Skip to main content

Simplified dark matter models with two Higgs doublets: I. Pseudoscalar mediators

A preprint version of the article is available at arXiv.

Abstract

We study a new class of renormalisable simplified models for dark matter searches at the LHC that are based on two Higgs doublet models with an additional pseudoscalar mediator. In contrast to the spin-0 simplified models employed in analyses of Run I data these models are self-consistent, unitary and bounds from Higgs physics typically pose no constraints. Predictions for various missing transverse energy (E T,miss) searches are discussed and the reach of the 13 TeV LHC is explored. It is found that the proposed models provide a rich spectrum of complementary observables that lead to non-trivial constraints. We emphasise in this context the sensitivity of the \( t\overline{t}+{E_T}_{,\mathrm{miss}} \), mono-Z and mono-Higgs channels, which yield stronger limits than mono-jet searches in large parts of the parameter space. Constraints from spin-0 resonance searches, electroweak precision measurements and flavour observables are also derived and shown to provide further important handles to constraint and to test the considered dark matter models.

References

  1. J. Abdallah et al., Simplified models for dark matter and missing energy searches at the LHC, arXiv:1409.2893 [INSPIRE].

  2. J. Abdallah et al., Simplified models for dark matter searches at the LHC, Phys. Dark Univ. 9-10 (2015) 8 [arXiv:1506.03116] [INSPIRE].

  3. D. Abercrombie et al., Dark matter benchmark models for early LHC run-2 searches: report of the ATLAS/CMS dark matter forum, arXiv:1507.00966 [INSPIRE].

  4. M. Chala, F. Kahlhoefer, M. McCullough, G. Nardini and K. Schmidt-Hoberg, Constraining dark sectors with monojets and dijets, JHEP 07 (2015) 089 [arXiv:1503.05916] [INSPIRE].

    ADS  Article  Google Scholar 

  5. N.F. Bell, Y. Cai, J.B. Dent, R.K. Leane and T.J. Weiler, Dark matter at the LHC: effective field theories and gauge invariance, Phys. Rev. D 92 (2015) 053008 [arXiv:1503.07874] [INSPIRE].

    ADS  Google Scholar 

  6. F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz and S. Vogl, Implications of unitarity and gauge invariance for simplified dark matter models, JHEP 02 (2016) 016 [arXiv:1510.02110] [INSPIRE].

    ADS  Article  Google Scholar 

  7. N.F. Bell, Y. Cai and R.K. Leane, Mono-W dark matter signals at the LHC: simplified model analysis, JCAP 01 (2016) 051 [arXiv:1512.00476] [INSPIRE].

    ADS  Article  Google Scholar 

  8. U. Haisch, F. Kahlhoefer and T.M.P. Tait, On mono-W signatures in spin-1 simplified models, Phys. Lett. B 760 (2016) 207 [arXiv:1603.01267] [INSPIRE].

    ADS  Article  Google Scholar 

  9. C. Englert, M. McCullough and M. Spannowsky, S-channel dark matter simplified models and unitarity, Phys. Dark Univ. 14 (2016) 48 [arXiv:1604.07975] [INSPIRE].

    Article  Google Scholar 

  10. M. Duerr, F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz and S. Vogl, How to save the WIMP: global analysis of a dark matter model with two s-channel mediators, JHEP 09 (2016) 042 [arXiv:1606.07609] [INSPIRE].

    ADS  Article  Google Scholar 

  11. M. Bauer et al., Towards the next generation of simplified Dark Matter models, Phys. Dark Univ. 16 (2017) 49 [arXiv:1607.06680] [INSPIRE].

    ADS  Article  Google Scholar 

  12. N.G. Deshpande and E. Ma, Pattern of symmetry breaking with two Higgs doublets, Phys. Rev. D 18 (1978) 2574 [INSPIRE].

    ADS  Google Scholar 

  13. E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].

  14. R. Barbieri, L.J. Hall and V.S. Rychkov, Improved naturalness with a heavy Higgs: an alternative road to LHC physics, Phys. Rev. D 74 (2006) 015007 [hep-ph/0603188] [INSPIRE].

  15. L. Lopez Honorez, E. Nezri, J.F. Oliver and M.H.G. Tytgat, The inert doublet model: an archetype for dark matter, JCAP 02 (2007) 028 [hep-ph/0612275] [INSPIRE].

  16. ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, ATLAS-CONF-2015-044 (2015).

  17. M. Bauer, U. Haisch and F. Kahlhoefer, in preparation.

  18. N.F. Bell, G. Busoni and I.W. Sanderson, Self-consistent dark matter simplified models with an s-channel scalar mediator, JCAP 03 (2017) 015 [arXiv:1612.03475] [INSPIRE].

    ADS  Article  Google Scholar 

  19. S. Ipek, D. McKeen and A.E. Nelson, A renormalizable model for the galactic center gamma ray excess from dark matter annihilation, Phys. Rev. D 90 (2014) 055021 [arXiv:1404.3716] [INSPIRE].

    ADS  Google Scholar 

  20. J.M. No, Looking through the pseudoscalar portal into dark matter: novel mono-Higgs and mono-Z signatures at the LHC, Phys. Rev. D 93 (2016) 031701 [arXiv:1509.01110] [INSPIRE].

    ADS  Google Scholar 

  21. D. Goncalves, P.A.N. Machado and J.M. No, Simplified models for dark matter face their consistent completions, Phys. Rev. D 95 (2017) 055027 [arXiv:1611.04593] [INSPIRE].

    ADS  Google Scholar 

  22. ATLAS collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at \( \sqrt{s}=13 \) TeV using the ATLAS detector, Phys. Rev. D 94 (2016) 032005 [arXiv:1604.07773] [INSPIRE].

  23. CMS collaboration, Search for dark matter in final states with an energetic jet, or a hadronically decaying W or Z boson using 12.9 fb−1 of data at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-16-037 (2016).

  24. ATLAS collaboration, Search for top squarks in final states with one isolated lepton, jets and missing transverse momentum in \( \sqrt{s}=13 \) TeV pp collisions with the ATLAS detector, ATLAS-CONF-2016-050 (2016).

  25. CMS collaboration, Search for dark matter in association with a top quark pair at \( \sqrt{s}=13 \) TeV, CMS-PAS-EXO-16-005 (2016).

  26. ATLAS collaboration, Search for dark matter production associated with bottom quarks with 13.3 fb −1 of pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector at the LHC, ATLAS-CONF-2016-086 (2016).

  27. CMS collaboration, Search for dark matter produced in association with bottom quarks, CMS-PAS-B2G-15-007 (2015).

  28. ATLAS collaboration, Search for new phenomena in the Z(→ℓℓ) + E missT final state at \( \sqrt{s}=13 \) TeV with the ATLAS detector,ATLAS-CONF-2016-056 (2016).

  29. CMS collaboration, Search for dark matter in Z + E missT events using 12.9 fb −1 of 2016 data, CMS-PAS-EXO-16-038 (2016).

  30. CMS collaboration, Search for dark matter and unparticles in events with a Z boson and missing transverse momentum in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 03 (2017) 061 [arXiv:1701.02042] [INSPIRE].

  31. ATLAS collaboration, Search for dark matter in association with a Higgs boson decaying to b-quarks in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 765 (2017) 11 [arXiv:1609.04572] [INSPIRE].

  32. CMS collaboration, Search for dark matter in association with a Higgs boson decaying into a pair of bottom quarks at \( \sqrt{s}=13 \) TeV with the CMS detector, CMS-PAS-EXO-16-012 (2016).

  33. ATLAS collaboration, Search for new phenomena in events with missing transverse momentum and a Higgs boson decaying to two photons in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-011 (2016).

  34. CMS collaboration, Search for dark matter produced in association with a Higgs boson decaying to two photons, CMS-PAS-EXO-16-011 (2016).

  35. ATLAS collaboration, Search for new resonances in events with one lepton and missing transverse momentum in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 762 (2016) 334 [arXiv:1606.03977] [INSPIRE].

  36. CMS collaboration, Search for heavy gauge W boson in events with an energetic lepton and large missing transverse momentum at \( \sqrt{s}=13 \) TeV, arXiv:1612.09274 [INSPIRE].

  37. ATLAS collaboration, Constraints on new phenomena via Higgs boson couplings and invisible decays with the ATLAS detector, JHEP 11 (2015) 206 [arXiv:1509.00672] [INSPIRE].

  38. CMS collaboration, Searches for invisible decays of the Higgs boson in pp collisions at \( \sqrt{s}=7 \) , 8 and 13 TeV, JHEP 02 (2017) 135 [arXiv:1610.09218] [INSPIRE].

  39. U. Haisch and E. Re, Simplified dark matter top-quark interactions at the LHC, JHEP 06 (2015) 078 [arXiv:1503.00691] [INSPIRE].

    ADS  Article  Google Scholar 

  40. ATLAS collaboration, Search for heavy Higgs bosons A/H decaying to a top-quark pair in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, ATLAS-CONF-2016-073 (2016).

  41. U. Haisch, Dark matter at the LHC: effective field theories, simplified models & beyond, talk given at the TeV Particle Astrophysics , September 12-16, CERN, Switzerland (2016).

  42. J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs hunter’s guide, Front. Phys. 80 (2000) 1 [INSPIRE].

    Google Scholar 

  43. G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516 (2012) 1 [arXiv:1106.0034] [INSPIRE].

    ADS  Article  Google Scholar 

  44. S.L. Glashow and S. Weinberg, Natural conservation laws for neutral currents, Phys. Rev. D 15 (1977) 1958 [INSPIRE].

    ADS  Google Scholar 

  45. E.A. Paschos, Diagonal neutral currents, Phys. Rev. D 15 (1977) 1966 [INSPIRE].

    ADS  Google Scholar 

  46. U. Haisch, F. Kahlhoefer and J. Unwin, The impact of heavy-quark loops on LHC dark matter searches, JHEP 07 (2013) 125 [arXiv:1208.4605] [INSPIRE].

    ADS  Article  Google Scholar 

  47. ATLAS collaboration, Search for minimal supersymmetric standard model Higgs bosons H/A in the τ τ final state in up to 13.3 fb −1 of pp collisions at \( \sqrt{s}= 13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-085 (2016).

  48. CMS collaboration, Search for a neutral MSSM Higgs boson decaying into τ τ with 12.9 fb−1 of data at \( \sqrt{s}=13 \) TeV, CMS-PAS-HIG-16-037 (2016).

  49. C. Bobeth, T. Ewerth, F. Krüger and J. Urban, Analysis of neutral Higgs boson contributions to the decays \( \overline{B}\Big({s}^{\Big)}\to {\ell}^{+}{\ell}^{-} \) and \( \overline{B}\to K{\ell}^{+}{\ell}^{-} \), Phys. Rev. D 64 (2001) 074014 [hep-ph/0104284] [INSPIRE].

  50. LHCb, CMS collaboration, V. Khachatryan et al., Observation of the rare B 0 s  → μ + μ decay from the combined analysis of CMS and LHCb data, Nature 522 (2015) 68 [arXiv:1411.4413] [INSPIRE].

  51. C. Anastasiou et al., CP-even scalar boson production via gluon fusion at the LHC, JHEP 09 (2016) 037 [arXiv:1605.05761] [INSPIRE].

    ADS  Article  Google Scholar 

  52. D. Dicus, A. Stange and S. Willenbrock, Higgs decay to top quarks at hadron colliders, Phys. Lett. B 333 (1994) 126 [hep-ph/9404359] [INSPIRE].

  53. R. Frederix and F. Maltoni, Top pair invariant mass distribution: a window on new physics, JHEP 01 (2009) 047 [arXiv:0712.2355] [INSPIRE].

    ADS  Article  Google Scholar 

  54. A. Djouadi, L. Maiani, A. Polosa, J. Quevillon and V. Riquer, Fully covering the MSSM Higgs sector at the LHC, JHEP 06 (2015) 168 [arXiv:1502.05653] [INSPIRE].

    ADS  Article  Google Scholar 

  55. N. Craig, F. D’Eramo, P. Draper, S. Thomas and H. Zhang, The hunt for the rest of the Higgs bosons, JHEP 06 (2015) 137 [arXiv:1504.04630] [INSPIRE].

    ADS  Article  Google Scholar 

  56. A. Denner, R.J. Guth, W. Hollik and J.H. Kühn, The Z width in the two Higgs doublet model, Z. Phys. C 51 (1991) 695 [INSPIRE].

    ADS  Google Scholar 

  57. U. Haisch and A. Weiler, Determining the sign of the Z penguin amplitude, Phys. Rev. D 76 (2007) 074027 [arXiv:0706.2054] [INSPIRE].

    ADS  Google Scholar 

  58. A. Freitas and Y.-C. Huang, Electroweak two-loop corrections to \( si{n}^2{\theta}_{{}^{ef\;f}}^{b\overline{b}} \) and R b using numerical Mellin-Barnes integrals, JHEP 08 (2012) 050 [Erratum ibid. 05 (2013) 074] [Erratum ibid. 10 (2013) 044 [arXiv:1205.0299] [INSPIRE].

  59. T. Hermann, M. Misiak and M. Steinhauser, \( \overline{B}\to {X}_s\gamma \) in the two Higgs doublet model up to next-to-next-to-leading order in QCD, JHEP 11 (2012) 036 [arXiv:1208.2788] [INSPIRE].

    ADS  Article  Google Scholar 

  60. M. Misiak et al., Updated NNLO QCD predictions for the weak radiative B-meson decays, Phys. Rev. Lett. 114 (2015) 221801 [arXiv:1503.01789] [INSPIRE].

    ADS  Article  Google Scholar 

  61. M. Czakon, P. Fiedler, T. Huber, M. Misiak, T. Schutzmeier and M. Steinhauser, The((Q 7 , Q 1,2) contribution to \( \overline{B}\to {X}_s\gamma \) at \( \mathcal{O}{\alpha}_{\mathrm{s}}^2\Big) \), JHEP 04 (2015) 168 [arXiv:1503.01791] [INSPIRE].

    ADS  Article  Google Scholar 

  62. L.F. Abbott, P. Sikivie and M.B. Wise, Constraints on charged Higgs couplings, Phys. Rev. D 21 (1980) 1393 [INSPIRE].

    ADS  Google Scholar 

  63. C.Q. Geng and J.N. Ng, Charged Higgs effect in \( {B}_d^0-{\overline{B}}_d^0 \) mixing, Kπ neutrino anti-neutrino decay and rare decays of B mesons, Phys. Rev. D 38 (1988) 2857 [Erratum ibid. D 41 (1990) 1715] [INSPIRE].

  64. A.J. Buras, P. Krawczyk, M.E. Lautenbacher and C. Salazar, \( {B}^0-{\overline{B}}^0 \) mixing, CP violation, \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) and BKγX in a two Higgs doublet model, Nucl. Phys. B 337 (1990) 284 [INSPIRE].

    ADS  Article  Google Scholar 

  65. O. Eberhardt, U. Nierste and M. Wiebusch, Status of the two-Higgs-doublet model of type-II, JHEP 07 (2013) 118 [arXiv:1305.1649] [INSPIRE].

    ADS  Article  Google Scholar 

  66. CMS collaboration, Search for a charged Higgs boson in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 11 (2015) 018 [arXiv:1508.07774] [INSPIRE].

  67. ATLAS collaboration, Search for charged Higgs bosons in the H ±tb decay channel in pp collisions at \( \sqrt{s}=13 \) TeV using the ATLAS detector, ATLAS-CONF-2016-089 (2016).

  68. H.E. Haber and A. Pomarol, Constraints from global symmetries on radiative corrections to the Higgs sector, Phys. Lett. B 302 (1993) 435 [hep-ph/9207267] [INSPIRE].

  69. A. Pomarol and R. Vega, Constraints on CP-violation in the Higgs sector from the ρ parameter, Nucl. Phys. B 413 (1994) 3 [hep-ph/9305272] [INSPIRE].

  70. J.M. Gerard and M. Herquet, A twisted custodial symmetry in the two-Higgs-doublet model, Phys. Rev. Lett. 98 (2007) 251802 [hep-ph/0703051] [INSPIRE].

  71. B. Grzadkowski, M. Maniatis and J. Wudka, The bilinear formalism and the custodial symmetry in the two-Higgs-doublet model, JHEP 11 (2011) 030 [arXiv:1011.5228] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  72. H.E. Haber and D. O’Neil, Basis-independent methods for the two-Higgs-doublet model III: The CP-conserving limit, custodial symmetry and the oblique parameters S, T, U, Phys. Rev. D 83 (2011) 055017 [arXiv:1011.6188] [INSPIRE].

    ADS  Google Scholar 

  73. Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001.

  74. J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: the approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].

  75. A. Barroso, P.M. Ferreira, I.P. Ivanov and R. Santos, Metastability bounds on the two Higgs doublet model, JHEP 06 (2013) 045 [arXiv:1303.5098] [INSPIRE].

    ADS  Article  Google Scholar 

  76. S. Kanemura, T. Kubota and E. Takasugi, Lee-Quigg-Thacker bounds for Higgs boson masses in a two doublet model, Phys. Lett. B 313 (1993) 155 [hep-ph/9303263] [INSPIRE].

  77. A.G. Akeroyd, A. Arhrib and E.-M. Naimi, Note on tree level unitarity in the general two Higgs doublet model, Phys. Lett. B 490 (2000) 119 [hep-ph/0006035] [INSPIRE].

  78. I.F. Ginzburg and I.P. Ivanov, Tree-level unitarity constraints in the most general 2HDM, Phys. Rev. D 72 (2005) 115010 [hep-ph/0508020] [INSPIRE].

  79. B. Grinstein, C.W. Murphy and P. Uttayarat, One-loop corrections to the perturbative unitarity bounds in the CP-conserving two-Higgs doublet model with a softly broken ℤ 2 symmetry, JHEP 06 (2016) 070 [arXiv:1512.04567] [INSPIRE].

    ADS  Article  Google Scholar 

  80. A. Djouadi, J. Kalinowski and P.M. Zerwas, Two and three-body decay modes of SUSY Higgs particles, Z. Phys. C 70 (1996) 435 [hep-ph/9511342] [INSPIRE].

  81. ATLAS collaboration, Measurement of the Higgs boson mass from the Hγγ and HZZ →4ℓ channels with the ATLAS detector using 25fb −1 of pp collision data, Phys. Rev. D 90 (2014) 052004 [arXiv:1406.3827] [INSPIRE].

  82. CMS collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV, Eur. Phys. J. C 75 (2015) 212 [arXiv:1412.8662] [INSPIRE].

  83. P.J. Fox and C. Williams, Next-to-leading order predictions for dark matter production at hadron colliders, Phys. Rev. D 87 (2013) 054030 [arXiv:1211.6390] [INSPIRE].

    ADS  Google Scholar 

  84. U. Haisch, F. Kahlhoefer and E. Re, QCD effects in mono-jet searches for dark matter, JHEP 12 (2013) 007 [arXiv:1310.4491] [INSPIRE].

    ADS  Article  Google Scholar 

  85. U. Haisch, A. Hibbs and E. Re, Determining the structure of dark-matter couplings at the LHC, Phys. Rev. D 89 (2014) 034009 [arXiv:1311.7131] [INSPIRE].

    ADS  Google Scholar 

  86. M.R. Buckley, D. Feld and D. Goncalves, Scalar simplified models for dark matter, Phys. Rev. D 91 (2015) 015017 [arXiv:1410.6497] [INSPIRE].

    ADS  Google Scholar 

  87. P. Harris, V.V. Khoze, M. Spannowsky and C. Williams, Constraining dark sectors at colliders: beyond the effective theory approach, Phys. Rev. D 91 (2015) 055009 [arXiv:1411.0535] [INSPIRE].

    ADS  Google Scholar 

  88. O. Mattelaer and E. Vryonidou, Dark matter production through loop-induced processes at the LHC: the s-channel mediator case, Eur. Phys. J. C 75 (2015) 436 [arXiv:1508.00564] [INSPIRE].

    ADS  Article  Google Scholar 

  89. C. Arina et al., A comprehensive approach to dark matter studies: exploration of simplified top-philic models, JHEP 11 (2016) 111 [arXiv:1605.09242] [INSPIRE].

    ADS  Article  Google Scholar 

  90. F. Bishara, U. Haisch, P.F. Monni and E. Re, Constraining light-quark Yukawa couplings from Higgs distributions, Phys. Rev. Lett. 118 (2017) 121801 [arXiv:1606.09253] [INSPIRE].

    ADS  Article  Google Scholar 

  91. T. Lin, E.W. Kolb and L.-T. Wang, Probing dark matter couplings to top and bottom quarks at the LHC, Phys. Rev. D 88 (2013) 063510 [arXiv:1303.6638] [INSPIRE].

    ADS  Google Scholar 

  92. G. Artoni, T. Lin, B. Penning, G. Sciolla and A. Venturini, Prospects for collider searches for dark matter with heavy quarks, arXiv:1307.7834 [INSPIRE].

  93. M. Backović, M. Krämer, F. Maltoni, A. Martini, K. Mawatari and M. Pellen, Higher-order QCD predictions for dark matter production at the LHC in simplified models with s-channel mediators, Eur. Phys. J. C 75 (2015) 482 [arXiv:1508.05327] [INSPIRE].

    ADS  Article  Google Scholar 

  94. U. Haisch, P. Pani and G. Polesello, Determining the CP nature of spin-0 mediators in associated production of dark matter and \( t\overline{t} \) pairs, JHEP 02 (2017) 131 [arXiv:1611.09841] [INSPIRE].

    ADS  Article  Google Scholar 

  95. R.V. Harlander, S. Liebler and T. Zirke, Higgs Strahlung at the large hadron collider in the 2-Higgs-doublet model, JHEP 02 (2014) 023 [arXiv:1307.8122] [INSPIRE].

    ADS  Article  Google Scholar 

  96. C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer and T. Reiter, UFO — The Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].

    ADS  Article  Google Scholar 

  97. A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].

  98. C. Degrande, Automatic evaluation of UV and R2 terms for beyond the standard model lagrangians: a proof-of-principle, Comput. Phys. Commun. 197 (2015) 239 [arXiv:1406.3030] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  99. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].

    ADS  Article  Google Scholar 

  100. T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].

  101. R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].

    ADS  Article  Google Scholar 

  102. D. Dercks, N. Desai, J.S. Kim, K. Rolbiecki, J. Tattersall and T. Weber, CheckMATE 2: from the model to the limit, arXiv:1611.09856 [INSPIRE].

  103. M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].

    ADS  Article  Google Scholar 

  104. DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].

  105. E. Conte, B. Fuks and G. Serret, MadAnalysis 5, a user-friendly framework for collider phenomenology, Comput. Phys. Commun. 184 (2013) 222 [arXiv:1206.1599] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  106. E. Conte, B. Dumont, B. Fuks and C. Wymant, Designing and recasting LHC analyses with MadAnalysis 5, Eur. Phys. J. C 74 (2014) 3103 [arXiv:1405.3982] [INSPIRE].

    Article  Google Scholar 

  107. R. Frederix and S. Frixione, Merging meets matching in MC@NLO, JHEP 12 (2012) 061 [arXiv:1209.6215] [INSPIRE].

    ADS  Article  Google Scholar 

  108. P. Artoisenet, R. Frederix, O. Mattelaer and R. Rietkerk, Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations, JHEP 03 (2013) 015 [arXiv:1212.3460] [INSPIRE].

    ADS  Article  Google Scholar 

  109. Y.G. Kim, K.Y. Lee and S. Shin, Singlet fermionic dark matter, JHEP 05 (2008) 100 [arXiv:0803.2932] [INSPIRE].

    ADS  Google Scholar 

  110. S. Baek, P. Ko and W.-I. Park, Search for the Higgs portal to a singlet fermionic dark matter at the LHC, JHEP 02 (2012) 047 [arXiv:1112.1847] [INSPIRE].

    ADS  Article  Google Scholar 

  111. L. Lopez-Honorez, T. Schwetz and J. Zupan, Higgs portal, fermionic dark matter and a Standard Model like Higgs at 125 GeV, Phys. Lett. B 716 (2012) 179 [arXiv:1203.2064] [INSPIRE].

    ADS  Article  Google Scholar 

  112. P. Ko and J. Li, Interference effects of two scalar boson propagators on the LHC search for the singlet fermion DM, Phys. Lett. B 765 (2017) 53 [arXiv:1610.03997] [INSPIRE].

    ADS  Article  Google Scholar 

  113. S. Baek, P. Ko and J. Li, Minimal renormalizable simplified dark matter model with a pseudoscalar mediator, Phys. Rev. D 95 (2017) 075011 [arXiv:1701.04131] [INSPIRE].

    ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Haisch.

Additional information

ArXiv ePrint: 1701.07427

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bauer, M., Haisch, U. & Kahlhoefer, F. Simplified dark matter models with two Higgs doublets: I. Pseudoscalar mediators. J. High Energ. Phys. 2017, 138 (2017). https://doi.org/10.1007/JHEP05(2017)138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2017)138

Keywords

  • Beyond Standard Model
  • Higgs Physics