Lie-algebraic classification of effective theories with enhanced soft limits

  • Mark P. Bogers
  • Tomáš BraunerEmail author
Open Access
Regular Article - Theoretical Physics


A great deal of effort has recently been invested in developing methods of calculating scattering amplitudes that bypass the traditional construction based on Lagrangians and Feynman rules. Motivated by this progress, we investigate the long-wavelength behavior of scattering amplitudes of massless scalar particles: Nambu-Goldstone (NG) bosons. The low-energy dynamics of NG bosons is governed by the underlying spontaneously broken symmetry, which likewise allows one to bypass the Lagrangian and connect the scaling of the scattering amplitudes directly to the Lie algebra of the symmetry generators. We focus on theories with enhanced soft limits, where the scattering amplitudes scale with a higher power of momentum than expected based on the mere existence of Adler’s zero. Our approach is complementary to that developed recently in ref. [1], and in the first step we reproduce their result. That is, as far as Lorentz-invariant theories with a single physical NG boson are concerned, we find no other nontrivial theories featuring enhanced soft limits beyond the already well-known ones: the Galileon and the Dirac-Born-Infeld (DBI) scalar. Next, we show that in a certain sense, these theories do not admit a nontrivial generalization to non-Abelian internal symmetries. Namely, for compact internal symmetry groups, all NG bosons featuring enhanced soft limits necessarily belong to the center of the group. For noncompact symmetry groups such as the ISO(n) group featured by some multi-Galileon theories, these NG bosons then necessarily belong to an Abelian normal subgroup. The Lie-algebraic consistency constraints admit two infinite classes of solutions, generalizing the known multi-Galileon and multi-flavor DBI theories.


Effective Field Theories Global Symmetries Spontaneous Symmetry Breaking Scattering Amplitudes 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    C. Cheung, K. Kampf, J. Novotný, C.-H. Shen and J. Trnka, A Periodic Table of Effective Field Theories, JHEP 02 (2017) 020 [arXiv:1611.03137] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    D.A. Kosower, Extending an Alternative to Feynman Diagrams, APS Phys. 9 (2016) 15.Google Scholar
  3. [3]
    H. Elvang and Y.-t. Huang, Scattering Amplitudes, arXiv:1308.1697 [INSPIRE].
  4. [4]
    P. Benincasa, New structures in scattering amplitudes: a review, Int. J. Mod. Phys. A 29 (2014) 1430005 [arXiv:1312.5583] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  5. [5]
    C. Cheung, TASI Lectures on Scattering Amplitudes, arXiv:1708.03872 [INSPIRE].
  6. [6]
    F.A. Berends and W.T. Giele, Recursive Calculations for Processes with n Gluons, Nucl. Phys. B 306 (1988) 759 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    C. Cheung, C.-H. Shen and J. Trnka, Simple recursion relations for general field theories, JHEP 06 (2015) 118 [arXiv:1502.05057] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  9. [9]
    M. Maniatis, Scattering amplitudes abandoning virtual particles, arXiv:1511.03574 [INSPIRE].
  10. [10]
    I. Low and Z. Yin, Ward Identity and Scattering Amplitudes for Nonlinear σ-models, Phys. Rev. Lett. 120 (2018) 061601 [arXiv:1709.08639] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of Massless Particles in Arbitrary Dimensions, Phys. Rev. Lett. 113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    C. Baadsgaard, N.E.J. Bjerrum-Bohr, J.L. Bourjaily, S. Caron-Huot, P.H. Damgaard and B. Feng, New Representations of the Perturbative S-matrix, Phys. Rev. Lett. 116 (2016) 061601 [arXiv:1509.02169] [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    K. Kampf, J. Novotný and J. Trnka, Recursion relations for tree-level amplitudes in the SU(N) nonlinear σ-model, Phys. Rev. D 87 (2013) 081701 [arXiv:1212.5224] [INSPIRE].ADSGoogle Scholar
  14. [14]
    C. Cheung, K. Kampf, J. Novotný, C.-H. Shen and J. Trnka, On-Shell Recursion Relations for Effective Field Theories, Phys. Rev. Lett. 116 (2016) 041601 [arXiv:1509.03309] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    H. Lüo and C. Wen, Recursion relations from soft theorems, JHEP 03 (2016) 088 [arXiv:1512.06801] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    H. Watanabe and A. Vishwanath, Criterion for stability of Goldstone Modes and Fermi Liquid behavior in a metal with broken symmetry, Proc. Nat. Acad. Sci. 111 (2014) 16314 [arXiv:1404.3728] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    Y.-t. Huang and C. Wen, Soft theorems from anomalous symmetries, JHEP 12 (2015) 143 [arXiv:1509.07840] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  18. [18]
    I.Z. Rothstein and P. Shrivastava, Symmetry Realization via a Dynamical Inverse Higgs Mechanism, arXiv:1712.07795 [INSPIRE].
  19. [19]
    C. Cheung, K. Kampf, J. Novotný and J. Trnka, Effective Field Theories from Soft Limits of Scattering Amplitudes, Phys. Rev. Lett. 114 (2015) 221602 [arXiv:1412.4095] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    I. Low, Adler’s zero and effective Lagrangians for nonlinearly realized symmetry, Phys. Rev. D 91 (2015) 105017 [arXiv:1412.2145] [INSPIRE].ADSMathSciNetGoogle Scholar
  21. [21]
    F. Cachazo, P. Cha and S. Mizera, Extensions of Theories from Soft Limits, JHEP 06 (2016) 170 [arXiv:1604.03893] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    R. Kallosh, Nonlinear (super)symmetries and amplitudes, JHEP 03 (2017) 038 [arXiv:1609.09123] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    A. Karlsson, H. Lüo and D. Murli, Tree amplitudes from nonlinear supersymmetries in the Volkov-Akulov theory, Phys. Rev. D 97 (2018) 045019 [arXiv:1705.10339] [INSPIRE].ADSMathSciNetGoogle Scholar
  24. [24]
    N. Arkani-Hamed, F. Cachazo and J. Kaplan, What is the simplest quantum field theory?, JHEP 09 (2010) 016 [arXiv:0808.1446] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    F. Cachazo, S. He and E.Y. Yuan, New double soft emission theorems, Phys. Rev. D 92 (2015) 065030 [arXiv:1503.04816] [INSPIRE].ADSMathSciNetGoogle Scholar
  26. [26]
    Y.-J. Du and H. Lüo, On single and double soft behaviors in NLSM, JHEP 08 (2015) 058 [arXiv:1505.04411] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    I. Low, Double soft theorems and shift symmetry in nonlinear σ-models, Phys. Rev. D 93 (2016) 045032 [arXiv:1512.01232] [INSPIRE].ADSMathSciNetGoogle Scholar
  28. [28]
    B. Bellazzini, Softness and amplitudes’ positivity for spinning particles, JHEP 02 (2017) 034 [arXiv:1605.06111] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    M. Bianchi, A.L. Guerrieri, Y.-t. Huang, C.-J. Lee and C. Wen, Exploring soft constraints on effective actions, JHEP 10 (2016) 036 [arXiv:1605.08697] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    A. Padilla, D. Stefanyszyn and T. Wilson, Probing scalar effective field theories with the soft limits of scattering amplitudes, JHEP 04 (2017) 015 [arXiv:1612.04283] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    T.L. Curtright and D.B. Fairlie, A Galileon Primer, arXiv:1212.6972 [INSPIRE].
  32. [32]
    C. Deffayet and D.A. Steer, A formal introduction to Horndeski and Galileon theories and their generalizations, Class. Quant. Grav. 30 (2013) 214006 [arXiv:1307.2450] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    C. Deffayet, S. Deser and G. Esposito-Farèse, Arbitrary p-form Galileons, Phys. Rev. D 82 (2010) 061501 [arXiv:1007.5278] [INSPIRE].ADSGoogle Scholar
  34. [34]
    A. Padilla, P.M. Saffin and S.-Y. Zhou, Bi-galileon theory I: Motivation and formulation, JHEP 12 (2010) 031 [arXiv:1007.5424] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  35. [35]
    K. Hinterbichler, M. Trodden and D. Wesley, Multi-field galileons and higher co-dimension branes, Phys. Rev. D 82 (2010) 124018 [arXiv:1008.1305] [INSPIRE].ADSGoogle Scholar
  36. [36]
    M. Trodden and K. Hinterbichler, Generalizing Galileons, Class. Quant. Grav. 28 (2011) 204003 [arXiv:1104.2088] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  37. [37]
    E. Allys, New terms for scalar multi-Galileon models and application to SO(N) and SU(N) group representations, Phys. Rev. D 95 (2017) 064051 [arXiv:1612.01972] [INSPIRE].ADSMathSciNetGoogle Scholar
  38. [38]
    C. de Rham and A.J. Tolley, DBI and the Galileon reunited, JCAP 05 (2010) 015 [arXiv:1003.5917] [INSPIRE].CrossRefGoogle Scholar
  39. [39]
    K. Hinterbichler and A. Joyce, Hidden symmetry of the Galileon, Phys. Rev. D 92 (2015) 023503 [arXiv:1501.07600] [INSPIRE].ADSMathSciNetGoogle Scholar
  40. [40]
    J. Noller, V. Sivanesan and M. von Strauss, On extended symmetries for the Galileon, Phys. Rev. D 92 (2015) 064009 [arXiv:1506.03446] [INSPIRE].ADSGoogle Scholar
  41. [41]
    J. Novotny, Geometry of special Galileons, Phys. Rev. D 95 (2017) 065019 [arXiv:1612.01738] [INSPIRE].ADSMathSciNetGoogle Scholar
  42. [42]
    K. Hinterbichler and A. Joyce, Goldstones with Extended Shift Symmetries, Int. J. Mod. Phys. D 23 (2014) 1443001 [arXiv:1404.4047] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    T. Griffin, K.T. Grosvenor, P. Hořava and Z. Yan, Scalar Field Theories with Polynomial Shift Symmetries, Commun. Math. Phys. 340 (2015) 985 [arXiv:1412.1046] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  44. [44]
    T. Griffin, K.T. Grosvenor, P. Hořava and Z. Yan, Cascading Multicriticality in Nonrelativistic Spontaneous Symmetry Breaking, Phys. Rev. Lett. 115 (2015) 241601 [arXiv:1507.06992] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    S.R. Coleman and J. Mandula, All Possible Symmetries of the S Matrix, Phys. Rev. 159 (1967) 1251 [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    I. Low and A.V. Manohar, Spontaneously broken space-time symmetries and Goldstone’s theorem, Phys. Rev. Lett. 88 (2002) 101602 [hep-th/0110285] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    H. Watanabe and H. Murayama, Redundancies in Nambu-Goldstone Bosons, Phys. Rev. Lett. 110 (2013) 181601 [arXiv:1302.4800] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    H. Watanabe and T. Brauner, On the number of Nambu-Goldstone bosons and its relation to charge densities, Phys. Rev. D 84 (2011) 125013 [arXiv:1109.6327] [INSPIRE].ADSGoogle Scholar
  49. [49]
    H. Watanabe and H. Murayama, Unified Description of Nambu-Goldstone Bosons without Lorentz Invariance, Phys. Rev. Lett. 108 (2012) 251602 [arXiv:1203.0609] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    Y. Hidaka, Counting rule for Nambu-Goldstone modes in nonrelativistic systems, Phys. Rev. Lett. 110 (2013) 091601 [arXiv:1203.1494] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    H. Watanabe and H. Murayama, Effective Lagrangian for Nonrelativistic Systems, Phys. Rev. X 4 (2014) 031057 [arXiv:1402.7066] [INSPIRE].CrossRefGoogle Scholar
  52. [52]
    T. Brauner and S. Moroz, Topological interactions of Nambu-Goldstone bosons in quantum many-body systems, Phys. Rev. D 90 (2014) 121701 [arXiv:1405.2670] [INSPIRE].ADSGoogle Scholar
  53. [53]
    J.O. Andersen, T. Brauner, C.P. Hofmann and A. Vuorinen, Effective Lagrangians for quantum many-body systems, JHEP 08 (2014) 088 [arXiv:1406.3439] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    T. Brauner and H. Watanabe, Spontaneous breaking of spacetime symmetries and the inverse Higgs effect, Phys. Rev. D 89 (2014) 085004 [arXiv:1401.5596] [INSPIRE].ADSGoogle Scholar
  55. [55]
    M.P. Bogers and T. Brauner, The Geometry of Multi-Flavor Galileon-Like Theories, arXiv:1802.08107 [INSPIRE].
  56. [56]
    C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2., Phys. Rev. 177 (1969) 2247 [INSPIRE].
  57. [57]
    D.V. Volkov, Phenomenological Lagrangians, Fiz. Elem. Chast. Atom. Yadra 4 (1973) 3.MathSciNetGoogle Scholar
  58. [58]
    V. Ogievetsky, Nonlinear realizations of internal and spacetime symmetries, Acta Univ. Wratislaviensis 207 (1974) 117.Google Scholar
  59. [59]
    P. Creminelli, M. Serone and E. Trincherini, Non-linear Representations of the Conformal Group and Mapping of Galileons, JHEP 10 (2013) 040 [arXiv:1306.2946] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    A. Nicolis, R. Penco and R.A. Rosen, Relativistic Fluids, Superfluids, Solids and Supersolids from a Coset Construction, Phys. Rev. D 89 (2014) 045002 [arXiv:1307.0517] [INSPIRE].ADSGoogle Scholar
  61. [61]
    P. Creminelli, M. Serone, G. Trevisan and E. Trincherini, Inequivalence of Coset Constructions for Spacetime Symmetries, JHEP 02 (2015) 037 [arXiv:1403.3095] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  62. [62]
    G. Goon, A. Joyce and M. Trodden, Spontaneously Broken Gauge Theories and the Coset Construction, Phys. Rev. D 90 (2014) 025022 [arXiv:1405.5532] [INSPIRE].ADSGoogle Scholar
  63. [63]
    L.V. Delacrétaz, S. Endlich, A. Monin, R. Penco and F. Riva, (Re-)Inventing the Relativistic Wheel: Gravity, Cosets and Spinning Objects, JHEP 11 (2014) 008 [arXiv:1405.7384] [INSPIRE].
  64. [64]
    A. Nicolis, R. Penco, F. Piazza and R. Rattazzi, Zoology of condensed matter: Framids, ordinary stuff, extra-ordinary stuff, JHEP 06 (2015) 155 [arXiv:1501.03845] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  65. [65]
    A.A. Zheltukhin, Gauge theory approach to branes and spontaneous symmetry breaking, Rev. Math. Phys. 29 (2017) 1750009 [arXiv:1509.00496] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  66. [66]
    E. Witten, Global aspects of current algebra, Nucl. Phys. B 223 (1983) 422 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  67. [67]
    E. D’Hoker and S. Weinberg, General effective actions, Phys. Rev. D 50 (1994) R6050 [hep-ph/9409402] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  68. [68]
    E. D’Hoker, Invariant effective actions, cohomology of homogeneous spaces and anomalies, Nucl. Phys. B 451 (1995) 725 [hep-th/9502162] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  69. [69]
    G. Goon, K. Hinterbichler, A. Joyce and M. Trodden, Galileons as Wess-Zumino Terms, JHEP 06 (2012) 004 [arXiv:1203.3191] [INSPIRE].ADSCrossRefGoogle Scholar
  70. [70]
    L.V. Delacrétaz, A. Nicolis, R. Penco and R.A. Rosen, Wess-Zumino Terms for Relativistic Fluids, Superfluids, Solids and Supersolids, Phys. Rev. Lett. 114 (2015) 091601 [arXiv:1403.6509] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    R. Alonso, E.E. Jenkins and A.V. Manohar, Geometry of the Scalar Sector, JHEP 08 (2016) 101 [arXiv:1605.03602] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  72. [72]
    C. de Rham, M. Fasiello and A.J. Tolley, Galileon Duality, Phys. Lett. B 733 (2014) 46 [arXiv:1308.2702] [INSPIRE].ADSCrossRefGoogle Scholar
  73. [73]
    K. Kampf and J. Novotny, Unification of Galileon dualities, JHEP 10 (2014) 006 [arXiv:1403.6813] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    S. Endlich, A. Nicolis and R. Penco, Ultraviolet completion without symmetry restoration, Phys. Rev. D 89 (2014) 065006 [arXiv:1311.6491] [INSPIRE].ADSGoogle Scholar
  75. [75]
    E.A. Ivanov and V.I. Ogievetsky, The Inverse Higgs Phenomenon in Nonlinear Realizations, Teor. Mat. Fiz. 25 (1975) 164 [INSPIRE].MathSciNetCrossRefGoogle Scholar
  76. [76]
    R. Klein, D. Roest and D. Stefanyszyn, Spontaneously broken spacetime symmetries and the role of inessential goldstones, JHEP 10 (2017) 051 [arXiv:1709.03525] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  77. [77]
    S. Weinberg, The Quantum Theory of Fields. Vol. II, Cambridge University Press, Cambridge U.K. (1996).Google Scholar
  78. [78]
    A. Padilla, P.M. Saffin and S.-Y. Zhou, Multi-galileons, solitons and Derrick’s theorem, Phys. Rev. D 83 (2011) 045009 [arXiv:1008.0745] [INSPIRE].ADSGoogle Scholar
  79. [79]
    L. Radzihovsky and T.C. Lubensky, Nonlinear smectic elasticity of helical state in cholesteric liquid crystals and helimagnets, Phys. Rev. E 83 (2011) 051701.ADSGoogle Scholar
  80. [80]
    A.J. Beekman, K. Wu, V. Cvetkovic and J. Zaanen, Deconfining the rotational Goldstone mode: the superconducting nematic liquid crystal in 2+1D, Phys. Rev. B 88 (2013) 024121 [arXiv:1301.7329] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    C. Cheung, C.-H. Shen and C. Wen, Unifying relations for scattering amplitudes, JHEP 02 (2018) 095 [arXiv:1705.03025] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  82. [82]
    C. Cheung, G.N. Remmen, C.-H. Shen and C. Wen, Pions as gluons in higher dimensions, JHEP 04 (2018) 129 [arXiv:1709.04932] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  83. [83]
    C. Cheung, K. Kampf, J. Novotny, C.-H. Shen, J. Trnka and C. Wen, Vector Effective Field Theories from Soft Limits, arXiv:1801.01496 [INSPIRE].

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of Mathematics and PhysicsUniversity of StavangerStavangerNorway

Personalised recommendations