A. Vilenkin, Equilibrium parity violating current in a magnetic field, Phys. Rev.
D 22 (1980) 3080 [INSPIRE].
G.M. Newman and D.T. Son, Response of strongly-interacting matter to magnetic field: Some exact results, Phys. Rev.
D 73 (2006) 045006 [hep-ph/0510049] [INSPIRE].
K. Fukushima, D.E. Kharzeev and H.J. Warringa, The Chiral Magnetic Effect, Phys. Rev.
D 78 (2008) 074033 [arXiv:0808.3382] [INSPIRE].
D.E. Kharzeev, L.D. McLerran and H.J. Warringa, The Effects of topological charge change in heavy ion collisions: ‘Event by event P and CP-violation’, Nucl. Phys.
A 803 (2008) 227 [arXiv:0711.0950] [INSPIRE].
K. Landsteiner, Notes on Anomaly Induced Transport, Acta Phys. Polon.
B 47 (2016) 2617 [arXiv:1610.04413] [INSPIRE].
J. Liao, Chiral Magnetic Effect in Heavy Ion Collisions, Nucl. Phys.
A 956 (2016) 99 [arXiv:1601.00381] [INSPIRE].
D.E. Kharzeev, J. Liao, S.A. Voloshin and G. Wang, Chiral magnetic and vortical effects in high-energy nuclear collisions — A status report, Prog. Part. Nucl. Phys.
88 (2016) 1 [arXiv:1511.04050] [INSPIRE].
STAR collaboration, Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions, Phys. Rev. Lett.
114 (2015) 252302 [arXiv:1504.02175] [INSPIRE].
ALICE collaboration, Charge-dependent anisotropic flow studies and the search for the Chiral Magnetic Wave in ALICE, Nucl. Phys.
A 931 (2014) 981 [arXiv:1408.1043] [INSPIRE].
Q. Li et al., Observation of the chiral magnetic effect in ZrTe
5, Nature Phys.
12 (2016) 550 [arXiv:1412.6543] [INSPIRE].
C. Zhang et al., Signatures of the Adler-Bell-Jackiw chiral anomaly in a Weyl Fermion semimetal, Nature Commun.
7 (2016) 10735 [arXiv:1601.04208] [INSPIRE].
ADS
Article
Google Scholar
F. Arnold et al., Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP, Nature Commun.
7 (2016) 11615 [arXiv:1506.06577] [INSPIRE].
ADS
Article
Google Scholar
C. Zhang et al., Detection of chiral anomaly and valley transport in Dirac semimetals, Nature Commun.
8 (2017) 13741 [arXiv:1504.07698] [INSPIRE].
ADS
Article
Google Scholar
H.-J. Kim et al., Dirac versus Weyl Fermions in Topological Insulators: Adler-Bell-Jackiw Anomaly in Transport Phenomena, Phys. Rev. Lett.
111 (2013) 246603 [arXiv:1307.6990] [INSPIRE].
ADS
Article
Google Scholar
A. Cortijo, D. Kharzeev, K. Landsteiner and M.A.H. Vozmediano, Strain induced Chiral Magnetic Effect in Weyl semimetals, Phys. Rev.
B 94 (2016) 241405 [arXiv:1607.03491] [INSPIRE].
A. Yamamoto, Chiral magnetic effect in lattice QCD with a chiral chemical potential, Phys. Rev. Lett.
107 (2011) 031601 [arXiv:1105.0385] [INSPIRE].
V. Braguta, M.N. Chernodub, K. Landsteiner, M.I. Polikarpov and M.V. Ulybyshev, Numerical evidence of the axial magnetic effect, Phys. Rev.
D 88 (2013) 071501 [arXiv:1303.6266] [INSPIRE].
S.L. Adler and W.A. Bardeen, Absence of higher order corrections in the anomalous axial vector divergence equation, Phys. Rev.
182 (1969) 1517 [INSPIRE].
ADS
Article
Google Scholar
J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.
38 (1999) 1113 [Adv. Theor. Math. Phys.
2 (1998) 231] [hep-th/9711200] [INSPIRE].
S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett.
B 428 (1998) 105 [hep-th/9802109] [INSPIRE].
E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.
2 (1998) 253 [hep-th/9802150] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
K. Landsteiner, E. Megías and F. Peña-Benitez, Anomalous Transport from Kubo Formulae, Springer (2013), pp. 433-468.
U. Gürsoy and J. Tarrío, Horizon universality and anomalous conductivities, JHEP
10 (2015) 058 [arXiv:1410.1306] [INSPIRE].
S. Grozdanov and N. Poovuttikul, Universality of anomalous conductivities in theories with higher-derivative holographic duals, JHEP
09 (2016) 046 [arXiv:1603.08770] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
S. Golkar and D.T. Son, (Non)-renormalization of the chiral vortical effect coefficient, JHEP
02 (2015) 169 [arXiv:1207.5806] [INSPIRE].
S.D. Chowdhury and J.R. David, Global gravitational anomalies and transport, JHEP
12 (2016) 116 [arXiv:1604.05003] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
S. Golkar and S. Sethi, Global Anomalies and Effective Field Theory, JHEP
05 (2016) 105 [arXiv:1512.02607] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
P. Glorioso, H. Liu and S. Rajagopal, Global Anomalies, Discrete Symmetries and Hydrodynamic Effective Actions, JHEP
01 (2019) 043 [arXiv:1710.03768] [INSPIRE].
ADS
Article
MATH
Google Scholar
H.B. Nielsen and M. Ninomiya, Adler-Bell-Jackiw anomaly and Weyl fermions in crystal, Phys. Lett.
B 130 (1983) 389 [INSPIRE].
M.A. Metlitski and A.R. Zhitnitsky, Anomalous axion interactions and topological currents in dense matter, Phys. Rev.
D 72 (2005) 045011 [hep-ph/0505072] [INSPIRE].
E. D’Hoker and J. Goldstone, Derivative Expansion of the Fermion Number Current, Phys. Lett.
B 158 (1985) 429 [INSPIRE].
D.T. Son and P. Surowka, Hydrodynamics with Triangle Anomalies, Phys. Rev. Lett.
103 (2009) 191601 [arXiv:0906.5044] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
Y. Neiman and Y. Oz, Relativistic Hydrodynamics with General Anomalous Charges, JHEP
03 (2011) 023 [arXiv:1011.5107] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, Fluid dynamics of R-charged black holes, JHEP
01 (2009) 055 [arXiv:0809.2488] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
A. Gynther, K. Landsteiner, F. Pena-Benitez and A. Rebhan, Holographic Anomalous Conductivities and the Chiral Magnetic Effect, JHEP
02 (2011) 110 [arXiv:1005.2587] [INSPIRE].
ADS
Article
MATH
Google Scholar
I. Amado, K. Landsteiner and F. Pena-Benitez, Anomalous transport coefficients from Kubo formulas in Holography, JHEP
05 (2011) 081 [arXiv:1102.4577] [INSPIRE].
ADS
Article
MATH
Google Scholar
K. Landsteiner, E. Megias and F. Pena-Benitez, Gravitational Anomaly and Transport, Phys. Rev. Lett.
107 (2011) 021601 [arXiv:1103.5006] [INSPIRE].
K. Jensen, R. Loganayagam and A. Yarom, Thermodynamics, gravitational anomalies and cones, JHEP
02 (2013) 088 [arXiv:1207.5824] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
K. Jensen, P. Kovtun and A. Ritz, Chiral conductivities and effective field theory, JHEP
10 (2013) 186 [arXiv:1307.3234] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
K. Jensen, R. Loganayagam and A. Yarom, Chern-Simons terms from thermal circles and anomalies, JHEP
05 (2014) 110 [arXiv:1311.2935] [INSPIRE].
ADS
Article
Google Scholar
J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett.
B 37 (1971) 95 [INSPIRE].
N. Yamamoto, Generalized Bloch theorem and chiral transport phenomena, Phys. Rev.
D 92 (2015) 085011 [arXiv:1502.01547] [INSPIRE].
E.V. Gorbar, V.A. Miransky and I.A. Shovkovy, Normal ground state of dense relativistic matter in a magnetic field, Phys. Rev.
D 83 (2011) 085003 [arXiv:1101.4954] [INSPIRE].
E.V. Gorbar, V.A. Miransky and I.A. Shovkovy, Chiral asymmetry of the Fermi surface in dense relativistic matter in a magnetic field, Phys. Rev.
C 80 (2009) 032801 [arXiv:0904.2164] [INSPIRE].
E.V. Gorbar, V.A. Miransky and I.A. Shovkovy, Chiral asymmetry and axial anomaly in magnetized relativistic matter, Phys. Lett.
B 695 (2011) 354 [arXiv:1009.1656] [INSPIRE].
K. Fukushima and M. Ruggieri, Dielectric correction to the Chiral Magnetic Effect, Phys. Rev.
D 82 (2010) 054001 [arXiv:1004.2769] [INSPIRE].
E.V. Gorbar, V.A. Miransky, I.A. Shovkovy and X. Wang, Radiative corrections to chiral separation effect in QED, Phys. Rev.
D 88 (2013) 025025 [arXiv:1304.4606] [INSPIRE].
D.-F. Hou, H. Liu and H.-c. Ren, A Possible Higher Order Correction to the Vortical Conductivity in a Gauge Field Plasma, Phys. Rev.
D 86 (2012) 121703 [arXiv:1210.0969] [INSPIRE].
K. Jensen, P. Kovtun and A. Ritz, Chiral conductivities and effective field theory, JHEP
10 (2013) 186 [arXiv:1307.3234] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
U. Gürsoy and A. Jansen, (Non)renormalization of Anomalous Conductivities and Holography, JHEP
10 (2014) 092 [arXiv:1407.3282] [INSPIRE].
A. Jimenez-Alba, K. Landsteiner and L. Melgar, Anomalous magnetoresponse and the Stückelberg axion in holography, Phys. Rev.
D 90 (2014) 126004 [arXiv:1407.8162] [INSPIRE].
E. Vicari and H. Panagopoulos, Theta dependence of SU(N) gauge theories in the presence of a topological term, Phys. Rept.
470 (2009) 93 [arXiv:0803.1593] [INSPIRE].
U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Holography and Thermodynamics of 5D Dilaton-gravity, JHEP
05 (2009) 033 [arXiv:0812.0792] [INSPIRE].
E. Witten, Instantons, the Quark Model and the 1/n Expansion, Nucl. Phys.
B 149 (1979) 285 [INSPIRE].
G. Veneziano, U(1) Without Instantons, Nucl. Phys.
B 159 (1979) 213 [INSPIRE].
F. Bigazzi, R. Casero, A.L. Cotrone, E. Kiritsis and Á. Paredes, Non-critical holography and four-dimensional CFT’s with fundamentals, JHEP
10 (2005) 012 [hep-th/0505140] [INSPIRE].
R. Casero, C. Núñez and Á. Paredes, Towards the string dual of N = 1 SQCD-like theories, Phys. Rev.
D 73 (2006) 086005 [hep-th/0602027] [INSPIRE].
M. Järvinen and E. Kiritsis, Holographic Models for QCD in the Veneziano Limit, JHEP
03 (2012) 002 [arXiv:1112.1261] [INSPIRE].
Article
MATH
Google Scholar
S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear Fluid Dynamics from Gravity, JHEP
02 (2008) 045 [arXiv:0712.2456] [INSPIRE].
ADS
Article
Google Scholar
I.R. Klebanov, P. Ouyang and E. Witten, A Gravity dual of the chiral anomaly, Phys. Rev.
D 65 (2002) 105007 [hep-th/0202056] [INSPIRE].
R. Casero, E. Kiritsis and Á. Paredes, Chiral symmetry breaking as open string tachyon condensation, Nucl. Phys.
B 787 (2007) 98 [hep-th/0702155] [INSPIRE].
D. Arean, I. Iatrakis, M. Järvinen and E. Kiritsis, CP-odd sector and
θ
dynamics in holographic QCD, Phys. Rev.
D 96 (2017) 026001 [arXiv:1609.08922] [INSPIRE].
N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Jain, S. Minwalla and T. Sharma, Constraints on Fluid Dynamics from Equilibrium Partition Functions, JHEP
09 (2012) 046 [arXiv:1203.3544] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
Y. Neiman and Y. Oz, Relativistic Hydrodynamics with General Anomalous Charges, JHEP
03 (2011) 023 [arXiv:1011.5107] [INSPIRE].
ADS
MathSciNet
Article
MATH
Google Scholar
S.L. Adler, Anomalies to all orders, in 50 years of Yang-Mills theory, G. ’t Hooft ed., World Scientific (2005), pp. 187-228.