Prospects for new physics in τlμμ at current and future colliders

  • Chris Hays
  • Manimala Mitra
  • Michael Spannowsky
  • Philip WaiteEmail author
Open Access
Regular Article - Theoretical Physics


The discovery of lepton flavour violating interactions will be striking evidence for physics beyond the Standard Model. Focusing on the three decays τ μ ± μ μ , τ e ± μ μ and τe μ μ ±, we evaluate the discovery potential of current and future high-energy colliders to probe lepton flavour violation in the τ sector. Based on this potential we determine the expected constraints on parameters of new physics in the context of the Type-II Seesaw Model, the Left-Right Symmetric Model, and the Minimal Supersymmetric Standard Model. The existing and ongoing 13 TeV run of the Large Hadron Collider has the potential to produce constraints that outperform the existing e + e collider limits for the τ μ ± μ μ decay and achieve a branching fraction limit of ≲ 10−8. With a future circular e + e collider, constraints on the τlμμ branching fractions could reach as low as a few times 10−12.


Beyond Standard Model Gauge Symmetry Higgs Physics Neutrino Physics 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    P. Minkowski, μeγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
  2. [2]
    R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    T. Yanagida, Horizontal Symmetry and Masses of Neutrinos, Conf. Proc. C7902131 (1979) 95 [INSPIRE].Google Scholar
  4. [4]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].Google Scholar
  5. [5]
    J. Schechter and J.W.F. Valle, Neutrino Masses in SU(2) × U(1) Theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].ADSGoogle Scholar
  6. [6]
    M. Magg and C. Wetterich, Neutrino Mass Problem and Gauge Hierarchy, Phys. Lett. B 94 (1980) 61 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    G. Lazarides, Q. Shafi and C. Wetterich, Proton Lifetime and Fermion Masses in an SO(10) Model, Nucl. Phys. B 181 (1981) 287 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    T.P. Cheng and L.-F. Li, Neutrino Masses, Mixings and Oscillations in SU(2) × U(1) Models of Electroweak Interactions, Phys. Rev. D 22 (1980) 2860 [INSPIRE].ADSGoogle Scholar
  9. [9]
    R.N. Mohapatra and G. Senjanović, Neutrino Masses and Mixings in Gauge Models with Spontaneous Parity Violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].ADSGoogle Scholar
  10. [10]
    R. Foot, H. Lew, X.G. He and G.C. Joshi, Seesaw Neutrino Masses Induced by a Triplet of Leptons, Z. Phys. C 44 (1989) 441 [INSPIRE].Google Scholar
  11. [11]
    R.N. Mohapatra, Mechanism for Understanding Small Neutrino Mass in Superstring Theories, Phys. Rev. Lett. 56 (1986) 561 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    R.N. Mohapatra and J.W.F. Valle, Neutrino Mass and Baryon Number Nonconservation in Superstring Models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].ADSGoogle Scholar
  13. [13]
    D. Wyler and L. Wolfenstein, Massless Neutrinos in Left-Right Symmetric Models, Nucl. Phys. B 218 (1983) 205 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    E. Witten, New Issues in Manifolds of SU(3) Holonomy, Nucl. Phys. B 268 (1986) 79 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  15. [15]
    J.L. Hewett and T.G. Rizzo, Low-Energy Phenomenology of Superstring Inspired E 6 Models, Phys. Rept. 183 (1989) 193 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    J.C. Pati and A. Salam, Lepton Number as the Fourth Color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703] [INSPIRE].
  17. [17]
    R.N. Mohapatra and J.C. Pati, A Natural Left-Right Symmetry, Phys. Rev. D 11 (1975) 2558 [INSPIRE].ADSGoogle Scholar
  18. [18]
    G. Senjanović and R.N. Mohapatra, Exact Left-Right Symmetry and Spontaneous Violation of Parity, Phys. Rev. D 12 (1975) 1502 [INSPIRE].ADSGoogle Scholar
  19. [19]
    P. Duka, J. Gluza and M. Zralek, Quantization and renormalization of the manifest left-right symmetric model of electroweak interactions, Annals Phys. 280 (2000) 336 [hep-ph/9910279] [INSPIRE].
  20. [20]
    H.P. Nilles, Supersymmetry, Supergravity and Particle Physics, Phys. Rept. 110 (1984) 1 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    H.E. Haber and G.L. Kane, The Search for Supersymmetry: Probing Physics Beyond the Standard Model, Phys. Rept. 117 (1985) 75 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    S.P. Martin, A Supersymmetry primer, hep-ph/9709356 [INSPIRE].
  23. [23]
    S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    F. Wilczek and A. Zee, Operator Analysis of Nucleon Decay, Phys. Rev. Lett. 43 (1979) 1571 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    MEG collaboration, J. Adam et al., New constraint on the existence of the μ +e + γ decay, Phys. Rev. Lett. 110 (2013) 201801 [arXiv:1303.0754] [INSPIRE].
  26. [26]
    Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  27. [27]
    SINDRUM collaboration, U. Bellgardt et al., Search for the Decay μ +e + e + e , Nucl. Phys. B 299 (1988) 1 [INSPIRE].
  28. [28]
    CMS collaboration, Search for Lepton-Flavour-Violating Decays of the Higgs Boson, Phys. Lett. B 749 (2015) 337 [arXiv:1502.07400] [INSPIRE].
  29. [29]
    ATLAS collaboration, Search for lepton-flavour-violating Hμτ decays of the Higgs boson with the ATLAS detector, JHEP 11 (2015) 211 [arXiv:1508.03372] [INSPIRE].
  30. [30]
    B.M. Dassinger, T. Feldmann, T. Mannel and S. Turczyk, Model-independent analysis of lepton flavour violating tau decays, JHEP 10 (2007) 039 [arXiv:0707.0988] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    R. Harnik, J. Kopp and J. Zupan, Flavor Violating Higgs Decays, JHEP 03 (2013) 026 [arXiv:1209.1397] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    A. Falkowski, D.M. Straub and A. Vicente, Vector-like leptons: Higgs decays and collider phenomenology, JHEP 05 (2014) 092 [arXiv:1312.5329] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    J. Heeck, M. Holthausen, W. Rodejohann and Y. Shimizu, Higgsμτ in Abelian and non-Abelian flavor symmetry models, Nucl. Phys. B 896 (2015) 281 [arXiv:1412.3671] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  34. [34]
    A. Crivellin, G. D’Ambrosio and J. Heeck, Explaining hμ ± τ , BK μ + μ and B + μ /BKe + e in a two-Higgs-doublet model with gauged L μL τ, Phys. Rev. Lett. 114 (2015) 151801 [arXiv:1501.00993] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    S. Banerjee, B. Bhattacherjee, M. Mitra and M. Spannowsky, The Lepton Flavour Violating Higgs Decays at the HL-LHC and the ILC, JHEP 07 (2016) 059 [arXiv:1603.05952] [INSPIRE].ADSGoogle Scholar
  36. [36]
    I. Chakraborty, A. Datta and A. Kundu, Lepton flavor violating Higgs boson decay hμτ at the ILC, J. Phys. G 43 (2016) 125001 [arXiv:1603.06681] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    M. Hirsch, H.V. Klapdor-Kleingrothaus and O. Panella, Double beta decay in left-right symmetric models, Phys. Lett. B 374 (1996) 7 [hep-ph/9602306] [INSPIRE].
  38. [38]
    J. Barry and W. Rodejohann, Lepton number and flavour violation in TeV-scale left-right symmetric theories with large left-right mixing, JHEP 09 (2013) 153 [arXiv:1303.6324] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    R.L. Awasthi, M.K. Parida and S. Patra, Neutrino masses, dominant neutrinoless double beta decay and observable lepton flavor violation in left-right models and SO(10) grand unification with low mass W R , Z R bosons, JHEP 08 (2013) 122 [arXiv:1302.0672] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    G. Bambhaniya, P.S.B. Dev, S. Goswami and M. Mitra, The Scalar Triplet Contribution to Lepton Flavour Violation and Neutrinoless Double Beta Decay in Left-Right Symmetric Model, JHEP 04 (2016) 046 [arXiv:1512.00440] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    C. Bonilla, M.E. Krauss, T. Opferkuch and W. Porod, Perspectives for Detecting Lepton Flavour Violation in Left-Right Symmetric Models, JHEP 03 (2017) 027 [arXiv:1611.07025] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    E. Arganda, M.J. Herrero and J. Portoles, Lepton flavour violating semileptonic tau decays in constrained MSSM-seesaw scenarios, JHEP 06 (2008) 079 [arXiv:0803.2039] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    M. Arana-Catania, S. Heinemeyer and M.J. Herrero, New Constraints on General Slepton Flavor Mixing, Phys. Rev. D 88 (2013) 015026 [arXiv:1304.2783] [INSPIRE].ADSGoogle Scholar
  44. [44]
    M. Arana-Catania, E. Arganda and M.J. Herrero, Non-decoupling SUSY in LFV Higgs decays: a window to new physics at the LHC, JHEP 09 (2013) 160 [Erratum ibid. 10 (2015)192] [arXiv:1304.3371] [INSPIRE].
  45. [45]
    K. Hayasaka et al., Search for Lepton Flavor Violating Tau Decays into Three Leptons with 719 Million Produced τ + τ Pairs, Phys. Lett. B 687 (2010) 139 [arXiv:1001.3221] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    BaBar collaboration, J.P. Lees et al., Limits on tau Lepton-Flavor Violating Decays in three charged leptons, Phys. Rev. D 81 (2010) 111101 [arXiv:1002.4550] [INSPIRE].
  47. [47]
    LHCb collaboration, Search for the lepton flavour violating decay τ μ μ + μ , JHEP 02 (2015)121 [arXiv:1409.8548] [INSPIRE].
  48. [48]
    ATLAS collaboration, Probing lepton flavour violation via neutrinoless τ → 3μ decays with the ATLAS detector, Eur. Phys. J. C 76 (2016) 232 [arXiv:1601.03567] [INSPIRE].
  49. [49]
    T. Aushev et al., Physics at Super B Factory, arXiv:1002.5012 [INSPIRE].
  50. [50]
    LHCb collaboration, Implications of LHCb measurements and future prospects, Eur. Phys. J. C 73 (2013) 2373 [arXiv:1208.3355] [INSPIRE].
  51. [51]
    LHCb collaboration, Measurement of J/ψ production in pp collisions at \( \sqrt{s}=7 \) TeV, Eur. Phys. J. C 71 (2011) 1645 [arXiv:1103.0423] [INSPIRE].
  52. [52]
    LHCb collaboration, Measurement of forward J/ψ production cross-sections in pp collisions at \( \sqrt{s}=13 \) TeV, JHEP 10 (2015) 172 [arXiv:1509.00771] [INSPIRE].
  53. [53]
    LHCb collaboration, Prompt charm production in pp collisions at \( \sqrt{s}=7 \) TeV, Nucl. Phys. B 871 (2013) 1 [arXiv:1302.2864] [INSPIRE].
  54. [54]
    LHCb collaboration, Measurements of prompt charm production cross-sections in pp collisions at \( \sqrt{s}=13 \) TeV, JHEP 03 (2016) 159 [Erratum ibid. 09 (2016) 013] [arXiv:1510.01707] [INSPIRE].
  55. [55]
    CMS collaboration, Measurement of inclusive W and Z boson production cross sections in pp collisions at \( \sqrt{s}=8 \) TeV, Phys. Rev. Lett. 112 (2014) 191802 [arXiv:1402.0923] [INSPIRE].
  56. [56]
    ATLAS collaboration, Measurement of W ± and Z-boson production cross sections in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 759 (2016) 601 [arXiv:1603.09222] [INSPIRE].
  57. [57]
    M. Benedikt and F. Zimmermann, Future Circular Colliders, CERN-ACC-2015-164 [INSPIRE].
  58. [58]
    M.L. Mangano et al., Physics at a 100 TeV pp collider: Standard Model processes, arXiv:1607.01831 [INSPIRE].
  59. [59]
    D. d’Enterria, Physics at the FCC-ee, arXiv:1602.05043 [INSPIRE].
  60. [60]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  62. [62]
    W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [INSPIRE].
  63. [63]
    W. Porod and F. Staub, SPheno 3.1: Extensions including flavour, CP-phases and models beyond the MSSM, Comput. Phys. Commun. 183 (2012) 2458 [arXiv:1104.1573] [INSPIRE].ADSCrossRefGoogle Scholar
  64. [64]
    F. Staub, SARAH 4: A tool for (not only SUSY) model builders, Comput. Phys. Commun. 185 (2014)1773 [arXiv:1309.7223] [INSPIRE].
  65. [65]
    ATLAS collaboration, Search for doubly-charged Higgs bosons in same-charge electron pair final states using proton-proton collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, ATLAS-CONF-2016-051.
  66. [66]
    ATLAS collaboration, Search for heavy Majorana neutrinos with the ATLAS detector in pp collisions at \( \sqrt{s}=8 \) TeV, JHEP 07 (2015) 162 [arXiv:1506.06020] [INSPIRE].
  67. [67]
    CMS collaboration, Search for heavy neutrinos and W bosons with right-handed couplings in proton-proton collisions at \( \sqrt{s}=8 \) TeV, Eur. Phys. J. C 74 (2014) 3149 [arXiv:1407.3683] [INSPIRE].
  68. [68]
    ATLAS collaboration, Search for new phenomena in dijet mass and angular distributions from pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 754 (2016) 302 [arXiv:1512.01530] [INSPIRE].
  69. [69]
    CMS collaboration, Search for narrow resonances decaying to dijets in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev. Lett. 116 (2016) 071801 [arXiv:1512.01224] [INSPIRE].
  70. [70]
    F.F. Deppisch, P.S. Bhupal Dev and A. Pilaftsis, Neutrinos and Collider Physics, New J. Phys. 17 (2015) 075019 [arXiv:1502.06541] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    K.S. Babu and S. Jana, Probing Doubly Charged Higgs Bosons at the LHC through Photon Initiated Processes, Phys. Rev. D 95 (2017) 055020 [arXiv:1612.09224] [INSPIRE].ADSGoogle Scholar
  72. [72]
    M. Nemevšek, F. Nesti, G. Senjanović and Y. Zhang, First Limits on Left-Right Symmetry Scale from LHC Data, Phys. Rev. D 83 (2011) 115014 [arXiv:1103.1627] [INSPIRE].ADSGoogle Scholar
  73. [73]
    M. Nemevšek, F. Nesti and J.C. Vasquez, Majorana Higgses at colliders, arXiv:1612.06840 [INSPIRE].
  74. [74]
    M. Mitra, S. Niyogi and M. Spannowsky, Type-II Seesaw Model and Multilepton Signatures at Hadron Colliders, Phys. Rev. D 95 (2017) 035042 [arXiv:1611.09594] [INSPIRE].ADSGoogle Scholar
  75. [75]
    M. Mitra, R. Ruiz, D.J. Scott and M. Spannowsky, Neutrino Jets from High-Mass W R Gauge Bosons in TeV-Scale Left-Right Symmetric Models, Phys. Rev. D 94 (2016) 095016 [arXiv:1607.03504] [INSPIRE].ADSGoogle Scholar
  76. [76]
    O. Mattelaer, M. Mitra and R. Ruiz, Automated Neutrino Jet and Top Jet Predictions at Next-to-Leading-Order with Parton Shower Matching in Effective Left-Right Symmetric Models, arXiv:1610.08985 [INSPIRE].
  77. [77]
    M. Lindner, F.S. Queiroz, W. Rodejohann and C.E. Yaguna, Left-Right Symmetry and Lepton Number Violation at the Large Hadron Electron Collider, JHEP 06 (2016) 140 [arXiv:1604.08596] [INSPIRE].ADSCrossRefGoogle Scholar
  78. [78]
    M. Lindner, F.S. Queiroz and W. Rodejohann, Dilepton bounds on left-right symmetry at the LHC run II and neutrinoless double beta decay, Phys. Lett. B 762 (2016) 190 [arXiv:1604.07419] [INSPIRE].ADSCrossRefGoogle Scholar
  79. [79]
    A. Melfo, M. Nemevšek, F. Nesti, G. Senjanović and Y. Zhang, Type II Seesaw at LHC: The Roadmap, Phys. Rev. D 85 (2012) 055018 [arXiv:1108.4416] [INSPIRE].ADSGoogle Scholar
  80. [80]
    A. Maiezza, M. Nemevšek and F. Nesti, Lepton Number Violation in Higgs Decay at LHC, Phys. Rev. Lett. 115 (2015) 081802 [arXiv:1503.06834] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    F. del Aguila and J.A. Aguilar-Saavedra, Distinguishing seesaw models at LHC with multi-lepton signals, Nucl. Phys. B 813 (2009) 22 [arXiv:0808.2468] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  82. [82]
    A. Atre, T. Han, S. Pascoli and B. Zhang, The Search for Heavy Majorana Neutrinos, JHEP 05 (2009) 030 [arXiv:0901.3589] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    P.S.B. Dev, R.N. Mohapatra and Y. Zhang, Probing the Higgs Sector of the Minimal Left-Right Symmetric Model at Future Hadron Colliders, JHEP 05 (2016) 174 [arXiv:1602.05947] [INSPIRE].ADSCrossRefGoogle Scholar
  84. [84]
    S. Banerjee, P.S.B. Dev, A. Ibarra, T. Mandal and M. Mitra, Prospects of Heavy Neutrino Searches at Future Lepton Colliders, Phys. Rev. D 92 (2015) 075002 [arXiv:1503.05491] [INSPIRE].ADSGoogle Scholar
  85. [85]
    P.S.B. Dev, A. Pilaftsis and U.-k. Yang, New Production Mechanism for Heavy Neutrinos at the LHC, Phys. Rev. Lett. 112 (2014) 081801 [arXiv:1308.2209] [INSPIRE].ADSCrossRefGoogle Scholar
  86. [86]
    A. Das and N. Okada, Inverse seesaw neutrino signatures at the LHC and ILC, Phys. Rev. D 88 (2013) 113001 [arXiv:1207.3734] [INSPIRE].ADSGoogle Scholar
  87. [87]
    A. Das, P. Konar and S. Majhi, Production of Heavy neutrino in next-to-leading order QCD at the LHC and beyond, JHEP 06 (2016) 019 [arXiv:1604.00608] [INSPIRE].ADSCrossRefGoogle Scholar
  88. [88]
    A. Arhrib et al., The Higgs Potential in the Type II Seesaw Model, Phys. Rev. D 84 (2011) 095005 [arXiv:1105.1925] [INSPIRE].ADSGoogle Scholar
  89. [89]
    A. Abada, C. Biggio, F. Bonnet, M.B. Gavela and T. Hambye, Low energy effects of neutrino masses, JHEP 12 (2007) 061 [arXiv:0707.4058] [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    D.N. Dinh and S.T. Petcov, Lepton Flavor Violating τ Decays in TeV Scale Type I See-Saw and Higgs Triplet Models, JHEP 09 (2013) 086 [arXiv:1308.4311] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    M. Lindner, M. Platscher and F.S. Queiroz, A Call for New Physics: The Muon Anomalous Magnetic Moment and Lepton Flavor Violation, arXiv:1610.06587 [INSPIRE].
  92. [92]
    A.G. Akeroyd, M. Aoki and H. Sugiyama, Lepton Flavour Violating Decays \( \tau \to \overline{l}ll \) and μeγ in the Higgs Triplet Model, Phys. Rev. D 79 (2009) 113010 [arXiv:0904.3640] [INSPIRE].
  93. [93]
    J. Chakrabortty, P. Ghosh, S. Mondal and T. Srivastava, Reconciling (g − 2)μ and charged lepton flavor violating processes through a doubly charged scalar, Phys. Rev. D 93 (2016) 115004 [arXiv:1512.03581] [INSPIRE].Google Scholar
  94. [94]
    I. Esteban, M.C. Gonzalez-Garcia, M. Maltoni, I. Martinez-Soler and T. Schwetz, Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017) 087 [arXiv:1611.01514] [INSPIRE].ADSCrossRefGoogle Scholar
  95. [95]
    M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Global Analyses of Neutrino Oscillation Experiments, Nucl. Phys. B 908 (2016) 199 [arXiv:1512.06856] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  96. [96]
    W. Grimus and L. Lavoura, The seesaw mechanism at arbitrary order: Disentangling the small scale from the large scale, JHEP 11 (2000) 042 [hep-ph/0008179] [INSPIRE].
  97. [97]
    N.G. Deshpande, J.F. Gunion, B. Kayser and F.I. Olness, Left-right symmetric electroweak models with triplet Higgs, Phys. Rev. D 44 (1991) 837 [INSPIRE].ADSGoogle Scholar
  98. [98]
    A. Roitgrund, G. Eilam and S. Bar-Shalom, Implementation of the left-right symmetric model in FeynRules, Comput. Phys. Commun. 203 (2016) 18 [arXiv:1401.3345] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  99. [99]
    A. Maiezza, G. Senjanović and J.C. Vasquez, Higgs Sector of the Left-Right Symmetric Theory, arXiv:1612.09146 [INSPIRE].
  100. [100]
    Y. Zhang, H. An, X. Ji and R.N. Mohapatra, General CP-violation in Minimal Left-Right Symmetric Model and Constraints on the Right-Handed Scale, Nucl. Phys. B 802 (2008) 247 [arXiv:0712.4218] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  101. [101]
    A. Maiezza and M. Nemevšek, Strong P invariance, neutron electric dipole moment and minimal left-right parity at LHC, Phys. Rev. D 90 (2014) 095002 [arXiv:1407.3678] [INSPIRE].ADSGoogle Scholar
  102. [102]
    S. Bertolini, A. Maiezza and F. Nesti, Present and Future K and B Meson Mixing Constraints on TeV Scale Left-Right Symmetry, Phys. Rev. D 89 (2014) 095028 [arXiv:1403.7112] [INSPIRE].ADSGoogle Scholar
  103. [103]
    A. Maiezza, M. Nemevšek and F. Nesti, Perturbativity and mass scales in the minimal left-right symmetric model, Phys. Rev. D 94 (2016) 035008 [arXiv:1603.00360] [INSPIRE].ADSGoogle Scholar
  104. [104]
    J. Chakrabortty, J. Gluza, T. Jelinski and T. Srivastava, Theoretical constraints on masses of heavy particles in Left-Right Symmetric Models, Phys. Lett. B 759 (2016) 361 [arXiv:1604.06987] [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    ATLAS collaboration, Summary of the searches for squarks and gluinos using \( \sqrt{s}=8 \) TeV pp collisions with the ATLAS experiment at the LHC, JHEP 10 (2015) 054 [arXiv:1507.05525] [INSPIRE].
  106. [106]
    ATLAS collaboration, ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider, Eur. Phys. J. C 75 (2015) 510 [arXiv:1506.08616] [INSPIRE].
  107. [107]
    CMS collaboration, Search for supersymmetry in events with one lepton and multiple jets in proton-proton collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev. D 95 (2017) 012011 [arXiv:1609.09386] [INSPIRE].
  108. [108]
    CMS collaboration, Inclusive search for supersymmetry using razor variables in pp collisions at \( \sqrt{s}=13 \) TeV, Phys. Rev. D 95 (2017) 012003 [arXiv:1609.07658] [INSPIRE].
  109. [109]
    S. Dittmaier, G. Hiller, T. Plehn and M. Spannowsky, Charged-Higgs Collider Signals with or without Flavor, Phys. Rev. D 77 (2008) 115001 [arXiv:0708.0940] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of PhysicsOxford UniversityOxfordU.K.
  2. 2.Department of PhysicsIndian Institute of Science Education and Research Mohali (IISER Mohali)NagarIndia
  3. 3.Institute for Particle Physics Phenomenology, Department of PhysicsDurham UniversityDurhamU.K.

Personalised recommendations