M. Atiyah, Topological quantum field theories, Inst. Hautes Etudes Sci. Publ. Math.
68 (1989) 175 [INSPIRE].
Article
MATH
Google Scholar
F.J. Burnell, X. Chen, L. Fidkowski and A. Vishwanath, Exactly soluble model of a three-dimensional symmetry-protected topological phase of bosons with surface topological order, Phys. Rev.
B 90 (2014) 245122 [arXiv:1302.7072] [INSPIRE].
ADS
Article
Google Scholar
L. Bhardwaj, D. Gaiotto and A. Kapustin, State sum constructions of spin-TFTs and string net constructions of fermionic phases of matter, JHEP
04 (2017) 096 [arXiv:1605.01640] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
X. Chen, L. Fidkowski and A. Vishwanath, Symmetry Enforced Non-Abelian Topological Order at the Surface of a Topological Insulator, Phys. Rev.
B 89 (2014) 165132 [arXiv:1306.3250] [INSPIRE].
ADS
Article
Google Scholar
X. Chen, Z.-C. Gu, Z.-X. Liu and X.-G. Wen, Symmetry protected topological orders and the group cohomology of their symmetry group, Phys. Rev.
B 87 (2013) 155114 [arXiv:1106.4772] [INSPIRE].
ADS
Article
Google Scholar
X. Chen, Z.-C. Gu and X.-G. Wen, Local unitary transformation, long-range quantum entanglement, wave function renormalization and topological order, Phys. Rev.
B 82 (2010) 155138 [arXiv:1004.3835] [INSPIRE].
ADS
Article
Google Scholar
X. Chen, Z.-C. Gu and X.-G. Wen, Complete classification of one-dimensional gapped quantum phases in interacting spin systems, Phys. Rev.
B 84 (2011) 235128 [arXiv:1103.3323].
ADS
Article
Google Scholar
X. Chen, Y.-M. Lu and A. Vishwanath, Symmetry-protected topological phases from decorated domain walls, Nature Commun.
5 (2014) 3507 [arXiv:1303.4301].
Article
ADS
Google Scholar
X. Chen, Z.-X. Liu and X.-G. Wen, Two-dimensional symmetry-protected topological orders and their protected gapless edge excitations, Phys. Rev.
B 84 (2011) 235141 [arXiv:1106.4752] [INSPIRE].
ADS
Article
Google Scholar
L. Fidkowski, X. Chen and A. Vishwanath, Non-Abelian Topological Order on the Surface of a 3D Topological Superconductor from an Exactly Solved Model, Phys. Rev.
X 3 (2013) 041016 [arXiv:1305.5851] [INSPIRE].
Article
Google Scholar
D.S. Freed and M.J. Hopkins, Reflection positivity and invertible topological phases, arXiv:1604.06527 [INSPIRE].
L. Fidkowski and A. Kitaev, Topological phases of fermions in one dimension, Phys. Rev.
B 83 (2011) 075103 [arXiv:1008.4138].
ADS
Article
Google Scholar
D.S. Freed, Short-range entanglement and invertible field theories, arXiv:1406.7278 [INSPIRE].
D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized Global Symmetries, JHEP
02 (2015) 172 [arXiv:1412.5148] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
Z.-C. Gu and M. Levin, Effect of interactions on two-dimensional fermionic symmetry-protected topological phases with Z
2
symmetry, Phys. Rev.
B 89 (2014) 201113 [arXiv:1304.4569].
ADS
Article
Google Scholar
Z.-C. Gu and X.-G. Wen, Tensor-Entanglement-Filtering Renormalization Approach and Symmetry Protected Topological Order, Phys. Rev.
B 80 (2009) 155131 [arXiv:0903.1069] [INSPIRE].
ADS
Article
Google Scholar
Z.-C. Gu and X.-G. Wen, Symmetry-protected topological orders for interacting fermions: Fermionic topological nonlinear σ models and a special group supercohomology theory, Phys. Rev.
B 90 (2014) 115141 [arXiv:1201.2648] [INSPIRE].
ADS
Article
Google Scholar
L.-Y. Hung and X.-G. Wen, Universal symmetry-protected topological invariants for symmetry-protected topological states, Phys. Rev.
B 89 (2014) 075121 [arXiv:1311.5539] [INSPIRE].
ADS
Article
Google Scholar
A. Kapustin, Symmetry Protected Topological Phases, Anomalies and Cobordisms: Beyond Group Cohomology, arXiv:1403.1467 [INSPIRE].
A. Kitaev, Homotopy-theoretic approach to spt phases in action: Z
16
classification of three-dimensional superconductors, in Symmetry and Topology in Quantum Matter Workshop, Institute for Pure and Applied Mathematics, University of California, Los Angeles, California (2015) [http://www.ipam.ucla.edu/abstract/?tid=12389&pcode=STQ2015].
A.Y. Kitaev, Unpaired Majorana fermions in quantum wires, Phys. Usp.
44 (2001) 131.
ADS
Article
Google Scholar
A. Kitaev, Periodic table for topological insulators and superconductors, AIP Conf. Proc.
1134 (2009) 22 [arXiv:0901.2686] [INSPIRE].
ADS
Article
MATH
Google Scholar
A. Kitaev, On the classification of short-range entangled states, talk at Simons Center, 20 June 2013 [http://scgp.stonybrook.edu/video_portal/video.php?id=2010].
A. Kock, L. Kristensen and I. Madsen, Cochain functors for general cohomology theories. I, Math. Scand.
20 (1967) 131.
MathSciNet
Article
MATH
Google Scholar
A. Kock, L. Kristensen and I. Madsen, Cochain functors for general cohomology theories. II, Math. Scand.
20 (1967) 151.
MathSciNet
Article
MATH
Google Scholar
A. Kapustin and R. Thorngren, Higher symmetry and gapped phases of gauge theories, arXiv:1309.4721 [INSPIRE].
A. Kapustin and R. Thorngren, Fermionic SPT phases in higher dimensions and bosonization, JHEP
10 (2017) 080 [arXiv:1701.08264] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
A. Kapustin, R. Thorngren, A. Turzillo and Z. Wang, Fermionic Symmetry Protected Topological Phases and Cobordisms, JHEP
12 (2015) 052 [arXiv:1406.7329] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
F. Pollmann, E. Berg, A.M. Turner and M. Oshikawa. Symmetry protection of topological phases in one-dimensional quantum spin systems, Phys. Rev.
B 85 (2012) 075125 [arXiv:0909.4059].
ADS
Article
Google Scholar
G. Segal, The definition of conformal field theory, in Topology, geometry and quantum field theory, Lond. Math. Soc. Lect. Note Ser.
308 (2004) 421.
C. Schommer-Pries, Tori Detect Invertibility of Topological Field Theories, Geom. Topol.
22 (2018) 2713 [arXiv:1511.01772] [INSPIRE].
MathSciNet
Article
MATH
Google Scholar
A. Vishwanath and T. Senthil, Physics of three dimensional bosonic topological insulators: Surface Deconfined Criticality and Quantized Magnetoelectric Effect, Phys. Rev.
X 3 (2013) 011016 [arXiv:1209.3058] [INSPIRE].
Article
Google Scholar
X.-G. Wen, Classifying gauge anomalies through symmetry-protected trivial orders and classifying gravitational anomalies through topological orders, Phys. Rev.
D 88 (2013) 045013 [arXiv:1303.1803] [INSPIRE].
ADS
Google Scholar
X.-G. Wen, Symmetry-protected topological invariants of symmetry-protected topological phases of interacting bosons and fermions, Phys. Rev.
B 89 (2014) 035147 [arXiv:1301.7675] [INSPIRE].
ADS
Article
Google Scholar
Q.-R. Wang and Z.-C. Gu, Towards a Complete Classification of Symmetry-Protected Topological Phases for Interacting Fermions in Three Dimensions and a General Group Supercohomology Theory, Phys. Rev.
X 8 (2018) 011055 [arXiv:1703.10937] [INSPIRE].
Article
Google Scholar
C. Wang, C.-H. Lin and Z.-C. Gu, Interacting fermionic symmetry-protected topological phases in two dimensions, Phys. Rev.
B 95 (2017) 195147 [arXiv:1610.08478] [INSPIRE].
ADS
Article
Google Scholar
C. Wang and T. Senthil, Interacting fermionic topological insulators/superconductors in three dimensions, Phys. Rev.
B 89 (2014) 195124 [Erratum ibid.
B 91 (2015) 239902] [arXiv:1401.1142] [INSPIRE].
C.Z. Xiong, Minimalist approach to the classification of symmetry protected topological phases, J. Phys.
A 51 (2018) 445001 [arXiv:1701.00004] [INSPIRE].
MathSciNet
MATH
Google Scholar