formal variable to a real number d. In this

step important issues of unitarity arise for generic real d — here we make contact with

discussion of non-unitarity in [38].

The general diagrams in F and U? will have a number k of M -boxes, a number l1 of

caps and l2 of cups and the diagrams can be described by taking

d� k, l1, l2 (6.5)

and considering Uso(d) equivariant maps inspired by the oscillator realization of so(d). We

will describe this in section 6.1. Since k, l1, l2 can be as large as we like, U? is obtained, in

a sense, from a d→∞ limit of Uso(d).

We will define a vector space V? of diagrams. We will give an action of U? on this

vector space. We conjecture that the decomposition of (V?)⊗n in terms of irreps of U?

will be isomorphic to the decomposition of V ⊗nd as a representation of the orthogonal Lie

algebra so(d) for d� n. Results on the stable (large d) limit of O(d) tensor representations

are given in [39]. In section 7.1, we set up the foundation for the conjecture through explicit

calculations at n = 2.

U? acts on itself by commutators. We conjecture that this action decomposes into

irreducible representations in the same way that Uso(d) decomposes under the adjoint

action of so(d), in an appropriate large d limit. The large d limit is defined by considering

polynomials of degree k and d� k. The Poincare-Birkhoff-Witt theorem states that Uso(d)

transforms in the same was as symmetric polynomials of the generators Mij (see e.g. [40]).

Explicit results can be obtained from Theorem 2.1.2 of [39].

These constructions and conjectures are motivated by the insight that tensor manip-

ulations at generic d can be given a mathematical formulation using diagrams, and the

expectation in the physics literature [41, 42] that generic d should involve infinite dimen-

sional spaces.

6.1 A free associative diagram algebra F and a quotient U?

We will define an infinite dimensional associative algebra over C, denoted F , abstracted

from the generators Mij of Uso(d). An associative algebra is a vector space equipped with
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a product m

m : F ⊗ F → F (6.6)

The vector space F is

F = C⊕ SpanC(M)⊕ · · · (6.7)

The · · · refers to subspaces to be specified later, which will be done efficiently after we

introduce the oscillator construction of Uso(d) and its interpretation in terms of equivariant

maps and diagrams. Focusing on the subspaces made explicit in (6.7) a general vector is

specified by two complex numbers a0, a1 and can be written asa0 + a1

 (6.8)

The multiplication map can be written as

m(a0 + a1M,a′0 + a′1M) = a0a
′
0 + (a0a

′
1 + a′0a1)M + a1a

′
1(M ⊗M) · · · (6.9)

where M⊗M represents the diagram with the two M -boxes juxtaposed next to each other.

The product with a1 = a′1 = 1; a0 = a′0 = 0 is given in terms of diagrams as

m

 ,

 = (6.10)

Note that the vector space spanned by the M -box diagram is just one-dimensional. This

is despite the fact that the M -box diagram is inspired by Mij , of which we have d(d− 1)/2

in so(d). We wish to define algebras F and U? which can be specialised to d → d where

d is a generic real number. So it will certainly not do to have vector subspaces of F which

have dimension d(d− 1)/2.

In order to give the general definition of the infinite dimensional vector space F , we will

use the oscillator construction of so(d) in order to interpret the M -box diagram above, and

its generalizations which span F in terms of tensor algebras and so(d) equivariant maps.

The d-dimensional oscillator relations are

[a†i , aj ] = −δij (6.11)

and the Lie algebra generators of so(d) can be written as

Mij = a†iaj − a
†
jai (6.12)

Taking the i, j indices to range over {1, · · · , d}, the a†i span a d-dimensional vector space,

which is the vector representation of so(d). It is useful to rethink these equations in terms

of tensor products: we will think of the d-dimensional space spanned by a†i as a tensor

product V+ ⊗W of a one-dimensional vector space V+ with a d-dimensional vector space
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W . Likewise the annihilation operators span V−⊗W . The action of Mij on W is given by

the commutator.

Consider a 1-dimensional vector space spanned by a, which we call V−. And a 1-

dimensional vector space spanned by a† which we call V+. We can also consider a direct

sum V+ ⊕ V− = V . Let us define an anti-symmetric map

COM : V ⊗ V → C (6.13)

where

COM(a, a†) = −COM(a†, a) = 1 (6.14)

This is the commutator expressed as a linear map between vector spaces.

Let ei form a basis for the vector space W . We will write

a⊗ ei ∈ V ⊗W
a† ⊗ ei ∈ V ⊗W (6.15)

and express our calculations with ai, a
†
j in terms of the COM map. The commutator is

giving a map

COM : V ⊗W ⊗ V ⊗W → C (6.16)

which acts as

COM(a⊗ ei ⊗ a† ⊗ ej) = −COM(a† ⊗ ei ⊗ a⊗ ej) = g(ei, ej) (6.17)

g is an inner product, for which the ei form an orthonormal basis. In fact

COM(a⊗ w1 ⊗ a† ⊗ w2) = g(w1, w2) (6.18)

Now the formula

Mij = a†iaj − a
†
jai (6.19)

specifies a state (which we can also call Mij)

Mij = a† ⊗ ei ⊗ a⊗ ej − a† ⊗ ej ⊗ a⊗ ei ∈ V ⊗W ⊗ V ⊗W (6.20)

It is useful to write this as

Mij = PW⊗WA (a† ⊗ ei ⊗ a⊗ ej) (6.21)

PW⊗WA is the anti-symmetrizer acting on the W ⊗ W factor of V ⊗ W ⊗ V ⊗ W . The

number of these Mij is d(d− 1)/2. But consider the space of equivariant maps

PA(W ⊗W )→ PW⊗WA (V+ ⊗W ⊗ V− ⊗W ) . (6.22)

This is a one-dimensional vector space (for d > 4)1 spanned by the map M acting as

M : (ei1 ⊗ ei2 − ei2 ⊗ ei1)→ (a† ⊗ ei1 ⊗ a⊗ ei2 − a† ⊗ ei2 ⊗ a⊗ ei1) (6.23)

This map is associated to the diagram in figure 2. General juxtapositions of this diagram,

associated with tensor products involving V ⊗W and W will be used to describe an infinite

dimensional associative algebra.

1For d = 4 we can also use εiii2i3i4 which gives another map: so we will use large d in the appropriate

places in our definitions to keep things as simple as possible.
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Definition of F and U?. Our goal is therefore to use the above observations to give

a definition of infinite dimensional algebras U? defined in terms of diagrams, such that

U? has a representation theory which is similar to that of so(d) in a large d limit. The

formal parameter d can be specialised to general complex numbers. We first give the

proposal for the definition of the algebras U? as a quotient of an algebra F . This will be

followed in section 7 by a definition of an infinite dimensional representation V? of U?.

In section 7.1 we prove that the V? ⊗ V? decomposes as a representation of U? into a

direct sum of three irreducible representations in the same way Vd ⊗ Vd decomposes into

irreducible representations of so(d). We describe the conjecture for the decomposition of

(V?)⊗n in terms of irreducible representations of U?, developing further the connection to

the representation theory of so(d) at large d.

Let W be the d-dimensional vector representation of so(d).

W2 = PA(W ⊗W )

(VW )2 = PW⊗WA ((V+ ⊗W )⊗ (V− ⊗W ))

T (W2) =

∞⊕
n=0

W⊗n2

T (VW )2 =
∞⊕
n=0

(VW )⊗n2 (6.24)

For any vector space V , the tensor algebra is the vector space

T (V ) = C⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ · · ·

=

∞⊕
n=0

V ⊗n (6.25)

with ⊗ as an associative product. PA denotes the projection to the anti-symmetric part

so that

W2 = PA(W ⊗W )

= Span {ei ⊗ ej − ej ⊗ ei}
(VW )2 = PW⊗WA ((V+ ⊗W )⊗ (V− ⊗W ))

= Span {a† ⊗ ei ⊗ a⊗ ej − a† ⊗ ej ⊗ a⊗ ei} (6.26)

where ei for i ∈ {1, 2, · · · , d} span the vector representation of so(d).

The space of so(d) equivariant maps W2 → (VW )2 is a one-dimensional vector space

for d > 8. One such map takes every anti-symmetric vector in W ⊗W to the corresponding

anti-symmetric vector in V + ⊗W ⊗ V + ⊗W . We can scale by an arbitrary scalar in C.

We will define M to be the map

M(ei ⊗ ej − ej ⊗ ei) = a† ⊗ ei ⊗ a⊗ ej − a† ⊗ ej ⊗ a⊗ ei (6.27)

It is a basis vector for the one-dimensional vector space of equivariant maps W2 → (VW )2.
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As a space which corresponds to diagrams with any number of M -boxes, we propose

to consider

F = Homso(∞)(T (W2), T ((VW )2)) (6.28)

which will be defined in terms of so(d) equivariant maps for d sufficiently large. The space

of linear maps from the tensor algebra T (W2) to the tensor algebra T ((VW )2), is therefore

graded by two non-negative integers

Homso(∞)(T (W2), T (VW )2) =

∞⊕
m,n=0

Homso(∞)(W
⊗m
2 , (VW )⊗n2 ) (6.29)

When we consider so(d) equivariant maps W⊗m2 → (VW )⊗n2 , the space of these maps

simplifies for large d (d > 2m + 2n). When this restriction on d is not met, we can

use εi1,··· ,id to contract indices from W⊗m2 ⊗ (VW )⊗n2 — our use of large d avoids this

complication. We define

Homso(∞)(T (W2), T (VW )2) =

∞⊕
m,n=0

Homso(d):d>2m+2n(W⊗m2 , (VW )⊗n2 ) (6.30)

We denote

Fm,n = Homso(d):d>2m+2n(W⊗m2 , (VW )⊗n2 ) (6.31)

F1,1 is spanned by M , which is associated with the diagram in figure 2. F2,1 is spanned by

the linear combination of diagrams shown below

+ − − (6.32)

This linear combination of diagrams corresponds to the map

(ei1 ⊗ ei2 ⊗ ei3 ⊗ ei4)− (ei2 ⊗ ei1 ⊗ ei3 ⊗ ei4)

−(ei1 ⊗ ei2 ⊗ ei4 ⊗ ei3) + (ei2 ⊗ ei1 ⊗ ei4 ⊗ ei3)

→ δi2i3Mi1i4 + δi1i4Mi2i3 − δi1i3Mi2i4 − δi2i4Mi1i3 (6.33)

There is an associative product on this space of equivariant maps, which is obtained by

taking the tensor product operation, or by juxtaposing diagrams. An element a ∈ Fm1,n1

multiplies an element b in Fm2,n2 to give m(a, b) = a⊗b ∈ Fm1+m2,n1+n2 . We are using the

associative tensor product in T (W2) and T ((VW )2) to define a product on the equivariant

maps. To make this more explicit, suppose

a : (W2)
⊗m1 → (VW )⊗m2

2

b : (W2)
⊗n1 → (VW )⊗n2

2 (6.34)
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with the equivariance condition

ga = ag gb = bg (6.35)

for g ∈ so(d) ( for d large enough). Then the product of a and b is a map

(a⊗ b) : (W2)
⊗(m1+n1) → (VW )

⊗(m2+n2)
2

(g ⊗ g)(a⊗ b) = (a⊗ b)(g ⊗ g) (6.36)

Following the standard connection between tensor products and juxtaposition of diagrams

in tensor categories [43, 44], this multiplication map can be expressed as juxtaposition of

the diagrams. This is illustrated in the simple case of a, b ∈ H1,1 below

m : F1,1 ⊗ F1,1 → F2,2

m

 ,

 = (6.37)

We will define U? as a quotient of F . This is modelled after the fact that Uso(d) is a

quotient of the free algebra generated by Mij (for i, j ∈ {1, 2, · · · , d}) defined by setting to

zero the Lie algebra relation

Mi1i2Mi3i4 −Mi3i4Mi1i2 − δi2i3Mi1i4 − δi1i4Mi2i3 + δi1i3Mi2i4 + δi2i4Mi1i3 (6.38)

Formally, this setting to zero is done by defining the left and right ideal generated by

Ci1i2i3i4 = Mi1i2Mi3i4 −Mi3i4Mi1i2 − δi2i3Mi1i4 − δi1i4Mi2i3 + δi1i3Mi2i4 + δi2i4Mi1i3 (6.39)

in the free algebra generated by Mij and doing the associative algebra quotient by this

ideal (see for example [40] for a discussion of this standard construction of the universal

enveloping algebra for general Lie algebras). A first thought is that we can just quotient the

associative diagram algebra F by the left and right ideal generated, using the juxtaposition

product, by the following linear combination of diagrams which we can call C

C = − − − + + (6.40)

This ideal consists of all elements of the form A⊗C⊗B, where A,B are arbitrary elements

of F . It turns out that quotienting by this ideal does not set to zero everything that we

need to set to zero, when we are working with ACRTDC. At this point it is also useful to

note that C can be written as

M ⊗M(1− σ)−Mg23 −Mg14 +Mg13 +Mg24 (6.41)

which is an operator mapping W2 ⊗ W2 to ((VW )2 ⊗ (VW )2) ⊕ (VW )2. W2 ⊗ W2 is

a subspace of W⊗4. The permutation σ is the permutation shown in the second term

of (6.40), gij is the paring acting on the i’th and j’th copies of W .
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The reason it does not suffice to do the associative algebra quotient by the ideal

generated by C in F is as follows. When we are working in Uso(d) for general d, we also

want to set to zero expressions like

Mi5i1Ci1i2i3i4 (6.42)

where an index in Ci1i2i3i4 is contracted with an index in Mpq. When working in Uso(d) for

any d, such expressions are just linear combinations of Ci1,i2,i3,i4 so they are included in the

ideal generated by Ci1,i2,i3,i4 . When we go to the diagram algebra F , the expression (6.42)

translates into the diagram

(6.43)

This is not the juxtaposition of M with C. It is obtained by taking the juxtaposition,

and then adding a downward arc or cap connecting a cross connected to M , to a cross

connected to C. We may denote this as M ?C, where ? refers to any of these more general

operations where we juxtapose and then introduce additional arcs.

So what we would like to do in the diagram algebra F is set to zero general elements

of the form A?C ?B, and we would like to show that this setting to zero leaves us with an

associative algebra. It turns out that there is a very general notion of quotients, developed

in the context of universal algebras, which makes use of equivalence classes [45, 46]. In

universal algebras, one studies algebraic structures specified by a set, along with a num-

ber of n-ary operations. This includes groups, rings, etc. [46]. A quotient of an algebra

A is defined by choosing an equivalence relation on the underlying set of A which satis-

fies a congruence condition between the equivalence relation and the operations defining

the algebra.

Applying this notion to our case, we take two diagrams a, b in F to be equivalent,

denoted a ∼ b, if they are related by an equation of the form

a = b+
∑
i,j

Ai ? C ? Bj (6.44)

where ? is an operation of juxtaposing and adding some (possibly none) arcs, and Ai, Bj are

elements of F . When we have no arcs, the star product just reduces to the juxtaposition

product denoted by ⊗. It is easy to see that this is reflexive a ∼ a, symmetric (a ∼ b =⇒
b ∼ a), and transitive ( a ∼ b, b ∼ c implies that a ∼ c). So (6.44) indeed defines an

equivalence relation. The congruence condition we need is to show that if a1 ∼ b1, a2 ∼ b2,
then (a1 ⊗ a2) ∼ (b1 ⊗ b2). Given a1 ∼ b1, a2 ∼ b2, this means that

a1 = b1 +
∑
ij

A
(1)
i ∗ C ∗B

(1)
j

a2 = b2 +
∑
ij

A
(2)
i ∗ C ∗B

(2)
j (6.45)
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which we will abbreviate as

a1 = b1 + 〈C〉1
a2 = b2 + 〈C〉2 (6.46)

It follows that

a1 ⊗ a2 = (b1 + 〈C〉1)⊗ (b2 + 〈C〉2)
= b1 ⊗ b2 + 〈C〉1 ⊗ b2 + b1 ⊗ 〈C〉2 + 〈C〉1 ⊗ 〈C〉2
∼ b1 ⊗ b2 (6.47)

In the last line we have used the fact that a1⊗a2 is written as b1⊗b2 plus terms involving C

with operations to the left and right using elements of F . This shows that the multiplication

operation on F given by juxtaposition of diagrams is well defined on the equivalence classes.

Associativity of the product on the equivalence classes follows directly from associativity

in F . This implies that the multiplication in F descends to an associative multiplication

on the equivalence classes in F defined by the equivalence relation. This quotient algebra

will be denoted U?. The formal variable d is introduced to keep track of loops arising

when we do multiplications in the quotient algebra.

In the discussion above we have replaced the d(d− 1)/2 generators Mij by the equiv-

ariant map M along with additional equivariant maps such as M ⊗M · · · , which exist in a

large space of equivariant maps defined through a large d limit. This space of equivariant

maps admits an associative product and allows the definition of an analogous quotient

which yields U?.

In the definition of F above, we have a bi-grading which gives Fm,n. The subspace

F0,n (and its image in U? after the quotient) is related to Casimirs. For example, the

quadratic Casimir
∑

ijMijMij is related to the diagram in equation (6.4), which is a map

from C = (W2)
⊗0 to (VW )⊗22 . In general the centre of the universal Uso(d), in the large d

limit, corresponds to maps from C to ((VW )2)
⊗n for general n.

To understand how loops arise when we evaluate expressions in U?, consider the

quadratic Casimir operator in Uso(d), which is the sum
∑

i,jMijMij . It acts by successive

commutators on the basis Mkl of the Lie algebra as

[Mij , [Mij ,Mkl]] = 4(2− d)Mkl (6.48)

4(2 − d) is the eigenvalue of the Casimir in the adjoint representation. When we do this

calculation for general d, the factor of d arises from evaluating
∑

i δii = d or δii = d with

summation convention. In the diagrammatic language d comes from loops.

Let us write out the computation of the above iterated commutator, as a step towards

understanding in terms of the construction of U? as a quotient of F .

[Mij , [Mij ,Mkl]]

= [Mij , (δjkMil + δilMjk − δjlMik − δikMjl)]

= δjk[Mij ,Mil] + δil[Mij ,Mjk]− δjl[Mij ,Mik]− δik[Mij ,Mjl]
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= δjk(δjiMil + δilMji − δjlMii − δiiMjl) + δil(δjjMik + δikMjj − δjkMij − δijMjk)

−δjl(δjiMik + δikMji − δjkMii − δiiMjk)− δik(δjjMil + δilMjj − δjlMij − δijMjl)

= (Mkl +Mkl − 0 + dMkl) + (dMlk + 0 +Mkl +Mkl) + (Mkl +Mkl + 0 + dMlk)

+(−dMkl + 0 +Mkl +Mkl)

= 4(2− d)Mkl (6.49)

To repeat this computation in terms of the quotient in F we have defined, recall that the

quotient allows us to use the diagrammatic equality (6.2), or equivalently to set to zero the

expression in (6.40). It is useful to express this in terms of the diagram

= (6.50)

where

CL = − CR = + − − (6.51)

In the quotient we are allowed to use this diagrammatic equality in isolation, or when it

comes juxtaposed with diagrams to the left or right, or further, when it comes juxtaposed

with diagrams, along with some down-arcs implementing index contractions (this last op-

eration of juxtaposing and contracting has also been described as some star operations

used in defining the quotient algebra).

We can now show how (6.49) is reproduced by a diagrammatic algebra calculation in

U?. We know that Uso(d) acts on itself via commutators. Given any elements a, b, c ∈
Uso(d) the product ab acts on c as

ab : c→ [a, [b, c]] (6.52)

The decomposition of Uso(d) into irreps, under this commutator action, is given by the

Poincare-Birkhoff-Witt theorem. A special case of this decomposition is encoded in (6.49).

This commutator action is translated into diagrams to give an action of U? on itself. We

can write out the diagrams relevant to the calculation of (6.49) as a sum of two terms

Mij [Mij ,Mkl] → −

= =
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[Mij ,Mkl]Mij → =

= (6.53)

For the first expression, we recognise a diagram which is CL composed with two M -boxes,

along with an M -box on the left which is contracted with two lower arcs (an instance of the

star-composition in F). By the definition of the quotient, we can use (6.40) to replace CL
with CR and the two M -boxes with a single one. A similar use of (6.40) is applied to the

second expression, which is also manipulated into a form which will allow us to write the

outer commutator in terms of another application of CL. This is done in the first step of

[Mij , [Mij ,Mkl]] → −

= =

= = (6.54)

In the second step, we show that the diagram can be expressed as a star-composition of a

diagram with CL, with another diagram on the right involving six crosses. The diagram on

the right is in fact an element of Homso(d)(W
⊗3
2 ,C), i.e. part of the F3,0 component of F .

Recall that W2 = Λ2(W ): there is anti-symmetry in the first two crosses, because of the

contraction with CL, and anti-symmetry in the next two pairs because of the contraction

with CR. Now the quotient U? allows us to use the relation (6.40) in the presence of

star-compositions, so we can replace CL with CR and simplify to get the last diagram
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in (6.53). The next step is to expand out the contractions which make up CL and evaluate.

In the equation

+ − −

= + − −

= 2 − d (6.55)

we have exhibited the diagrams corresponding to the first four terms in the third line

in (6.49). The third term is zero because of the antisymmetry of the M -box as in (6.3). In

the fourth term, we evaluate the loop as a factor of d.

The diagram algebra U? therefore allows us to extend the notion that Uso(d) acts on

itself with a Casimir 4(2− d), to general d.

7 Definition of V? and U? action on V?

In section 6.1 we have defined a diagram algebra U?, as a quotient of a free associative

algebra F generated by diagrams. The free algebra F is graded by a pair of integers. The

subspace F1,1 is one-dimensional and is spanned by the diagram in figure 2. The M -box

can be viewed as an unlabelled version of the generators Mij of so(d). To make sense of

the index-free M -box as a mathematical object in d-dimensions, we exploited the oscillator

realization (6.12) to write

M ∈ Homso(d)(W2, (VW )2) (7.1)

The algebra F was defined by replacing W2, (VW )2 by their respective tensor algebras.

We have here used the connection between commutant algebras of Uso(d) in tensor spaces

and Brauer diagrams.

In order to understand the representation theory of U?, which will be a diagrammatic

analog of the representation theory of Uso(d) at large d, we will start by interpreting the

basic equation

[Mij , a
†
k] = δjka

†
k − δika

†
j (7.2)

which we will also write as

Mij . a
†
k = δjka

†
k − δika

†
j (7.3)
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which gives the action of Uso(d) on the d-dimensional vector representation. By using

labelled M -box diagrams, and associating to a†k a line joining a cross to a circle, the above

equation becomes

i j

k

= − (7.4)

Dropping the labels to get unlabelled diagrams, we get

= −

= (7.5)

where

P = − (7.6)

For future computations, it is useful to express the RHS in terms of the linear combination

of diagrams representing the identity and the swop, which we denoted by P .

Following our definition of the unlabelled M as an equivariant map, we will also define

the unlabelled diagram obtained from a†k as an equivariant map. Using the definitions

from above,

a†i = a† ⊗ ei ∈ V+ ⊗W
ei ∈ W (7.7)

There is an so(d) equivariant map ρ

ρ : W → (V+ ⊗W ) (7.8)

We can think of it as the map which attaches ei ∈ W to a† to produce a†i = a† ⊗ ei. The

map commutes with so(d).

To get a neat description of the general diagrams of the kind encountered in (7.5), we

propose the definition

V? = Homso(∞)(T (W2)⊗W,V+ ⊗W ) (7.9)

As in section 6.1, W2 is the anti-symmetrized subspace of W ⊗W , also denoted Λ2(W ).

The specific diagram in (7.5) is in Homso(d)(W2 ⊗ W,V+ ⊗ W ). It is a map from the

anti-symmetrised tensor product W2 ⊗W to V+ ⊗W , which commutes with so(d). The
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significance of the d → ∞ limit is that, for general powers of W2, we will take so(d)-

equivariant maps for d large enough, so as to avoid the possibility of ε-contractions.

V? =

∞⊕
n=0

Homso(d):d�n(W⊗n2 ⊗W,V+ ⊗W ) =

∞⊕
n=0

Vn (7.10)

It is useful to describe how F acts on V?, and to show that this leads to a well-defined

action of U? on V?. We expect this will work because the oscillator expression for Mij is

consistent with the commutator relation defining Uso(d).

First let us define an action

µ̃ : F ⊗V? → V? (7.11)

Suppose a ∈ Fm,n so that

a : W⊗m2 → (VW )⊗n2 (7.12)

And suppose ρ ∈ Vm′ , that is

ρ : W⊗m
′

2 ⊗W → V+ ⊗W (7.13)

We have

a⊗ ρ : W⊗n2 ⊗ (W⊗m
′

2 ⊗W )→ (VW )⊗m2 ⊗ (V+ ⊗W ) (7.14)

To this image we can apply

COM◦m = COM ◦ COM ◦ · · · ◦ COM

COM◦m : (VW )⊗m2 ⊗ (V+ ⊗W )→ V+ ⊗W (7.15)

The rightmost COM acts on rightmost (VW )2 :

COM : (VW )2 ⊗ (V+ ⊗W )→ V+ ⊗W (7.16)

using the expression (6.18) of the oscillator commutation relation as an equivariant map.

For the case n = 1, the diagrammatic description of the above action is

︸ ︷︷ ︸
m

.

︸ ︷︷ ︸
m′

= (7.17)

which is the appropriate generalization of (7.5). Then the next COM eats up another

(VW )2 to produce something else in V+ ⊗W . After all the COM have acted, the output

is in V+ ⊗W , with all the (VW )2 eaten up. Hence

COM◦m ◦ (a⊗ ρ) : W⊗n2 ⊗W⊗m′2 ⊗W → (V+ ⊗W ) (7.18)
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Then

COM◦m ◦ (a⊗ ρ) : (W2)
⊗(n+m′) ⊗W → V+ ⊗W (7.19)

We can define

COM? =

∞⊕
m=0

COM◦m

COM? :
∞⊕
m=0

(VW )⊗m2 ⊗ (V+ ⊗W )→ (V+ ⊗W ) (7.20)

Then we can say

COM? ◦ (a⊗ ρ) :

( ∞⊕
n=0

W⊗n2

)
⊗

( ∞⊕
m′=0

W⊗m
′

2

)
⊗W → (V+ ⊗W ) (7.21)

Hence

COM? ◦ (a⊗ ρ) :

( ∞⊕
n=0

W⊗n2

)
⊗W → V+ ⊗W (7.22)

In other words

COM? ◦ (a⊗ ρ) ∈ V? (7.23)

So we can define µ̃ as

µ̃(a, ρ) ≡ COM∗ ◦ (a⊗ ρ) (7.24)

This is indeed a map

µ̃ : U? ⊗V? → V? (7.25)

The above actions in terms of equivariant maps are summarised in

n︷ ︸︸ ︷

︸ ︷︷ ︸
m

.

︸ ︷︷ ︸
m′

= = µ̃(a, ρ) ∈ V ∗

(7.26)

This definition is a translation into equivariant maps of the usual oscillator construction

of M and its action on the fundamental rep. We expect therefore, that this action will

obey the relations in U? which encode, in diagammatic form — or equivalently in terms

of equivariant maps — the commutation relations of Uso(d). So we expect that

µ̃(M ⊗M(1− σ)−Mg23 −Mg14 +Mg13 +Mg24, ρ) = 0 (7.27)

This is an equivariant map in F2,2 ⊕F2,1: it corresponds to the diagram C in (6.40).
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The µ̃ map is defined as

µ̃(a, ρ) = COM? ◦ (a⊗ ρ) (7.28)

To recap, the ρ and a maps are graded by integers m′,m, n ≥ 0

• ρm′ : (W2)
⊗m′ ⊗W → V+ ⊗W

• an,m : (W2)
⊗n → (VW )⊗m2

and the COM? is a map

• COM? : T ((VW )2)⊗ (V+ ⊗W )→ V+ ⊗W

We take am,n ∈ Homso(d)

(
W⊗n2 ,

(
(VW )2

)⊗m)
. We expect that (7.27) holds for any choice

of m′. Start with m′ = 0. In this case ρ : W → V+ ⊗W acts as follows

ρ(ei) = a† ⊗ ei (7.29)

A simple computation now gives

a⊗ ρ
(

(ej ⊗ ek − ek ⊗ ej)⊗ (el ⊗ em − em ⊗ el)⊗ ei
)

(7.30)

=
[
Mjk ⊗Mlm −Mlm ⊗Mjk − δklMjm − δjmMkl + δjlMkm + δkmMjl

]
⊗ a† ⊗ ei

and then

COM∗ ◦ a⊗ ρ
(

(ej ⊗ ek − ek ⊗ ej)⊗ (el ⊗ em − em ⊗ el)⊗ ei
)

= 1⊗ 1⊗ COM◦2
[
MjkMlm −MlmMjk

]
⊗ a† ⊗ ei

+1⊗ 1⊗ COM
[
− δklMjm − δjmMkl + δjlMkm + δkmMjl

]
⊗ a† ⊗ ei

= (δklδmi − δkmδli)a† ⊗ ej − (δjlδmi − δjmδli)a† ⊗ ek
−(δmjδki − δkmδji)a† ⊗ el − (δklδji − δjkδki)a† ⊗ em
−δkl(δima† ⊗ ej − δija† ⊗ em)− δjm(δila

† ⊗ ek − δika† ⊗ el)
+δjl(δima

† ⊗ ek − δika† ⊗ em) + δkm(δila
† ⊗ ej − δija† ⊗ el)

= 0 (7.31)

This calculation is an expression in terms of equivariant maps, which is therefore a calcu-

lation in the diagram algebra F and the diagram space V?, of the familiar fact that the

oscillator expression for Mij , when used along with the oscillator commutation relations,

obeys the so(d) Lie algebra relations.

It is instructive to display the purely diagrammatic content of this derivation. This is

done below

. = . =
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. = (7.32)

 −

 . = − ≡ A1−A2

(7.33)

By definition of the F → U? quotient, the above must be equal to

. = (7.34)

= − ≡ B1 −B2

A simple diagrammatic manipulation shows that the equivariant maps A2 and B2 are equal

A2 = = (7.35)

= = = B2

A1 = A2 is obvious so that we have the equality

 −

 . = . (7.36)
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Now consider generic m′. Consider a ρ map defined by

ρ : W⊗m
′

2 ⊗W → V+ ⊗W (7.37)

Leave m′ unspecified. Whatever ρ does, the result lives in V+ ×W so that

ρ(α) =
∑
i

cia
† ⊗ ei (7.38)

The argument α ∈ W⊗m′2 ⊗W will have 2m′ + 1 indices in general, and these would be

inherited by the coefficients ci. These indices have all been suppressed. Then,

a⊗ ρ
(

(ej ⊗ ek − ek ⊗ ej)⊗ (el ⊗ em − em ⊗ el)⊗ α
)

(7.39)

=
[
Mjk ⊗Mlm−Mlm ⊗Mjk−δklMjm−δjmMkl+δjlMkm+δkmMjl

]
⊗
∑
i

cia
† ⊗ ei

and then

COM? ◦ a⊗ ρ
(

(ej ⊗ ek − ek ⊗ ej)⊗ (el ⊗ em − em ⊗ el)⊗ α
)

= 1⊗ 1⊗ COM◦2
[
MjkMlm −MlmMjk

]
⊗
∑
i

ci a
† ⊗ ei

+1⊗ 1⊗ COM
[
− δklMjm − δjmMkl + δjlMkm + δkmMjl

]
⊗
∑
i

ci a
† ⊗ ei

= (δklcm − δkmcl)a† ⊗ ej − (δjlcm − δjmcl)a† ⊗ ek
−(δmjck − δkmcj)a† ⊗ el − (δklcj − δjkck)a† ⊗ em
−δkl(cma† ⊗ ej − cja† ⊗ em)− δjm(cla

† ⊗ ek − cka† ⊗ el)
+δjl(cma

† ⊗ ek − cka† ⊗ em) + δkm(cla
† ⊗ ej − cja† ⊗ el)

= 0 (7.40)

The diagrammatic version of this more general argument is presented below, using the

definitions of CL, CR given in (6.51).

.

︸ ︷︷ ︸
= −

(2m′ + 1) (7.41)

.

︸ ︷︷ ︸
= −
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= −

(7.42)

7.1 U? action on V? ⊗V?

We have described the action of U? on V? in the previous section. Now we will extend to

V? ⊗V? and show that the action commutes with the permutation σ and the contraction

C. We will define a map µ̃ : F ⊗ (V? ⊗V?) → V? ⊗V? which gives a well-defined map

µ : U? ⊗ (V? ⊗V?)→ V? ⊗V?. In other words

µ(a, ρ1 ⊗ ρ2) ∈ (V? ⊗V?) for a ∈ U? , ρ1 ∈ V? , ρ2 ∈ V? (7.43)

Recall that U? is a quotient of a graded algebra F

F =
⊕
n,m

Fn,m (7.44)

with

Fn,m = Homso(d):d large(W
⊗n
2 , (VW )m2 ) (7.45)

In the discussion of the action of U? on V?, we have a map COM

COM : (VW )2 ⊗ (V+W )→ (V+W ) (7.46)

in equation (7.16). We will rewrite this map as

COM1,1 : (VW )2 ⊗ (V+W )→ (V+W ) (7.47)

The (1, 1) refers to the fact that we have one (VW )2 (in the associated diagram, one

M -box) on the left and one V+W on the right. Now we define maps

COM1,2 : (VW )2 ⊗ (V+W )⊗ (V+W )→ (V+W )⊗ (V+W ) (7.48)

with one copy of (VW )2 and two copies of V+W . A formula for COM1,2 in terms of COM1,1

comes from the usual formula

[Mij , a
†
k1
⊗ a†k2 ] = [Mij , a

†
k1

]⊗ a†k2 + a†k1 ⊗ [Mij , a
†
k2

] (7.49)

The formula is

COM1,2 = (COM1,1)(VW )2⊗(V+W ) ⊗ 1V+W

+(1V+W ⊗ (COM1,1)(VW )2⊗(V+W )) ◦ ((σ)(VW )2⊗(V+W ) ⊗ 1V+W ) (7.50)

This construction of COM1,2 is shown in terms of diagrams in figure 3.
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Figure 3. Definition of COM1,2.

Figure 4. Definition of COMn,2.

Along similar lines, we can define

COMn,1 : (VW )⊗n2 ⊗ (V+W )→ V+W (7.51)

This comes from the fact that Mi1j1Mi2j2 · · ·Minjn act on an oscillator a†k, by successive

commutators, as

[Mi1j1 , [Mi2j2 , · · · [Minjn , a
†
k] · · · ] (7.52)

COMn,1 = (COM1,1)(VW )2⊗(V+W )) ◦ · · · ◦ (1(VW )⊗n−2
2

⊗ (COM1,1)(VW )2⊗(V+W ))

◦(1(VW )⊗n−1
2

⊗ (COM1,1)(VW )2⊗(V+W )) (7.53)

We can then define

COMn,2 : (VW )⊗n2 ⊗ (V+W )⊗2 → (V+W )⊗2 (7.54)

using COMn,1 in the same way that COM2,1 is built from COM1,1 in figure 3. The analogous

figure here is figure 4.

A direct sum over all n gives us

COM∗,2 =
⊕
n

COMn,2

COM∗,2 :
⊕
n

(VW )⊗n2 ⊗ V+ ⊗W ⊗ V+ ⊗W → V+ ⊗W ⊗ V+ ⊗W (7.55)

Now we will use this to define the map

µ̃ : F ⊗ (V? ⊗V?)→ (V? ⊗V?) (7.56)

This will give (V?)⊗2 the structure of a representation of F , and will lead to a well-

defined map

µ̃ : F ⊗ (V? ⊗V?)→ (V? ⊗V?) (7.57)
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Figure 5. Definition of U? action on V? ⊗V?.

The last step should follow along the same lines as in the discussion of the action of F on

V? descending to the action of U?, explained earlier, which essentially uses the fact that the

oscillator construction we are using gives representations of Uso(d) and the quotient from

F to U? is implementing the Uso(d) commutation relation in the diagrammatic setting.

To elaborate on the construction of µ̃, take

am,n ∈ Homso(d):d large((W )⊗m2 , (VW )⊗n2 ) ∈ F
vm ∈ W⊗m2

am,n(vm) ∈ (VW )⊗n2 (7.58)

specify m′1,m
′
2 for ρ1, ρ2 ∈ V?:

ρ1 : (W2)
⊗m′1 ⊗W → (V+ ⊗W )

ρ2 : (W2)
⊗m′2 ⊗W → (V+ ⊗W ) (7.59)

The formula for µ̃ is

µ̃(am,n(vm)⊗ ρ1 ⊗ ρ2)) = COMn,2(am,n(vm)⊗ ρ1 ⊗ ρ2 (7.60)

∈ Homso(d) : d large(W
⊗m
2 ⊗W⊗m′2 ⊗W ⊗W⊗m

′
2

2 ⊗W,V+ ⊗W )

This is illustrated with the picture in figure 5.

The action of F on V? ⊗ V? we have defined in generality above, have simple dia-

grammatic expressions which can be worked out from the above definitions. For example

if a ∈ F1,1 and ρ1, ρ2 ∈ Hom(W,V+ ⊗W ), i.e. m = 1, n = 1,m′1 = 0,m′2 = 0 in the above

discussion, the action above is given by the diagram below

. = + (7.61)
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Keeping a ∈ M1,1 and considering general m′1,m
′
2, the action of the diagram algebra

on the diagram module is shown below

.

︸ ︷︷ ︸
2m′1+1

︸ ︷︷ ︸
2m′2+1

= +

=
∑
α∈S2

(7.62)

The last expression in the above equation admits a simple generalization to general (V ∗)⊗n

by replacing the sum over permutations α taking values in {(), (1, 2), (1, 3), · · · , (1, n)}
where () is the trivial permutation, (1, 2) is the (1, 2) swop etc.

7.2 Linear operators commuting with the action of U? on V? ⊗V?

Important information about the structure of a representation W of an associative alge-

bra A, specifically its decomposition into irreducibles, is contained in the sub-algebra of

End(W) (space of linear maps from W toW ) which commutes with A [53, 55–57]. This is

the commutant of A in End(A). For example if A is the enveloping algebra of gl(N), VN
is the fundamental representation of gl(N) and V ⊗nN is the n-fold tensor product, then the

commutant of A is C(Sn), the group algebra of the symmetric group Sn. As explained, we

have constructed U?, employing a few key connections to Uso(d), with the aim that it will

recover the representation theory of Uso(d) at large d. V ∗ is the analog of the fundamental

representation of Vd of so(d). As a vector space over C, V ∗ is infinite dimensional. The

commutant of Uso(d) in V ⊗2d is spanned by the identity operator, along with the permu-

tation σ of the two factors along with the contraction operator C. In this section we show

that σ,C, defined on (V ∗)⊗2 commute with the action of U?. We also find that there are

additional additional operators, closely related to σ,C which commute with U?. We will

develop the implications of these observations for the decomposition of (V ∗)⊗2 into irreps

in section 7.3.
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Working with Uso(d) for generic d, and using a basis ei for Vd, we have for the action

on Vd ⊗ Vd, the expressions

Mijek ⊗ el = Mijek ⊗ el + ek ⊗Mijel

Mijek = δjkei − δikej (7.63)

while the swop σ acts as

σ(ei ⊗ ej) = ej ⊗ ek (7.64)

and the contraction C acts as

C(ei ⊗ ej) = δij
∑
p

ep ⊗ ep (7.65)

We know that Mij commutes with σ and C. The commutation of Mij with σ leads us to

expect that the element M ∈ U1,1 = F1,1 commutes with σ when acting on V ∗⊗V ∗. This

commutation is demonstrated directly in terms of the diagrammatic action of the diagram

algebra U? on V ∗ ⊗ V ∗ in (7.66), (7.67) and (7.68).

σ .

︸ ︷︷ ︸
2m1+1

︸ ︷︷ ︸
2m2+1

= (7.66)

· σ .

︸ ︷︷ ︸
2m1+1

︸ ︷︷ ︸
2m2+1

= .

= +

= A1 +A2 (7.67)
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σ · .

︸ ︷︷ ︸
2m1+1

︸ ︷︷ ︸
2m2+1

= σ .

 +



= +

= +

= B1 +B2 (7.68)

Clearly

A1 = B1 A2 = B2 (7.69)

As we have explained these index-free diagrams are associated with equivariant maps.

It is instructive to write down the proof, using these equivariant maps, that the action of

any element in U? on V ∗ ⊗ V ∗ commutes with the action of σ.

We will take ρ1 ⊗ ρ2 ∈ V? ⊗V?.

ρ1 ⊗ ρ2 : (T (W2)⊗W )⊗ (T (W2)⊗W )→ V+W ⊗ V+W (7.70)

where we have abbreviated V+ ⊗W as V+W . The permutation σ is the swop of the states

in the two factors of W

σ = σW⊗W : V+W ⊗ V+W → V+W ⊗ V+W (7.71)

which is indicated in the subscript on the r.h.s. .

µ(σ, ρ1 ⊗ ρ2) = σW⊗W ◦ (ρ1 ⊗ ρ2)
µ(σ, ρ1 ⊗ ρ2) : T (W2)⊗ T (W2)→ V+W ⊗ V+W
µ(σ, ρ1 ⊗ ρ2) ∈ V? ⊗V? (7.72)
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For a ∈ U? = Homso(d)(T (W2), T ((VW )2)), we want to show

µ(a, µ(σ, ρ1 ⊗ ρ2)) = µ(σ, µ(a, ρ1 ⊗ ρ2)) (7.73)

Given any v3 ∈ T ((W2)), a(v3) ∈ T ((VW )2)

µ(a(v3), ρ1(v1))

= COM∗,1(a(v3)⊗ ρ1(v1))
µ(a(v3), ρ1(v1)⊗ ρ2(v2))

= COM?,2(a(v3)⊗ ρ1(v1)⊗ ρ2(v2))
= COM?,1(a(v3), ρ1(v1))⊗ ρ2(v2) + ρ1(v1)⊗ COM?,1(a(v3)⊗ ρ2(v1)) (7.74)

Apply a(v3) first and then σ

µ(σ, µ(a(v3), ρ1(v1)⊗ ρ2(v2))
= µ(σ,COM∗,1(a(v3)⊗ ρ1(v1))⊗ ρ2(v2)) + µ(σ, ρ1(v1)⊗ COM∗,1(a(v3), ρ2(v2)))

= ρ2(v2)⊗ COM?,1(a(v3)⊗ ρ1(v1)) + COM?,1(a(v3), ρ2(v2))⊗ ρ1(v1) (7.75)

Now apply σ first, then a(v3)

µ(a(v3), µ(σ, ρ1(v1)⊗ ρ2(v2))
= COM?,2(a(v3), ρ2(v2)⊗ ρ1(v1)) (7.76)

= COM?,1(a(v3)⊗ ρ2(v2))⊗ ρ1(v1) + ρ2(v2)⊗ COM?,1(a(v3)⊗ ρ1(v1))

The outcomes in (7.75) and (7.76) are equal. So we have proved that the action of U?

on V? ⊗V? commutes with σ on V? ⊗V?.

We will now show that the action of U? on V? ⊗V? commutes with the contraction

operator. Let us first show that the action of M ∈ U? on V ? ⊗ V? commutes with the

contraction and permutation operators C. The M box acting on V? ⊗ V? followed by

the action of C gives zero. In fact it is easy to show this for any a ∈ Fn,1 the n = 1

case corresponds to the M -box. The diagrammatic manipulation in the equations below

demonstrate that C · a (which is the composition of C and a) acting on V ?⊗V? gives zero

︸ ︷︷ ︸
2m1+1

︸ ︷︷ ︸
2m2+1

=

︸ ︷︷ ︸
2m1+2m2+2

(7.77)

︸ ︷︷ ︸
m

. =
∑
α∈S2

(7.78)
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C · . =
∑
α∈S2

=
∑
α∈S2

= = 0 (7.79)

where we have used the fact that

= (7.80)

Likewise a · C = 0 as shown below.

· C . = .

=
∑
α∈S2

= = 0 (7.81)
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These arguments can be generalized to an,m ∈ Fn,m for general n,m. Diagrammati-

cally, an,m is represented as

n M-boxes︷ ︸︸ ︷

︸ ︷︷ ︸
2m

for a ∈ Fn,m (7.82)

The arguments are purely diagrammatic and are given in (7.83) and (7.84). The equa-

tion (7.83) shows that the action of C · am,n = 0 on a general ρ1 ⊗ ρ2 ∈ V? ⊗ V?. The

equation (7.84) shows that am,n · C = 0. Taken together they imply [am,n, C] = 0.

C · .

=
∑

α1,··· ,αn∈S2

(7.83)

=
∑

α1,··· ,αn∈S2

= 0
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· C .

= .

=
∑

α1,··· ,αn∈S2

(7.84)

=
∑

α2,··· ,αn∈S2

= 0

The conclusion is that since C, σ commute with U?, it follows that the images of the three

projectors are invariant subspaces under the action of U?. By specialising d to any real

number d, we have a generalization of the so(d) decomposition of Vd ⊗ Vd to generic d.

Our argument proves that σ and C commute with U? on V? ⊗ V?. We have not

shown that anything commuting with U? is generated by σ,C. In fact, it is easy to show

that operators am,0σ and am,0C, for am,0 ∈ Fm,0, also commute with general am,n ∈ F .
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Scaling σ (or C) means that we are acting with σ ( or C) and then tensoring from the

left with some diagrams involving 2m crosses going to the vacuum. Acting subsequently

with a general a just involves operations on the open circles in the diagram, which are

unaffected by the am,0. Thus all the above commutation arguments can be carried over.

It is tempting to conjecture that these operators from Bd(n) scaled by a ∈ F?,0 are in fact

the complete commutant of U? acting on V? ⊗V?. This suggests we should be thinking

about U? as a module over the ring F∗,0. In other words we should treat these as scalars.

Schur-Weyl duality in the more general setting of rings over modules is discussed in [48].

A remark is in order. The above discussion shows the special role that is played by

elements of the ring F∗,0. In achieving the best definition of U?, which has the cleanest

connections (these connections will be expressed as conjectures in section 8) to the repre-

sentation theory of Uso(d), there is another place where we may tweak the definition of

U? and indeed of the parent algebra F?. A variation of F imposes the condition that any

element of the form a⊗ b⊗ c where b ∈ F?,0 should be identified with b⊗ a⊗ c. In other

words, we should treat any b ∈ F?,0 as a scalar in the sense that it commutes with other

sub-diagrams in F . In pictures, we are imposing relations of the following form

= (7.85)

7.3 Decomposing V? ⊗V? into orthogonal subspaces invariant under U?

Recall that we have

V? = Homso(∞)(T (Λ2(W ))⊗W → V+ ⊗W ) (7.86)

We have shown that the U? action on V? ⊗ V? commutes with σ,C. This implies that

there is a map from V? ⊗V? to orthogonal subspaces analogous to the three irreps which

appear in decomposing Vd ⊗ Vd for generic d, in terms of so(d) irreps. There is a subtlety

in this analogy which we will subsequently discuss, stemming from the fact that σ,C do

not, when treating U?,V
? as vector spaces over C, generate the full commutant of U?.

We have three orthogonal projectors in the Brauer algebra Bd(2)

P[2] =

(
1

2
(1 + σ)− C

d

)
P0 =

C

d

P[12] =
1

2
(1− σ) (7.87)

obeying

PiPj = δijPj for i ∈ {[2], 0, [12]}
P[2] + P0 + P[12] = 1 (7.88)
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Multiplication of the projectors is done by vertically stacking the diagrams, which show that

C2 = dC

σC = Cσ = C (7.89)

This is illustrated using diagrams as follows

C = C2 = = d = dC

C · σ = = = C σ · C = = = C (7.90)

These relations form part of the standard relations of the Brauer algebra which is the

commutant of so(d) in Vd ⊗ Vd ( for d > 2 ).

We have seen in section 7.2 that σ,C commute with the action of U? on V?⊗V?. Thus

these projectors commute with U?. The images of these projectors are invariant under the

action of U?.

Thus we have well-defined actions of the three projectors on the diagrams D ∈ V?⊗V?.

D = (P0 + P[2]] + P[12])D = (P0D) + (P[12]D) + (P[2]D) (7.91)

The image of these three projectors are subspaces

V?
0 = P0(V

? ⊗V?)

V ∗[12] = P[12](V
? ⊗V?)

V ∗[2]] = P[2](V
? ⊗V?) (7.92)

We would like to say that these are orthogonal subspaces. i.e. we want to define an

inner product 〈∗, ∗〉 for the diagrams in V? ⊗V? with respect to which the projectors are

hermitian so that we can write

〈PiD1, PjD2〉 = 〈D1, PiPjD2〉 = 0 unless i = j (7.93)

Given two diagrams A,B, we define the inner product to be zero if the number of

incoming crosses in the two diagrams is different. If the number is the same, then we use

the operation defined in (7.94). This involves inverting one of the diagrams stacking it

below the first diagram, and joining the open circles. This will result in a number of loops;

the diagram is evaluated as dL where L is the number of loops.

〈
,

〉
= ≡ Tr(ABT ) (7.94)
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We have shown this for V? ⊗V?, but the same idea applies to any tensor power of V?.

Some inner products in V? are illustrated in the equation below

〈
,

〉
= = d

〈
,

〉
= = d2

〈
,

〉
= = d2

〈
,

〉
= = d

〈
+ , +

〉
= 2d2 − 2d = 2d(d− 1) (7.95)

This construction of an inner product is very similar to a standard inner product in Brauer

algebras.

From the diagrams it is easy to see that

〈A,B〉 = 〈B,A〉 (7.96)

The counting of loops is unchanged by inverting the diagram for the inner product. Also

note that σT = σ,CT = C. With these the desired hermiticity of the innerproduct follows

and we have a map from V? ⊗V? to U? invariant subspaces

V ?
0 ⊕ V ?

[2] ⊕ V
?
[12] (7.97)

corresponding to the three projectors in equation (7.87).

We have explained that there are additional commuting operators of the form aC

and aσ for a ∈ F?,0. In the light of the double commutant theorem, the existence of

these additional commuting operators means that the orthogonal subspaces of V? ⊗ V?

constructed above are not in fact irreducible as representations of U? over C. An important

question is whether these additional commuting operators generate the full commutant of

U? in V? ⊗V?. If that is the case, it would make sense to develop a treatment of F as

a module-algebra over the ring F?,0, and define an analogous quotient U?
′ to impose the

diagrammatic version of the Uso(d) relations. This would also mean treating F?,0 as scalars

in the definition of the inner product. We would then conjecture that if we take the tensor

product V? ⊗V? over F∗,0, then we get exactly 3 irreps (simple modules) labelled by the

symmetric, the anti-symmetric and the trace, just as we do for Uso(d) acting on Vd ⊗ Vd
at large d. We leave a more precise discussion of this point for the future.

7.4 Connection to Brauer category diagrams

The diagrams in Fm,n ⊂ F have 2m incoming crosses and n M -boxes. In the definition

of the quotient U? of F , and the subsequent construction of the representations V?⊗n, a

key role is played by the anti-symmetriser P . In fact if, in any diagram a ∈ F , we get

rid of the M -boxes, replace them with these projectors ending on pairs of crosses, we do

– 47 –



J
H
E
P
0
5
(
2
0
2
0
)
0
2
0

not lose any information. So in this simplified picture, we would make the replacements in

equation (7.98) below.

→

→

→

→ (7.98)

Now we just have diagrams having a lower rung of 2m crosses and an upper rung of 2n

crosses, along with a number of lines joining these crosses. These are Brauer diagrams in

the Brauer category [47].

In the Brauer category, there are two products: the tensor product — or diagrammat-

ically a horizontal juxtaposition and the vertical composition or concatenation product.

Brauer algebras Bd(n) which form the commutant of so(d) in tensor products V ⊗nd (let

us keep d > n for the simplest statements) use the vertical product. The algebras F ,U?

we have defined here use the horizontal product, along with the star products, which we

defined using juxtaposition followed by contractions. It would be interesting to study the

full structure and interplay of all the products: horizontal, vertical and star products.

8 Conjectures on tensor representations of U?

Based on our discussion of the action of U? on V? and V? ⊗V? in section 7.3, we present

here some conjectures for the action of U? in V?⊗n, and for the action of U? on U? by

commutators. The construction of U? employed a large d limit, so it is reasonable to expect

a simple relation to the large d limits (also called stable limits) of Uso(d) representation

theory of V ⊗nd . The decomposition into irreducible representations of the action of Uso(d)

on itself by commutators is related, by the Poincare-Birkhoff-Witt theorem [40], to the

decomposition of symmetric powers Symn(V[12]) where V[12] is the anti-symmetric part of

Vd⊗ Vd and Symn is the projection to the Sn symmetric part of the n-fold tensor product.

Likewise, for the decomposition of U? under commutator action by U?, it is reasonable

to expect a link to the large d limit of Symn(V[12]). The discussion of the commutant in

section 7.2 suggests some care is required with the treatment of the F?,0 subspace of F ,

which we elaborate on below.

Conjecture for U? action on (V?)⊗n. We will denote by Bd(n), the Brauer algebra on

n strands with loop parameter d [32]. We defined an action of Bd(2) on V?⊗V? and showed
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that the generators of Bd(2) — the swop of the tensor factors and the contraction operation

— commute with the action of U? on V?⊗V?. There is straightforward generalization to

a definition of Bd(n) on (V?)⊗n. Our first conjecture is that

Conjecture 1. The action of U? on (V?)⊗n commutes with the action of Bd(n).

The proof will be a straightforward generalization of the diagrammatic argument at

n = 2. A corollary is that V?⊗n at generic d admits U?-equivariant maps to orthogonal

direct sums of spaces, invariant under U? action, and in 1-1 correspondence with Brauer

algebra projectors corresponding to Young diagrams which appear in V ⊗nd for d > 2n.

These projectors were discussed for n = 2 in section 7.3.

Conjecture 2a. (V?)⊗n can be decomposed into orthogonal subspaces, invariant under

the action of U? by using projectors in Bd(n).

This should also be a straightforward generalization of the discussion we gave for n = 2.

As we saw in the discussion of the n = 2 case, it is easy to construct additional operators

in the endomorphism algebra of V? of the form aA where A ∈ Bd(n) and a ∈ F?,0. Because

of the double commutant theorem, we therefore do not expect that the above orthogonal

invariant subspaces are irreducible representations of U?. These elements aA are linearly

independent of A if we think of F , and the quotient U? as algebras over C and V? as a

vector space over C. On the other hand, we may treat F and U? as algebras over the ring

F?,0, in which case we will refer to them as F ′,U?
′. From a physical point of view, this is

highly sensible, since the diagrams in F?,0 are linear combinations of Kronecker deltas: the

diagrams in Fm,0 are transitions from (Λ2(W ))m to the ground field C. To define F ′, it

makes sense to start from F and impose relations of the form A1⊗a = a⊗A1 for a ∈ F?,0,
i.e. to treat a as commuting scalars (see equation (7.85)). Forming the quotient by the

subspace generated by the commutator diagram will define U?
′. When we define the tensor

product of V? we should treat elements of F?,0 as scalars:

(av1)⊗ v2 = v1 ⊗ (av2) (8.1)

More formally, we should treat U?
′ as a module-algebra over the ring F?,0, V? as a module

over the ring. The definition of the inner product on F would also treat a ∈ F?,0 as

scalars i.e.

〈a1B1, a2B2〉 = ā1a2〈B1, B2〉 (8.2)

where a1, a2 are complex linear combinations of diagrams in F?,0 and B1, B2 are general

complex linear combinations of diagrams in F . ā1 is obtained by complex-conjugating the

complex coefficients in a1.

Conjecture 2b. The full commutant of the action of U?
′ on (V?)⊗n, when loops are

evaluated to d ( for d > 2n) is Bd(n).

A corollary of this conjecture is that the sub-modules of (V?)⊗n labeled by so(d) Young

diagrams appearing in V ⊗nd for d > 2n are irreducible representations (simple modules)

of U?
′.
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Finally, note that this is a useful statement as a consequence of the fact that the

representation theory of SO(d) has nice stability properties. The tensor product V ⊗2kd

decomposes into a direct sum of irreps labeled by every possible Young diagram with 2q

boxes for q = 0, 1, 2, . . . , k. The multiplicity of a given irrep Λ ` 2q is the symmetric group

dimension of Λ times the number of ways of making k−q pairs from 2k objects. This rule is

stable for so(d) with d ≥ 4k. The tensor product V ⊗2k+1
d decomposes into a direct sum of

irreps labeled by every possible Young diagram with 2q+1 boxes for q = 0, 1, 2, . . . , k. The

multiplicity of a given irrep Λ ` 2q + 1 is the symmetric group dimension of Λ times the

number of ways of making k−q pairs from 2k+1 objects. This rule is stable for so(d) with

d ≥ 4k + 2. These rules can be reproduced from explicit computations using characters at

low d, k and are related to the representation theory of Brauer algebras Bd(n) for n = 2k

or n = 2k + 1 [52, 54].

Remarks on d ≤ 2n. In this regime, there are two cases to consider: integer d and

non-integer d. In the above conjectures we have proposed relations between the tensor

representations V?⊗n of U?, with loops evaluated at d, and the representation V ⊗nd of

Uso(d), at d > 2n. To make contact between the representation V?⊗n of U? in the d ≤ 2n

regime and Uso(d), we expect there should be finite d diagrammatic quotients of the V?⊗n

representations of U?. These finite d quotients would involve finite d projectors acting on

the 2m+2n crosses associated with the Fn,m subspace of F in the Brauer category picture

described in section 7.4. These finite d projectors would be a sum of Young projectors for

Young diagrams having 2m + 2n boxes and no more than d rows. These should lead to

well-defined finite d versions of U?. Likewise finite d version of V? are defined using finite

d projectors acting the 2m+ 2 crosses associated with the Vm subspace of V?. This regime

of d ≤ 2n is somewhat more subtle: it involves significant differences between so(d) and

o(d) centralizers (see for example [49]). These differences should be reflected in variations

of possible quotients of U?. We leave a more precise discussion of the relevant quotients of

U?,V
? which makes contact with tensor representations of Uso(d) and o(d) for d ≤ 2n for

the future.

Conjecture 3: U? action on U?. We can define an action of U? on itself by commu-

tators. U? will decompose into irreps labelled by Young diagrams. The subspace of U?

corresponding to Fm,n with n ≤ k decomposes into Young diagrams in the same way that

k⊕
l=0

Syml(Λ2(Vd)) (8.3)

decomposes into irreps of Uso(d) for d > 2k.

Remarks on non-unitarity. Based on recent discussions of non-unitarity in the Wilson-

Fischer fixed point CFTs [38] we expect that (V?)⊗n will have states of negative norm under

a natural inner product. Using the inner product defined in (7.94), and caculating the norm

for a state in V?⊗n constructed from the anti-symmetric projector

P[1n] =
1

n!

∑
σ∈Sn

(−1)σσ (8.4)
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with permutation σ represented as a winding of strands in the diagram, the inner product

is calculated as follows

︸ ︷︷ ︸
n

∈ (V ∗)⊗n (8.5)

〈
,

〉
=

=

=
(d)(d− 1) · · · (d− n+ 1)

n!
(8.6)

This is negative for d < n− 1.

9 An algebra U?,2 extending Uso(d, 2) to generic d

Along similar lines to the definition of U? we have proposed to generalize Uso(d) repre-

sentation theory for general d, we sketch the definition U?,2 appropriate for generalizing

Uso(d, 2) beyond integer d. This gives a proposed framework for discussing the states of

Wilson-Fischer CFT away from integer dimensions as representations of conformal symme-

try beyond integer dimensions, and in particular gives a representation theoretic meaning

to the diagrammatic computation of the properties of the stress tensor state we gave in

section 5.

Corresponding to the generators Mµν , D,Kµ, Pν of the conformal algebra, there are

boxes for M,D,K,P as shown below

(9.1)

Each diagram is made of two rungs — as in Brauer algebras. The lower rung consists

of either 0, 1 or 2 crosses — zero in the case of D, one in the case of P,K and two in
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the case of M . We have made the anti-symmetry of M manifest by inserting a projector

P[12] = 1
2(1− σ).

Commutation relations are diagrammatic: they involve setting to zero the linear com-

binations of diagrams shown below

− −

− − − +

− −

− −

− −

− −

−

− − 2 + 2

− − (9.2)

These diagrams do not involve indices and have a meaning in terms of equivariant maps

between tensor spaces as discussed earlier in the context of U?. As observed in that dis-

cussion, an easy way to understand the diagrams is to attach indices and read off the usual

commutation relations of Uso(d, 2). For example, setting to zero the first line expresses

Pµ1Pµ2 = Pµ2Pµ1 . The third and fourth lines express the commutators

[Mµν , Pα] = δναPµ − δµαPν
[Mµν ,Kα] = δναKµ − δµαKν (9.3)
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The reason we have two linear combinations of diagrams for each of this pair of equations

is that when we interpret these diagrams in terms of equivariant maps involving W,Λ2(W ),

we need to take into account that W ⊗ Λ2(W ) and Λ2(W ) ⊗W are distinct subspaces of

the tensor algebras we will be considering.

We would like (as in the analogous discussion of of U?) to give a general description of

a space of diagrams, containing and generalizing the diagrams in (9.1) or (9.2), expressed

in terms of so(d) equivariant maps (in a large d limit) between appropriate tensor algebras,

such that the tensor product operation gives an associative algebra structure to the space

of diagrams. Introduce one-dimensional vector spaces over C:

VK = Span{K}
VP = Span{P}
VD = Span{D}
VM = Span{M} (9.4)

Let W be the d-dimensional vector irrep of so(d). Define

V w
K = VK ⊗W
V w
P = VP ⊗W
V w
D = VD

V w
M = VM ⊗ Λ2(W ) = VM ⊗W2 (9.5)

Observe that the space of so(d) equivariant maps Homso(d)(W,V
w
K ) is spanned by

δ : eµ → δµνK ⊗ eν (9.6)

which can be associated with the diagram for K in figure 9.1: the cross on the lower rung

is associated with eµ, the box on the upper rung with K ⊗ eν , the line with the δ map.

Similarly Homso(d)(W,V
w
P ) corresponds to the diagram for P . In the case Homso(d)(C, V w

D =

VD), the lower rung has no crosses since it corresponds to the vacuum which is associated

with the ground field in standard diagrammatic representations of tensor categories. The

map is just

a→ aD ∈ VD for a ∈ C (9.7)

The association of Hom(Λ2(W ), V w
M ) to the diagram is as described in the discussion of U?.

To have a structure which contains all the diagrams, define

L = V w
M ⊕ V w

P ⊕ V w
K ⊕ V w

D

S = C⊕W ⊕W2 (9.8)

The space Homso(d)(S,L) is spanned by exactly four diagrams, which are the ones shown

in (9.1), associated with the generating diagrams for K,P,D,M .
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The natural proposal for a general space of diagrams is

F (2) = Homso(∞)(T (S), T (L)

=

∞⊕
m,n=0

Homso(d):d large(S⊗m,L⊗n) =
⊕
m,n

F (2)
m,n (9.9)

F (2)
0,0 = C. F (2)

0,1 is one-dimensional. It is the map which takes a ∈ C to aD ∈ V w
D . F (2)

1,1 is

four-dimensional, as we discussed.

Equation (9.2) gives the linear combinations of diagrams which should be set to zero.

The first two express the commutativity of P ’s and K’s. Note that we have two relations

coming from [M,K] ∼ K commutator and two relations from [M,P ] ∼ P . This is because

W ⊗W2 and W2 ⊗W are distinct subspaces of S ⊗ S. F (2) has a product given by the

tensor product operation: if a ∈ F (2)
m1,n1 , b ∈ Fm2,n2 then a⊗b ∈ F (2)

m1+m2,n1+n2
is the tensor

product of the equivariant maps. This corresponds to the juxtaposition of the diagrams

for a and b. F (2) contains additional composition operations consisting of juxtaposition

followed by contractions. We referred to the analogous operations as star products in the

discussion of F and U?. As in that discussion, the quotienting operation involves setting

to zero all elements in F (2) of the form a ∗C ∗ b where C is any of the linear combinations

in (9.2) and a, b ∈ F (2) are being composed with C using any of the star operations.

U(?,2) = Uso(?, 2) is defined as this quotient of F (2).

We now describe the construction of representations of U?,2 which correspond to scalar

primaries of Uso(d, 2). These representations are spaces of so(d) equivariant maps, which

have diagrammatic representations using standard facts about so(d) invariant theory, which

can be described as

Ṽ ?,2
δ = Homso(∞)(Sym(W ), Sym(V w

P ))

=

∞⊕
m,n=0

Homso(d): d large(Symm(W ), Symn(V w
P )) ≡

⊕
m,n

V ?,2
m,n (9.10)

In this definition Sym(W ) and Sym(V w
P ) are the symmetric algebras over C of W and V w

P ;

Symm(W ), Symn(V w
P ) are the Sm and Sn symmetric subspaces respectively of W⊗m and

(V w
P )⊗n. Large d means d > m + n so that the homomorphisms are constructed from δ

contractions only and not ε contractions. The subspace V ?,2
0,0 is just the ground field C.

The space Ṽ ?,2
δ is made a representation of U?,2 by specifying that D acts on a ∈

V ?,2
0,0 as:

D(a) = δ a ∈ V ?,2
0,0 (9.11)

The usual actions of Kµ,Mµν , Pα, D on states of the form Pβ1Pβ2 · · ·Pβk |δ〉 can be trans-

lated into diagrams which give the action of U?,2 on Ṽ ?,2
δ . For example the actions

Pµ(Pν |δ〉) = PµPν |δ〉
Kµ(Pν |δ〉) = [Kµ, Pν ]|δ〉 = 2Mµν − 2δµνD)|δ〉 = −2δδµν |δ〉
Mµν(Pα|δ〉) = (δναPµ − δµαPν)|δ〉 (9.12)
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translate into the diagrammatic actions given below

.

  =

.

  = − 2 δ

.

  = (9.13)

10 Summary and outlook

In [23] we gave a complete description of the correlators of general composite operators

at separated space-time points in free scalar field theory in terms of an so(4, 2) equiv-

ariant algebra, where the underlying state space is the direct sum of symmetric powers

of V = V+ ⊕ V− and V+, V− are two dual irreducible representations of so(4, 2). V+ is

spanned by the states obtained from general derivatives of the scalar field using the state-

operator correspondence. The algebra satisfies a non-degeneracy condition, which allows

us to define a genus-restricted two-dimensional topological field theory. We have addressed

two challenges faced by the programme of extending CFT4/TFT2 to interacting conformal

field theories such as N = 4 SYM and the Wilson-Fischer fixed point near four dimensions.

A deformed co-product in section 3 for so(4, 2) was defined which allows us to describe the

states corresponding to composite operators, in the presence of non-additive anomalous

dimensions. To make sense of tensor algebra in general dimensions e.g. d = 4 − ε, we

defined an algebra U? (section 6) and its tensor representations V?⊗n, which is abstracted

from Uso(d) at general d and tensor products of the vector representation V ⊗nd . We moti-

vated and presented some conjectures for the decomposition of V?⊗n in terms of irreducible

representations of U?. We then sketched the definition of a diagram algebra U?,2, which

allows generalization of Uso(d, 2) to general d, and the construction of its diagrammatic

representations corresponding to scalar primary fields.

Some future goals in the programme of developing perturbative-CFT4/TFT2 are

• Describe the state space of the Wilson-Fischer theory, describing the structure which

replaces the direct sum of symmetrised tensor products Symn(V+) which corresponds

to local operators in free scalar theories. We have made some preliminary re-

marks about the role of indecomposable representations in connection with multiplet-

recombination in section 2 and in [29]. We have found here that the indecomposables

also play a role in the formulation of the deformed co-product.

• Given the results of [13] which demonstrate that algebraic perspectives based on

the quantum equation of motion constrain CFT data of anomalous dimensions, it is

reasonable to expect that the characterisation of aspects of the conformal equivariance
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properties in interacting theories we have given here, will contribute to the programme

of constraining CFT data algebraically.

• Extend the description of general primary fields in free CFT in terms of a system of

linear equations for multi-variable polynomials [25], associated ring structures and

algorithms for constructing primaries [27, 28] to the case of perturbatively interacting

CFTs. Useful formulae and algorithms for constructing primary fields can be used

to approach the next element in CFT data — the calculation of OPE coefficients.
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