Skip to main content

Gravitational couplings in \( \mathcal{N}=2 \) string compactifications and Mathieu Moonshine

A preprint version of the article is available at arXiv.

Abstract

We evaluate the low energy gravitational couplings, Fg in the heterotic E8 ×E8 string theory compactified on orbifolds of K3 × T 2 by g which acts as a ℤN automorphism on K3 together with a 1/N shift along T 2. The orbifold g corresponds to the conjugacy classes of the Mathieu group M24. The holomorphic piece of Fg is given in terms of a polylogarithm with index 3−2g and predicts the Gopakumar-Vafa invariants in the corresponding dual type II Calabi-Yau compactifications. We show that low lying Gopakumar-Vafa invariants for each of these compactifications including the twisted sectors are integers. We observe that the conifold singularity for all these compactifications occurs only when states in the twisted sectors become massless and the strength of the singularity is determined by the genus zero Gopakumar-Vafa invariant at this point in the moduli space.

References

  1. J.A. Harvey and G.W. Moore, Five-brane instantons and R 2 couplings in N = 4 string theory, Phys. Rev. D 57 (1998) 2323 [hep-th/9610237] [INSPIRE].

    ADS  Google Scholar 

  2. A. Gregori, E. Kiritsis, C. Kounnas, N.A. Obers, P.M. Petropoulos and B. Pioline, R 2 corrections and nonperturbative dualities of N = 4 string ground states, Nucl. Phys. B 510 (1998) 423 [hep-th/9708062] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. I. Antoniadis, E. Gava and K.S. Narain, Moduli corrections to gravitational couplings from string loops, Phys. Lett. B 283 (1992) 209 [hep-th/9203071] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. I. Antoniadis, E. Gava and K.S. Narain, Moduli corrections to gauge and gravitational couplings in four-dimensional superstrings, Nucl. Phys. B 383 (1992) 93 [hep-th/9204030] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. I. Antoniadis, E. Gava, K.S. Narain and T.R. Taylor, Topological amplitudes in string theory, Nucl. Phys. B 413 (1994) 162 [hep-th/9307158] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  6. M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Holomorphic anomalies in topological field theories, Nucl. Phys. B 405 (1993) 279 [hep-th/9302103] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa, Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Commun. Math. Phys. 165 (1994) 311 [hep-th/9309140] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. I. Antoniadis, E. Gava, K.S. Narain and T.R. Taylor, N = 2 type-II heterotic duality and higher derivative F terms, Nucl. Phys. B 455 (1995) 109 [hep-th/9507115] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  9. J.A. Harvey and G.W. Moore, Algebras, BPS states and strings, Nucl. Phys. B 463 (1996) 315 [hep-th/9510182] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. M. Mariño and G.W. Moore, Counting higher genus curves in a Calabi-Yau manifold, Nucl. Phys. B 543 (1999) 592 [hep-th/9808131] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. S. Kachru and C. Vafa, Exact results for N = 2 compactifications of heterotic strings, Nucl. Phys. B 450 (1995) 69 [hep-th/9505105] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. A. Klemm, W. Lerche and P. Mayr, K3 fibrations and heterotic type-II string duality, Phys. Lett. B 357 (1995) 313 [hep-th/9506112] [INSPIRE].

  13. P. Mayr and S. Stieberger, Moduli dependence of one loop gauge couplings in (0, 2) compactifications, Phys. Lett. B 355 (1995) 107 [hep-th/9504129] [INSPIRE].

  14. B. de Wit, V. Kaplunovsky, J. Louis and D. Lüst, Perturbative couplings of vector multiplets in N = 2 heterotic string vacua, Nucl. Phys. B 451 (1995) 53 [hep-th/9504006] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. B. de Wit, G. Lopes Cardoso, D. Lüst, T. Mohaupt and S.-J. Rey, Higher order gravitational couplings and modular forms in N = 2, D = 4 heterotic string compactifications, Nucl. Phys. B 481 (1996) 353 [hep-th/9607184] [INSPIRE].

  16. G. Lopes Cardoso, G. Curio and D. Lüst, Perturbative couplings and modular forms in N = 2 string models with a Wilson line, Nucl. Phys. B 491 (1997) 147 [hep-th/9608154] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. S. Stieberger, (0, 2) heterotic gauge couplings and their M-theory origin, Nucl. Phys. B 541 (1999) 109 [hep-th/9807124] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. R. Gopakumar and C. Vafa, M theory and topological strings. 1, hep-th/9809187 [INSPIRE].

  19. R. Gopakumar and C. Vafa, M theory and topological strings. 2, hep-th/9812127 [INSPIRE].

  20. S. Datta, J.R. David and D. Lüst, Heterotic string on the CHL orbifold of K3, JHEP 02 (2016) 056 [arXiv:1510.05425] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. A. Chattopadhyaya and J.R. David, N = 2 heterotic string compactifications on orbifolds of KT 2, JHEP 01 (2017) 037[arXiv:1611.01893] [INSPIRE].

    ADS  Article  Google Scholar 

  22. M.C.N. Cheng, X. Dong, J. Duncan, J. Harvey, S. Kachru and T. Wrase, Mathieu moonshine and N = 2 string compactifications, JHEP 09 (2013) 030 [arXiv:1306.4981] [INSPIRE].

    ADS  Article  Google Scholar 

  23. M. Henningson and G.W. Moore, Threshold corrections in K3 × T 2 heterotic string compactifications, Nucl. Phys. B 482 (1996) 187 [hep-th/9608145] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. A. Banlaki, A. Chowdhury, A. Kidambi, M. Schimpf, H. Skarke and T. Wrase, Calabi-Yau manifolds and sporadic groups, JHEP 02 (2018) 129 [arXiv:1711.09698] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. T. Eguchi, H. Ooguri and Y. Tachikawa, Notes on the K3 surface and the Mathieu group M 24, Exper. Math. 20 (2011) 91 [arXiv:1004.0956] [INSPIRE].

    Article  Google Scholar 

  26. M.C.N. Cheng, K3 surfaces, N = 4 dyons and the Mathieu group M 24, Commun. Num. Theor. Phys. 4 (2010) 623 [arXiv:1005.5415] [INSPIRE].

  27. M.R. Gaberdiel, S. Hohenegger and R. Volpato, Mathieu twining characters for K3, JHEP 09 (2010) 058 [arXiv:1006.0221] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. T. Eguchi and K. Hikami, Note on twisted elliptic genus of K3 surface Phys. Lett. B 694 (2011) 446 [arXiv:1008.4924] [INSPIRE].

  29. A. Chattopadhyaya and J.R. David, Dyon degeneracies from Mathieu moonshine symmetry, Phys. Rev. D 96 (2017) 086020 [arXiv:1704.00434] [INSPIRE].

  30. M.R. Gaberdiel, D. Persson, H. Ronellenfitsch and R. Volpato, Generalized Mathieu moonshine, Commun. Num. Theor Phys. 07 (2013) 145 [arXiv:1211.7074] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  31. L.J. Dixon, V. Kaplunovsky and J. Louis, Moduli dependence of string loop corrections to gauge coupling constants, Nucl. Phys. B 355 (1991) 649 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  32. I. Florakis and B. Pioline, On the Rankin-Selberg method for higher genus string amplitudes, Commun. Num. Theor. Phys. 11 (2017) 337 [arXiv:1602.00308] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  33. R.E. Borcherds, Automorphic forms with singularities on Grassmannians, Invent. Math. 132 (1998) 491 [alg-geom/9609022] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  34. A. Klemm and M. Mariño, Counting BPS states on the Enriques Calabi-Yau, Commun. Math. Phys. 280 (2008) 27 [hep-th/0512227] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  35. M. Weiss, Topological amplitudes in heterotic strings with Wilson lines, JHEP 08 (2007) 024 [arXiv:0705.3112] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  36. G.W. Moore and E. Witten, Integration over the u plane in Donaldson theory, Adv. Theor. Math. Phys. 1 (1997) 298 [hep-th/9709193] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  37. E. Kiritsis, N.A. Obers and B. Pioline, Heterotic/type-II triality and instantons on K 3, JHEP 01 (2000) 029 [hep-th/0001083] [INSPIRE].

    ADS  Article  Google Scholar 

  38. J.R. David, D.P. Jatkar and A. Sen, Product representation of dyon partition function in CHL models, JHEP 06 (2006) 064 [hep-th/0602254] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  39. J.R. David, D.P. Jatkar and A. Sen, Dyon spectrum in generic N = 4 supersymmetric Z N orbifolds, JHEP 01 (2007) 016 [hep-th/0609109] [INSPIRE].

  40. Calabi-Yau data webpage, http://hep.itp.tuwien.ac.at/~kreuzer/CY/.

  41. M. Mariño, Enumerative geometry and knot invariants, in 70th Meeting between Physicists, Theorist and Mathematicians, Strasbourg France, 23-25 May 2002 [hep-th/0210145] [INSPIRE].

  42. S. Katz, A. Klemm and R. Pandharipande, On the motivic stable pairs invariants of K3 surfaces, arXiv:1407.3181 [INSPIRE].

  43. M.C.N. Cheng, J.F.R. Duncan, S.M. Harrison and S. Kachru, Equivariant K3 invariants, Commun. Num. Theor. Phys. 11 (2017) 41 [arXiv:1508.02047] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  44. J.A. Harvey and G.W. Moore, Conway subgroup symmetric compactifications of heterotic string, arXiv:1712.07986 [INSPIRE].

  45. C. Angelantonj, D. Israel and M. Sarkis, Threshold corrections in heterotic flux compactifications, JHEP 08 (2017) 032 [arXiv:1611.09442] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  46. D. Persson and R. Volpato, Fricke S-duality in CHL models, JHEP 12 (2015) 156 [arXiv:1504.07260] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  47. D. Persson and R. Volpato, Dualities in CHL-models, J. Phys. A 51 (2018) 164002 [arXiv:1704.00501] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  48. G. Bossard, C. Cosnier-Horeau and B. Pioline, Four-derivative couplings and BPS dyons in heterotic CHL orbifolds, SciPost Phys. 3 (2017) 008 [arXiv:1702.01926] [INSPIRE].

    ADS  Article  Google Scholar 

  49. V. Braun, On free quotients of complete intersection Calabi-Yau manifolds, JHEP 04 (2011) 005 [arXiv:1003.3235] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  50. C. Hull, D. Israel and A. Sarti, Non-geometric Calabi-Yau backgrounds and K3 automorphisms, JHEP 11 (2017) 084 [arXiv:1710.00853] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  51. W. Lerche, A.N. Schellekens and N.P. Warner, Lattices and strings, Phys. Rept. 177 (1989) 1 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  52. M.R. Gaberdiel, A. Taormina, R. Volpato and K. Wendland, A K3 σ-model with Z 82 : M 20 symmetry, JHEP 02 (2014) 022 [arXiv:1309.4127] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aradhita Chattopadhyaya.

Additional information

ArXiv ePrint: 1712.08791

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chattopadhyaya, A., David, J.R. Gravitational couplings in \( \mathcal{N}=2 \) string compactifications and Mathieu Moonshine. J. High Energ. Phys. 2018, 211 (2018). https://doi.org/10.1007/JHEP05(2018)211

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2018)211

Keywords

  • Superstrings and Heterotic Strings
  • Discrete Symmetries
  • Topological Strings