Direct detection of sub-GeV dark matter with semiconductor targets

  • Rouven Essig
  • Marivi Fernández-Serra
  • Jeremy Mardon
  • Adrián Soto
  • Tomer Volansky
  • Tien-Tien YuEmail author
Open Access
Regular Article - Experimental Physics


Dark matter in the sub-GeV mass range is a theoretically motivated but largely unexplored paradigm. Such light masses are out of reach for conventional nuclear recoil direct detection experiments, but may be detected through the small ionization signals caused by dark matter-electron scattering. Semiconductors are well-studied and are particularly promising target materials because their \( \mathcal{O} \)(1 eV) band gaps allow for ionization signals from dark matter particles as light as a few hundred keV. Current direct detection technologies are being adapted for dark matter-electron scattering. In this paper, we provide the theoretical calculations for dark matter-electron scattering rate in semiconductors, overcoming several complications that stem from the many-body nature of the problem. We use density functional theory to numerically calculate the rates for dark matter-electron scattering in silicon and germanium, and estimate the sensitivity for upcoming experiments such as DAMIC and SuperCDMS. We find that the reach for these upcoming experiments has the potential to be orders of magnitude beyond current direct detection constraints and that sub-GeV dark matter has a sizable modulation signal. We also give the first direct detection limits on sub-GeV dark matter from its scattering off electrons in a semiconductor target (silicon) based on published results from DAMIC. We make available publicly our code, QEdark, with which we calculate our results. Our results can be used by experimental collaborations to calculate their own sensitivities based on their specific setup. The searches we propose will probe vast new regions of unexplored dark matter model and parameter space.


Dark Matter and Double Beta Decay (experiments) 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    M.W. Goodman and E. Witten, Detectability of Certain Dark Matter Candidates, Phys. Rev. D 31 (1985) 3059 [INSPIRE].ADSGoogle Scholar
  2. [2]
    XENON100 collaboration, E. Aprile et al., Dark Matter Results from 225 Live Days of XENON100 Data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].
  3. [3]
    LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].
  4. [4]
    SuperCDMS collaboration, R. Agnese et al., Search for Low-Mass Weakly Interacting Massive Particles with SuperCDMS, Phys. Rev. Lett. 112 (2014) 241302 [arXiv:1402.7137] [INSPIRE].
  5. [5]
    J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the Invisible Axion, Phys. Lett. B 120 (1983) 127 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett. B 120 (1983) 137 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    L.F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett. B 120 (1983) 133 [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    E.W. Kolb, D.J.H. Chung and A. Riotto, WIMPzillas!, hep-ph/9810361 [INSPIRE].
  9. [9]
    R. Essig, J. Mardon and T. Volansky, Direct Detection of Sub-GeV Dark Matter, Phys. Rev. D 85 (2012) 076007 [arXiv:1108.5383] [INSPIRE].ADSGoogle Scholar
  10. [10]
    C. Boehm and P. Fayet, Scalar dark matter candidates, Nucl. Phys. B 683 (2004) 219 [hep-ph/0305261] [INSPIRE].
  11. [11]
    M.J. Strassler and K.M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B 651 (2007) 374 [hep-ph/0604261] [INSPIRE].
  12. [12]
    D. Hooper and K.M. Zurek, A Natural Supersymmetric Model with MeV Dark Matter, Phys. Rev. D 77 (2008) 087302 [arXiv:0801.3686] [INSPIRE].ADSGoogle Scholar
  13. [13]
    I. Cholis, L. Goodenough and N. Weiner, High Energy Positrons and the WMAP Haze from Exciting Dark Matter, Phys. Rev. D 79 (2009) 123505 [arXiv:0802.2922] [INSPIRE].ADSGoogle Scholar
  14. [14]
    N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A Theory of Dark Matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [INSPIRE].ADSGoogle Scholar
  15. [15]
    M. Pospelov and A. Ritz, Astrophysical Signatures of Secluded Dark Matter, Phys. Lett. B 671 (2009) 391 [arXiv:0810.1502] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    R. Essig, J. Kaplan, P. Schuster and N. Toro, On the Origin of Light Dark Matter Species, arXiv:1004.0691 [INSPIRE].
  17. [17]
    D.E. Morrissey, D. Poland and K.M. Zurek, Abelian Hidden Sectors at a GeV, JHEP 07 (2009) 050 [arXiv:0904.2567] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    J.L. Feng and J. Kumar, The WIMPless Miracle: Dark-Matter Particles without Weak-Scale Masses or Weak Interactions, Phys. Rev. Lett. 101 (2008) 231301 [arXiv:0803.4196] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    T. Cohen, D.J. Phalen, A. Pierce and K.M. Zurek, Asymmetric Dark Matter from a GeV Hidden Sector, Phys. Rev. D 82 (2010) 056001 [arXiv:1005.1655] [INSPIRE].ADSGoogle Scholar
  20. [20]
    T. Lin, H.-B. Yu and K.M. Zurek, On Symmetric and Asymmetric Light Dark Matter, Phys. Rev. D 85 (2012) 063503 [arXiv:1111.0293] [INSPIRE].ADSGoogle Scholar
  21. [21]
    A. Loeb and N. Weiner, Cores in Dwarf Galaxies from Dark Matter with a Yukawa Potential, Phys. Rev. Lett. 106 (2011) 171302 [arXiv:1011.6374] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    S. Tulin, H.-B. Yu and K.M. Zurek, Beyond Collisionless Dark Matter: Particle Physics Dynamics for Dark Matter Halo Structure, Phys. Rev. D 87 (2013) 115007 [arXiv:1302.3898] [INSPIRE].ADSGoogle Scholar
  23. [23]
    J. March-Russell, J. Unwin and S.M. West, Closing in on Asymmetric Dark Matter I: Model independent limits for interactions with quarks, JHEP 08 (2012) 029 [arXiv:1203.4854] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    X. Chu, T. Hambye and M.H.G. Tytgat, The Four Basic Ways of Creating Dark Matter Through a Portal, JCAP 05 (2012) 034 [arXiv:1112.0493] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    P.W. Graham, D.E. Kaplan, S. Rajendran and M.T. Walters, Semiconductor Probes of Light Dark Matter, Phys. Dark Univ. 1 (2012) 32 [arXiv:1203.2531] [INSPIRE].CrossRefGoogle Scholar
  26. [26]
    M. Kaplinghat, S. Tulin and H.-B. Yu, Direct Detection Portals for Self-interacting Dark Matter, Phys. Rev. D 89 (2014) 035009 [arXiv:1310.7945] [INSPIRE].ADSGoogle Scholar
  27. [27]
    K.K. Boddy, J.L. Feng, M. Kaplinghat and T.M.P. Tait, Self-Interacting Dark Matter from a Non-Abelian Hidden Sector, Phys. Rev. D 89 (2014) 115017 [arXiv:1402.3629] [INSPIRE].ADSGoogle Scholar
  28. [28]
    K.K. Boddy, J.L. Feng, M. Kaplinghat, Y. Shadmi and T.M.P. Tait, Strongly interacting dark matter: Self-interactions and keV lines, Phys. Rev. D 90 (2014) 095016 [arXiv:1408.6532] [INSPIRE].ADSGoogle Scholar
  29. [29]
    Y. Hochberg, E. Kuflik, T. Volansky and J.G. Wacker, Mechanism for Thermal Relic Dark Matter of Strongly Interacting Massive Particles, Phys. Rev. Lett. 113 (2014) 171301 [arXiv:1402.5143] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    Y. Hochberg, E. Kuflik, H. Murayama, T. Volansky and J.G. Wacker, Model for Thermal Relic Dark Matter of Strongly Interacting Massive Particles, Phys. Rev. Lett. 115 (2015) 021301 [arXiv:1411.3727] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    R. Essig, A. Manalaysay, J. Mardon, P. Sorensen and T. Volansky, First Direct Detection Limits on sub-GeV Dark Matter from XENON10, Phys. Rev. Lett. 109 (2012) 021301 [arXiv:1206.2644] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    C. Bird, P. Jackson, R.V. Kowalewski and M. Pospelov, Search for dark matter in BS transitions with missing energy, Phys. Rev. Lett. 93 (2004) 201803 [hep-ph/0401195] [INSPIRE].
  33. [33]
    B. McElrath, Invisible quarkonium decays as a sensitive probe of dark matter, Phys. Rev. D 72 (2005) 103508 [hep-ph/0506151] [INSPIRE].
  34. [34]
    P. Fayet, Constraints on Light Dark Matter and U bosons, from ψ, ϒ, K + , π°, η and η decays, Phys. Rev. D 74 (2006) 054034 [hep-ph/0607318] [INSPIRE].
  35. [35]
    C. Bird, R.V. Kowalewski and M. Pospelov, Dark matter pair-production in BS transitions, Mod. Phys. Lett. A 21 (2006) 457 [hep-ph/0601090] [INSPIRE].
  36. [36]
    CLEO collaboration, P. Rubin et al., Search for Invisible Decays of the ϒ(1S) Resonance, Phys. Rev. D 75 (2007) 031104 [hep-ex/0612051] [INSPIRE].
  37. [37]
    Belle collaboration, O. Tajima et al., Search for invisible decay of the ϒ(1S), Phys. Rev. Lett. 98 (2007) 132001 [hep-ex/0611041] [INSPIRE].
  38. [38]
    Y. Kahn, M. Schmitt and T.M.P. Tait, Enhanced rare pion decays from a model of MeV dark matter, Phys. Rev. D 78 (2008) 115002 [arXiv:0712.0007] [INSPIRE].ADSGoogle Scholar
  39. [39]
    P. Fayet, U-boson production in e + e annihilations, ψ and ϒ decays and Light Dark Matter, Phys. Rev. D 75 (2007) 115017 [hep-ph/0702176] [INSPIRE].
  40. [40]
    P. Fayet, Invisible ϒ decays into Light Dark Matter, Phys. Rev. D 81 (2010) 054025 [arXiv:0910.2587] [INSPIRE].ADSGoogle Scholar
  41. [41]
    G.K. Yeghiyan, ϒ Decays into Light Scalar Dark Matter, Phys. Rev. D 80 (2009) 115019 [arXiv:0909.4919] [INSPIRE].ADSGoogle Scholar
  42. [42]
    BaBar collaboration, P. del Amo Sanchez et al., Search for Production of Invisible Final States in Single-Photon Decays of ϒ(1S), Phys. Rev. Lett. 107 (2011) 021804 [arXiv:1007.4646] [INSPIRE].
  43. [43]
    A. Badin and A.A. Petrov, Searching for light Dark Matter in heavy meson decays, Phys. Rev. D 82 (2010) 034005 [arXiv:1005.1277] [INSPIRE].ADSGoogle Scholar
  44. [44]
    B. Echenard, Search for Low-Mass Dark Matter at BABAR, Mod. Phys. Lett. A 27 (2012) 1230016 [arXiv:1205.3505] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    N. Borodatchenkova, D. Choudhury and M. Drees, Probing MeV dark matter at low-energy e+ecolliders, Phys. Rev. Lett. 96 (2006) 141802 [hep-ph/0510147] [INSPIRE].
  46. [46]
    R. Essig, P. Schuster and N. Toro, Probing Dark Forces and Light Hidden Sectors at Low-Energy e + e Colliders, Phys. Rev. D 80 (2009) 015003 [arXiv:0903.3941] [INSPIRE].ADSGoogle Scholar
  47. [47]
    M. Reece and L.-T. Wang, Searching for the light dark gauge boson in GeV-scale experiments, JHEP 07 (2009) 051 [arXiv:0904.1743] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    H.K. Dreiner, S. Heinemeyer, O. Kittel, U. Langenfeld, A.M. Weber and G. Weiglein, Mass Bounds on a Very Light Neutralino, Eur. Phys. J. C 62 (2009) 547 [arXiv:0901.3485] [INSPIRE].ADSCrossRefGoogle Scholar
  49. [49]
    BaBar collaboration, B. Aubert et al., Search for Invisible Decays of a Light Scalar in Radiative Transitions ϒ 3S → ΓA0, arXiv:0808.0017 [INSPIRE].
  50. [50]
    R. Essig et al., Working Group Report: New Light Weakly Coupled Particles, arXiv:1311.0029 [INSPIRE].
  51. [51]
    R. Essig, J. Mardon, M. Papucci, T. Volansky and Y.-M. Zhong, Constraining Light Dark Matter with Low-Energy e + e Colliders, JHEP 11 (2013) 167 [arXiv:1309.5084] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    E. Izaguirre, G. Krnjaic, P. Schuster and N. Toro, New Electron Beam-Dump Experiments to Search for MeV to few-GeV Dark Matter, Phys. Rev. D 88 (2013) 114015 [arXiv:1307.6554] [INSPIRE].ADSGoogle Scholar
  53. [53]
    C. Boehm, M.J. Dolan and C. McCabe, A Lower Bound on the Mass of Cold Thermal Dark Matter from Planck, JCAP 08 (2013) 041 [arXiv:1303.6270] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    K.M. Nollett and G. Steigman, BBN And The CMB Constrain Light, Electromagnetically Coupled WIMPs, Phys. Rev. D 89 (2014) 083508 [arXiv:1312.5725] [INSPIRE].ADSGoogle Scholar
  55. [55]
    BDX collaboration, M. Battaglieri et al., Dark matter search in a Beam-Dump eXperiment (BDX) at Jefferson Lab, arXiv:1406.3028 [INSPIRE].
  56. [56]
    E. Izaguirre, G. Krnjaic, P. Schuster and N. Toro, Testing GeV-Scale Dark Matter with Fixed-Target Missing Momentum Experiments, Phys. Rev. D 91 (2015) 094026 [arXiv:1411.1404] [INSPIRE].ADSGoogle Scholar
  57. [57]
    B. Batell, R. Essig and Z. Surujon, Strong Constraints on Sub-GeV Dark Sectors from SLAC Beam Dump E137, Phys. Rev. Lett. 113 (2014) 171802 [arXiv:1406.2698] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    J. Va’vra, Molecular excitations: a new way to detect Dark matter, Phys. Lett. B 736 (2014) 169 [arXiv:1402.0466] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    E. Izaguirre, G. Krnjaic, P. Schuster and N. Toro, Analyzing the Discovery Potential for Light Dark Matter, Phys. Rev. Lett. 115 (2015) 251301 [arXiv:1505.00011] [INSPIRE].ADSCrossRefGoogle Scholar
  60. [60]
    Y. Kahn, G. Krnjaic, J. Thaler and M. Toups, DAEδALUS and dark matter detection, Phys. Rev. D 91 (2015) 055006 [arXiv:1411.1055] [INSPIRE].ADSGoogle Scholar
  61. [61]
    Y. Hochberg, Y. Zhao and K.M. Zurek, Superconducting Detectors for Superlight Dark Matter, Phys. Rev. Lett. 116 (2016) 011301 [arXiv:1504.07237] [INSPIRE].ADSCrossRefGoogle Scholar
  62. [62]
    J.A. Formaggio, E. Figueroa-Feliciano and A.J. Anderson, Sterile Neutrinos, Coherent Scattering and Oscillometry Measurements with Low-temperature Bolometers, Phys. Rev. D 85 (2012) 013009 [arXiv:1107.3512] [INSPIRE].ADSGoogle Scholar
  63. [63]
    P. Cushman et al., Working Group Report: WIMP Dark Matter Direct Detection, arXiv:1310.8327 [INSPIRE].
  64. [64]
    XENON collaboration, E. Aprile et al., Design and Performance of the XENON10 Dark Matter Experiment, Astropart. Phys. 34 (2011) 679 [arXiv:1001.2834] [INSPIRE].
  65. [65]
    XENON10 collaboration, J. Angle et al., A search for light dark matter in XENON10 data, Phys. Rev. Lett. 107 (2011) 051301 [Erratum ibid. 110 (2013) 249901] [arXiv:1104.3088] [INSPIRE].
  66. [66]
    E. Figueroa-Feliciano and M. Pyle, private communication.Google Scholar
  67. [67]
    J. Estrada and J. Tiffenberg, private communication.Google Scholar
  68. [68]
    S.K. Lee, M. Lisanti, S. Mishra-Sharma and B.R. Safdi, Modulation Effects in Dark Matter-Electron Scattering Experiments, Phys. Rev. D 92 (2015) 083517 [arXiv:1508.07361] [INSPIRE].ADSGoogle Scholar
  69. [69]
    P. Giannozzi et al., Quantum espresso: a modular and open-source software project for quantum simulations of materials, J. Phys. Condens. Matter 21 (2009) 395502 [arXiv:0906.2569].CrossRefGoogle Scholar
  70. [70]
    K. Sigurdson, M. Doran, A. Kurylov, R.R. Caldwell and M. Kamionkowski, Dark-matter electric and magnetic dipole moments, Phys. Rev. D 70 (2004) 083501 [Erratum ibid. D 73 (2006) 089903] [astro-ph/0406355] [INSPIRE].
  71. [71]
    R. Essig, K. Tobioka, T. Volansky and T.-T. Yu, A field guide to models for electron-recoil experiments, to appear.Google Scholar
  72. [72]
    M.S. Madhavacheril, N. Sehgal and T.R. Slatyer, Current Dark Matter Annihilation Constraints from CMB and Low-Redshift Data, Phys. Rev. D 89 (2014) 103508 [arXiv:1310.3815] [INSPIRE].ADSGoogle Scholar
  73. [73]
    Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, arXiv:1502.01589 [INSPIRE].
  74. [74]
    R. Essig, E. Kuflik, S.D. McDermott, T. Volansky and K.M. Zurek, Constraining Light Dark Matter with Diffuse X-Ray and Gamma-Ray Observations, JHEP 11 (2013) 193 [arXiv:1309.4091] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    SuperCDMS collaboration, R. Agnese et al., New Results from the Search for Low-Mass Weakly Interacting Massive Particles with the CDMS Low Ionization Threshold Experiment, Phys. Rev. Lett. 116 (2016) 071301 [arXiv:1509.02448] [INSPIRE].
  76. [76]
    CRESST collaboration, G. Angloher et al., Results on light dark matter particles with a low-threshold CRESST-II detector, Eur. Phys. J. C 76 (2016) 25 [arXiv:1509.01515] [INSPIRE].
  77. [77]
    M.F. Altmann et al., Results and plans of the CRESST dark matter search, astro-ph/0106314 [INSPIRE].
  78. [78]
    DAMIC collaboration, J. Barreto et al., Direct Search for Low Mass Dark Matter Particles with CCDs, Phys. Lett. B 711 (2012) 264 [arXiv:1105.5191] [INSPIRE].
  79. [79]
    CRESST-II collaboration, G. Angloher et al., Results on low mass WIMPs using an upgraded CRESST-II detector, Eur. Phys. J. C 74 (2014) 3184 [arXiv:1407.3146] [INSPIRE].
  80. [80]
    D. Curtin, R. Essig, S. Gori and J. Shelton, Illuminating Dark Photons with High-Energy Colliders, JHEP 02 (2015) 157 [arXiv:1412.0018] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    A. Hook, E. Izaguirre and J.G. Wacker, Model Independent Bounds on Kinetic Mixing, Adv. High Energy Phys. 2011 (2011) 859762 [arXiv:1006.0973] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  82. [82]
    M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev. D 80 (2009) 095002 [arXiv:0811.1030] [INSPIRE].ADSGoogle Scholar
  83. [83]
    H. Davoudiasl and W.J. Marciano, Running of the U(1) coupling in the dark sector, Phys. Rev. D 92 (2015) 035008 [arXiv:1502.07383] [INSPIRE].ADSGoogle Scholar
  84. [84]
    S.W. Randall, M. Markevitch, D. Clowe, A.H. Gonzalez and M. Bradac, Constraints on the Self-Interaction Cross-Section of Dark Matter from Numerical Simulations of the Merging Galaxy Cluster 1E 0657-56, Astrophys. J. 679 (2008) 1173 [arXiv:0704.0261] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    J.D. Bjorken et al., Search for Neutral Metastable Penetrating Particles Produced in the SLAC Beam Dump, Phys. Rev. D 38 (1988) 3375 [INSPIRE].ADSGoogle Scholar
  86. [86]
    P. deNiverville, M. Pospelov and A. Ritz, Observing a light dark matter beam with neutrino experiments, Phys. Rev. D 84 (2011) 075020 [arXiv:1107.4580] [INSPIRE].
  87. [87]
    B. Batell, M. Pospelov and A. Ritz, Exploring Portals to a Hidden Sector Through Fixed Targets, Phys. Rev. D 80 (2009) 095024 [arXiv:0906.5614] [INSPIRE].ADSGoogle Scholar
  88. [88]
    S. Nussinov, Technocosmology: could a technibaryon excess provide a ‘natural’ missing mass candidate?, Phys. Lett. B 165 (1985) 55 [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    D.B. Kaplan, A single explanation for both the baryon and dark matter densities, Phys. Rev. Lett. 68 (1992) 741 [INSPIRE].ADSCrossRefGoogle Scholar
  90. [90]
    D.E. Kaplan, M.A. Luty and K.M. Zurek, Asymmetric Dark Matter, Phys. Rev. D 79 (2009) 115016 [arXiv:0901.4117] [INSPIRE].ADSGoogle Scholar
  91. [91]
    L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-In Production of FIMP Dark Matter, JHEP 03 (2010) 080 [arXiv:0911.1120] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  92. [92]
    SuperCDMS collaboration, R. Agnese et al., Search for Low-Mass Weakly Interacting Massive Particles Using Voltage-Assisted Calorimetric Ionization Detection in the SuperCDMS Experiment, Phys. Rev. Lett. 112 (2014) 041302 [arXiv:1309.3259] [INSPIRE].
  93. [93]
    P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136 (1964) B864.ADSMathSciNetCrossRefGoogle Scholar
  94. [94]
    W. Kohn and L. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. 140 (1965) A1133.ADSMathSciNetCrossRefGoogle Scholar
  95. [95]
    J.P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865.ADSCrossRefGoogle Scholar
  96. [96]
    P. Lautenschlager, P.B. Allen and M. Cardona, Temperature dependence of band gaps in Si and Ge, Phys. Rev. B 31 (1985) 2163.ADSCrossRefGoogle Scholar
  97. [97]
    Z. Levine and D. Allan, Linear optical response in silicon and germanium including self-energy effects, Phys. Rev. Lett. 63 (1989) 1719.ADSCrossRefGoogle Scholar
  98. [98]
    Z. Levine and D. Allan, Quasiparticle calculation of the dielectric response of silicon and germanium, Phys. Rev. B 43 (1991) 4187.ADSCrossRefGoogle Scholar
  99. [99]
    B.G. Streetman and S.K. Banerjee, Solid state electronic devices, Prentice Hall (2005).Google Scholar
  100. [100]
    C.A. Klein, Bandgap Dependence and Related Features of Radiation Ionization Energies in Semiconductors, J. Appl. Phys. 39 (1968) 2029.ADSCrossRefGoogle Scholar
  101. [101]
    B.G. Lowe, Measurements of Fano factors in silicon and germanium in the low-energy X-ray region, Nucl. Instrum. Meth. A 399 (1997) 354.ADSCrossRefGoogle Scholar
  102. [102]
    M. Lépy, J. Campbell, J. Laborie, J. Plagnard, P. Stemmler and W. Teesdale, Experimental study of the response of semiconductor detectors to low-energy photons, Nucl. Instrum. Meth. A 439 (2000) 239.ADSCrossRefGoogle Scholar
  103. [103]
    R.C. Alig, S. Bloom and C.W. Struck, Scattering by ionization and phonon emission in semiconductors, Phys. Rev. B 22 (1980) 5565.ADSCrossRefGoogle Scholar
  104. [104]
    R. Catena and P. Ullio, A novel determination of the local dark matter density, JCAP 08 (2010) 004 [arXiv:0907.0018] [INSPIRE].ADSCrossRefGoogle Scholar
  105. [105]
    P. Salucci, F. Nesti, G. Gentile and C.F. Martins, The dark matter density at the Sun’s location, Astron. Astrophys. 523 (2010) A83 [arXiv:1003.3101] [INSPIRE].ADSCrossRefGoogle Scholar
  106. [106]
    E. Figueroa-Feliciano, private communication.Google Scholar
  107. [107]
    A.K. Drukier, K. Freese and D.N. Spergel, Detecting Cold Dark Matter Candidates, Phys. Rev. D 33 (1986) 3495 [INSPIRE].ADSGoogle Scholar
  108. [108]
    S.K. Lee, M. Lisanti, A.H.G. Peter and B.R. Safdi, Effect of Gravitational Focusing on Annual Modulation in Dark-Matter Direct-Detection Experiments, Phys. Rev. Lett. 112 (2014) 011301 [arXiv:1308.1953] [INSPIRE].ADSCrossRefGoogle Scholar
  109. [109]
  110. [110]
    A.E. Chavarria et al., DAMIC at SNOLAB, Phys. Procedia 61 (2015) 21 [arXiv:1407.0347] [INSPIRE].ADSCrossRefGoogle Scholar
  111. [111]
    J. Tiffenberg, private communication.Google Scholar
  112. [112]
    P.N. Luke, J. Beeman, F.S. Goulding, S.E. Labov and E.H. Silver, Calorimetric ionization detector, Nucl. Instrum. Meth. A 289 (1990) 406 [INSPIRE].ADSCrossRefGoogle Scholar
  113. [113]
    B. Neganov and V. Trofimov, Otkrytiya, Izobret 146 (1985) 215.Google Scholar
  114. [114]
    G. Wang, Phonon emission in germanium and silicon by electrons and holes in applied electric field at low temperature, J. Appl. Phys. 107 (2010) 094504.ADSCrossRefGoogle Scholar
  115. [115]
    M. Pyle, private communication.Google Scholar
  116. [116]
    L. Sham and M. Schlüter, Density-functional theory of the energy gap, Phys. Rev. Lett. 51 (1983) 1888.ADSCrossRefGoogle Scholar
  117. [117]
    J. Perdew and M. Levy, Physical content of the exact kohn-sham orbital energies: Band gaps and derivative discontinuities, Phys. Rev. Lett. 51 (1983) 1884.ADSCrossRefGoogle Scholar
  118. [118]
    L. Hedin, New method for calculating the one-particle green’s function with application to the electron-gas problem, Phys. Rev. 139 (1965) A796.ADSCrossRefGoogle Scholar
  119. [119]
    P.A.M. Dirac, Note on exchange phenomena in the Thomas atom, Math. Proc. Camb. Phil. Soc. 26 (1930) 376.ADSCrossRefzbMATHGoogle Scholar
  120. [120]
    D.M. Ceperley and B.J. Alder, Ground State of the Electron Gas by a Stochastic Method, Phys. Rev. Lett. 45 (1980) 566 [INSPIRE].ADSCrossRefGoogle Scholar
  121. [121]
    M. Ernzerhof and G.E. Scuseria, Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional, J. Chem. Phys. 110 (1999) 5029.ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Rouven Essig
    • 1
  • Marivi Fernández-Serra
    • 2
    • 3
  • Jeremy Mardon
    • 4
  • Adrián Soto
    • 2
    • 3
  • Tomer Volansky
    • 5
  • Tien-Tien Yu
    • 1
    Email author
  1. 1.C.N. Yang Institute for Theoretical PhysicsStony Brook UniversityStony BrookU.S.A.
  2. 2.Department of Physics and AstronomyStony Brook UniversityStony BrookU.S.A.
  3. 3.Institute for Advanced Computational SciencesStony Brook UniversityStony BrookU.S.A.
  4. 4.Stanford Institute for Theoretical Physics, Department of PhysicsStanford UniversityStanfordU.S.A.
  5. 5.Raymond and Beverly Sackler School of Physics and AstronomyTel-Aviv UniversityTel-AvivIsrael

Personalised recommendations