Skip to main content

Dynamical gauge fields and anomalous transport at strong coupling

A preprint version of the article is available at arXiv.

Abstract

Anomalous transport coefficients are known to be universal in the absence of dynamical gauge fields. We calculate the corrections to these universal values due to dynamical gluon fields at strong coupling, at finite temperature and finite density, using the holographic duality. We show that the consistent chiral magnetic and chiral vortical currents receive no corrections, while we derive a semi-analytic formula for the chiral separation conductivity. We determine these corrections in the large color, large flavor limit, in terms of a series expansion in the anomalous dimension Δ of the axial current in terms of physical parameters Δ, temperature, electric and chiral chemical potentials and the flavor to color ratio \( \frac{N_f}{N_c} \). Our results are applicable to a generic class of chiral gauge theories that allow for a holographic description in the gravity approximation. We also determine the dynamical gluon corrections to the chiral vortical separation current in a particular example in the absence of external axial fields.

References

  1. A. Vilenkin, Equilibrium parity violating current in a magnetic field, Phys. Rev. D 22 (1980) 3080 [INSPIRE].

  2. G.M. Newman and D.T. Son, Response of strongly-interacting matter to magnetic field: Some exact results, Phys. Rev. D 73 (2006) 045006 [hep-ph/0510049] [INSPIRE].

  3. K. Fukushima, D.E. Kharzeev and H.J. Warringa, The Chiral Magnetic Effect, Phys. Rev. D 78 (2008) 074033 [arXiv:0808.3382] [INSPIRE].

  4. D.E. Kharzeev, L.D. McLerran and H.J. Warringa, The Effects of topological charge change in heavy ion collisions:Event by event P and CP-violation’, Nucl. Phys. A 803 (2008) 227 [arXiv:0711.0950] [INSPIRE].

  5. K. Landsteiner, Notes on Anomaly Induced Transport, Acta Phys. Polon. B 47 (2016) 2617 [arXiv:1610.04413] [INSPIRE].

  6. J. Liao, Chiral Magnetic Effect in Heavy Ion Collisions, Nucl. Phys. A 956 (2016) 99 [arXiv:1601.00381] [INSPIRE].

  7. D.E. Kharzeev, J. Liao, S.A. Voloshin and G. Wang, Chiral magnetic and vortical effects in high-energy nuclear collisionsA status report, Prog. Part. Nucl. Phys. 88 (2016) 1 [arXiv:1511.04050] [INSPIRE].

  8. STAR collaboration, Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions, Phys. Rev. Lett. 114 (2015) 252302 [arXiv:1504.02175] [INSPIRE].

  9. ALICE collaboration, Charge-dependent anisotropic flow studies and the search for the Chiral Magnetic Wave in ALICE, Nucl. Phys. A 931 (2014) 981 [arXiv:1408.1043] [INSPIRE].

  10. Q. Li et al., Observation of the chiral magnetic effect in ZrTe 5, Nature Phys. 12 (2016) 550 [arXiv:1412.6543] [INSPIRE].

  11. C. Zhang et al., Signatures of the Adler-Bell-Jackiw chiral anomaly in a Weyl Fermion semimetal, Nature Commun. 7 (2016) 10735 [arXiv:1601.04208] [INSPIRE].

    ADS  Article  Google Scholar 

  12. F. Arnold et al., Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP, Nature Commun. 7 (2016) 11615 [arXiv:1506.06577] [INSPIRE].

    ADS  Article  Google Scholar 

  13. C. Zhang et al., Detection of chiral anomaly and valley transport in Dirac semimetals, Nature Commun. 8 (2017) 13741 [arXiv:1504.07698] [INSPIRE].

    ADS  Article  Google Scholar 

  14. H.-J. Kim et al., Dirac versus Weyl Fermions in Topological Insulators: Adler-Bell-Jackiw Anomaly in Transport Phenomena, Phys. Rev. Lett. 111 (2013) 246603 [arXiv:1307.6990] [INSPIRE].

    ADS  Article  Google Scholar 

  15. A. Cortijo, D. Kharzeev, K. Landsteiner and M.A.H. Vozmediano, Strain induced Chiral Magnetic Effect in Weyl semimetals, Phys. Rev. B 94 (2016) 241405 [arXiv:1607.03491] [INSPIRE].

  16. A. Yamamoto, Chiral magnetic effect in lattice QCD with a chiral chemical potential, Phys. Rev. Lett. 107 (2011) 031601 [arXiv:1105.0385] [INSPIRE].

  17. V. Braguta, M.N. Chernodub, K. Landsteiner, M.I. Polikarpov and M.V. Ulybyshev, Numerical evidence of the axial magnetic effect, Phys. Rev. D 88 (2013) 071501 [arXiv:1303.6266] [INSPIRE].

  18. S.L. Adler and W.A. Bardeen, Absence of higher order corrections in the anomalous axial vector divergence equation, Phys. Rev. 182 (1969) 1517 [INSPIRE].

    ADS  Article  Google Scholar 

  19. J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [INSPIRE].

  20. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

  21. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  22. K. Landsteiner, E. Megías and F. Peña-Benitez, Anomalous Transport from Kubo Formulae, Springer (2013), pp. 433-468.

  23. U. Gürsoy and J. Tarrío, Horizon universality and anomalous conductivities, JHEP 10 (2015) 058 [arXiv:1410.1306] [INSPIRE].

  24. S. Grozdanov and N. Poovuttikul, Universality of anomalous conductivities in theories with higher-derivative holographic duals, JHEP 09 (2016) 046 [arXiv:1603.08770] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  25. S. Golkar and D.T. Son, (Non)-renormalization of the chiral vortical effect coefficient, JHEP 02 (2015) 169 [arXiv:1207.5806] [INSPIRE].

  26. S.D. Chowdhury and J.R. David, Global gravitational anomalies and transport, JHEP 12 (2016) 116 [arXiv:1604.05003] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  27. S. Golkar and S. Sethi, Global Anomalies and Effective Field Theory, JHEP 05 (2016) 105 [arXiv:1512.02607] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  28. P. Glorioso, H. Liu and S. Rajagopal, Global Anomalies, Discrete Symmetries and Hydrodynamic Effective Actions, JHEP 01 (2019) 043 [arXiv:1710.03768] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  29. H.B. Nielsen and M. Ninomiya, Adler-Bell-Jackiw anomaly and Weyl fermions in crystal, Phys. Lett. B 130 (1983) 389 [INSPIRE].

  30. M.A. Metlitski and A.R. Zhitnitsky, Anomalous axion interactions and topological currents in dense matter, Phys. Rev. D 72 (2005) 045011 [hep-ph/0505072] [INSPIRE].

  31. E. D’Hoker and J. Goldstone, Derivative Expansion of the Fermion Number Current, Phys. Lett. B 158 (1985) 429 [INSPIRE].

  32. D.T. Son and P. Surowka, Hydrodynamics with Triangle Anomalies, Phys. Rev. Lett. 103 (2009) 191601 [arXiv:0906.5044] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  33. Y. Neiman and Y. Oz, Relativistic Hydrodynamics with General Anomalous Charges, JHEP 03 (2011) 023 [arXiv:1011.5107] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  34. J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, Fluid dynamics of R-charged black holes, JHEP 01 (2009) 055 [arXiv:0809.2488] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  35. A. Gynther, K. Landsteiner, F. Pena-Benitez and A. Rebhan, Holographic Anomalous Conductivities and the Chiral Magnetic Effect, JHEP 02 (2011) 110 [arXiv:1005.2587] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  36. I. Amado, K. Landsteiner and F. Pena-Benitez, Anomalous transport coefficients from Kubo formulas in Holography, JHEP 05 (2011) 081 [arXiv:1102.4577] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  37. K. Landsteiner, E. Megias and F. Pena-Benitez, Gravitational Anomaly and Transport, Phys. Rev. Lett. 107 (2011) 021601 [arXiv:1103.5006] [INSPIRE].

  38. K. Jensen, R. Loganayagam and A. Yarom, Thermodynamics, gravitational anomalies and cones, JHEP 02 (2013) 088 [arXiv:1207.5824] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  39. K. Jensen, P. Kovtun and A. Ritz, Chiral conductivities and effective field theory, JHEP 10 (2013) 186 [arXiv:1307.3234] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  40. K. Jensen, R. Loganayagam and A. Yarom, Chern-Simons terms from thermal circles and anomalies, JHEP 05 (2014) 110 [arXiv:1311.2935] [INSPIRE].

    ADS  Article  Google Scholar 

  41. J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. B 37 (1971) 95 [INSPIRE].

  42. N. Yamamoto, Generalized Bloch theorem and chiral transport phenomena, Phys. Rev. D 92 (2015) 085011 [arXiv:1502.01547] [INSPIRE].

  43. E.V. Gorbar, V.A. Miransky and I.A. Shovkovy, Normal ground state of dense relativistic matter in a magnetic field, Phys. Rev. D 83 (2011) 085003 [arXiv:1101.4954] [INSPIRE].

  44. E.V. Gorbar, V.A. Miransky and I.A. Shovkovy, Chiral asymmetry of the Fermi surface in dense relativistic matter in a magnetic field, Phys. Rev. C 80 (2009) 032801 [arXiv:0904.2164] [INSPIRE].

  45. E.V. Gorbar, V.A. Miransky and I.A. Shovkovy, Chiral asymmetry and axial anomaly in magnetized relativistic matter, Phys. Lett. B 695 (2011) 354 [arXiv:1009.1656] [INSPIRE].

  46. K. Fukushima and M. Ruggieri, Dielectric correction to the Chiral Magnetic Effect, Phys. Rev. D 82 (2010) 054001 [arXiv:1004.2769] [INSPIRE].

  47. E.V. Gorbar, V.A. Miransky, I.A. Shovkovy and X. Wang, Radiative corrections to chiral separation effect in QED, Phys. Rev. D 88 (2013) 025025 [arXiv:1304.4606] [INSPIRE].

  48. D.-F. Hou, H. Liu and H.-c. Ren, A Possible Higher Order Correction to the Vortical Conductivity in a Gauge Field Plasma, Phys. Rev. D 86 (2012) 121703 [arXiv:1210.0969] [INSPIRE].

  49. K. Jensen, P. Kovtun and A. Ritz, Chiral conductivities and effective field theory, JHEP 10 (2013) 186 [arXiv:1307.3234] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  50. U. Gürsoy and A. Jansen, (Non)renormalization of Anomalous Conductivities and Holography, JHEP 10 (2014) 092 [arXiv:1407.3282] [INSPIRE].

  51. A. Jimenez-Alba, K. Landsteiner and L. Melgar, Anomalous magnetoresponse and the Stückelberg axion in holography, Phys. Rev. D 90 (2014) 126004 [arXiv:1407.8162] [INSPIRE].

  52. E. Vicari and H. Panagopoulos, Theta dependence of SU(N) gauge theories in the presence of a topological term, Phys. Rept. 470 (2009) 93 [arXiv:0803.1593] [INSPIRE].

  53. U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Holography and Thermodynamics of 5D Dilaton-gravity, JHEP 05 (2009) 033 [arXiv:0812.0792] [INSPIRE].

  54. E. Witten, Instantons, the Quark Model and the 1/n Expansion, Nucl. Phys. B 149 (1979) 285 [INSPIRE].

  55. G. Veneziano, U(1) Without Instantons, Nucl. Phys. B 159 (1979) 213 [INSPIRE].

  56. F. Bigazzi, R. Casero, A.L. Cotrone, E. Kiritsis and Á. Paredes, Non-critical holography and four-dimensional CFTs with fundamentals, JHEP 10 (2005) 012 [hep-th/0505140] [INSPIRE].

  57. R. Casero, C. Núñez and Á. Paredes, Towards the string dual of N = 1 SQCD-like theories, Phys. Rev. D 73 (2006) 086005 [hep-th/0602027] [INSPIRE].

  58. M. Järvinen and E. Kiritsis, Holographic Models for QCD in the Veneziano Limit, JHEP 03 (2012) 002 [arXiv:1112.1261] [INSPIRE].

    Article  MATH  Google Scholar 

  59. S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear Fluid Dynamics from Gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].

    ADS  Article  Google Scholar 

  60. I.R. Klebanov, P. Ouyang and E. Witten, A Gravity dual of the chiral anomaly, Phys. Rev. D 65 (2002) 105007 [hep-th/0202056] [INSPIRE].

  61. R. Casero, E. Kiritsis and Á. Paredes, Chiral symmetry breaking as open string tachyon condensation, Nucl. Phys. B 787 (2007) 98 [hep-th/0702155] [INSPIRE].

  62. D. Arean, I. Iatrakis, M. Järvinen and E. Kiritsis, CP-odd sector and θ dynamics in holographic QCD, Phys. Rev. D 96 (2017) 026001 [arXiv:1609.08922] [INSPIRE].

  63. N. Banerjee, J. Bhattacharya, S. Bhattacharyya, S. Jain, S. Minwalla and T. Sharma, Constraints on Fluid Dynamics from Equilibrium Partition Functions, JHEP 09 (2012) 046 [arXiv:1203.3544] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  64. Y. Neiman and Y. Oz, Relativistic Hydrodynamics with General Anomalous Charges, JHEP 03 (2011) 023 [arXiv:1011.5107] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  65. S.L. Adler, Anomalies to all orders, in 50 years of Yang-Mills theory, G. ’t Hooft ed., World Scientific (2005), pp. 187-228.

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Gallegos.

Additional information

ArXiv ePrint: 1806.07138

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gallegos, A.D., Gürsoy, U. Dynamical gauge fields and anomalous transport at strong coupling. J. High Energ. Phys. 2019, 1 (2019). https://doi.org/10.1007/JHEP05(2019)001

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2019)001

Keywords

  • AdS-CFT Correspondence
  • Gauge-gravity correspondence
  • Holography and quark-gluon plasmas