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Abstract: Dark matter in the sub-GeV mass range is a theoretically motivated but largely

unexplored paradigm. Such light masses are out of reach for conventional nuclear recoil

direct detection experiments, but may be detected through the small ionization signals

caused by dark matter-electron scattering. Semiconductors are well-studied and are par-

ticularly promising target materials because their O(1 eV) band gaps allow for ionization

signals from dark matter particles as light as a few hundred keV. Current direct detec-

tion technologies are being adapted for dark matter-electron scattering. In this paper, we

provide the theoretical calculations for dark matter-electron scattering rate in semicon-

ductors, overcoming several complications that stem from the many-body nature of the

problem. We use density functional theory to numerically calculate the rates for dark

matter-electron scattering in silicon and germanium, and estimate the sensitivity for up-

coming experiments such as DAMIC and SuperCDMS. We find that the reach for these

upcoming experiments has the potential to be orders of magnitude beyond current direct

detection constraints and that sub-GeV dark matter has a sizable modulation signal. We

also give the first direct detection limits on sub-GeV dark matter from its scattering off
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electrons in a semiconductor target (silicon) based on published results from DAMIC. We

make available publicly our code, QEdark, with which we calculate our results. Our results

can be used by experimental collaborations to calculate their own sensitivities based on

their specific setup. The searches we propose will probe vast new regions of unexplored

dark matter model and parameter space.
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1 Introduction

1.1 The search for dark matter

There has been tremendous progress in the last three decades in the direct detection search

for weak-scale dark matter (DM) using underground detectors. The original aim was to

probe the scattering through Z-exchange of DM candidates with roughly weak-scale mass

against nuclei [1]. Now, experiments searching for these DM-induced nuclear recoils [2–4]

are sensitive to scattering cross sections many orders of magnitude below the Z-exchange

cross section, for candidates in the O(10 GeV–10 TeV) mass range. The motivation be-

hind this incredible experimental achievement has been the theoretically appealing, and

dominant, Weakly Interacting Massive Particle (WIMP) paradigm: DM as a weak-scale

thermal relic associated with new physics that solves the hierarchy problem. However, the

era of this paradigm’s preeminence appears to be ending due to both the lack of a DM

discovery, which excludes significant regions of WIMP parameter space, and the absence

of non-Standard Model (SM) physics at colliders, which has undermined the theoretical

motivation behind it. More importantly, several other theoretically motivated candidates

exist for resolving this great mystery of particle physics.

Motivated particle-DM candidates have been proposed over a vast range of masses,

from ultra-light bosonic fields such as a QCD axion [5–7], to non-thermal GUT-scale

relics [8]. While these have inspired a diverse array of experimental searches, techniques for

probing them are far less developed than the WIMP search program. One well-motivated

candidate that has received increased attention recently and is the focus of this paper is light

dark matter (LDM), with DM masses in the MeV to GeV range. LDM is often motivated by

production mechanisms that go beyond the standard freeze-out and may be found in several

frameworks in which the sub-GeV mass scale arises naturally. In addition, the origin for

the DM relic density can be naturally addressed by several mechanisms that suggest that

LDM interacts with SM particles via, for example, an exchange of a light “dark photon”, an

axion, or through an electromagnetic dipole moment. There is a large range of parameter

space of such models that evades both laboratory and astrophysical bounds [9–30].

Investigating LDM is an important and natural direction to pursue in the DM search

effort. An essential part of this pursuit is extending direct detection searches to this low

mass range. Several possible ways to do this were described in [9]. Fortunately, much of
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the impressive technology being developed for the Weak-scale direct detection program can

be readily adapted to search for LDM. An example of this was described in [31], obtaining

the first direct detection limits on DM with masses as low as a few MeV using published

XENON10 data. In this work, we study in detail the even more promising possibility

of semiconductor-based LDM searches, significantly expanding the preliminary work done

in [9]. Other, complementary techniques to search for LDM have been discussed in [32–61].

1.2 Direct detection of sub-GeV dark matter

Current direct detection experiments are limited to probing DM masses above a few GeV

due to the high energy thresholds required for detecting nuclear recoils. The challenge

in probing lower DM masses is twofold: for lower masses, not only is the total kinetic

energy of the DM particle decreased, but so is the fraction of energy that is transferred

to the nucleus. As a result, the energy of the nuclear recoils is much lower and one must

drastically reduce the threshold energies to detect it. This is an experimentally challenging

task, although it may be possible to probe masses down to a few hundred MeV, see [62, 63].

Instead, as discussed in [9], scattering channels other than elastic nuclear recoil are likely

to be far more fruitful.

A very promising avenue is to search for the small ionization signals caused directly

by DM-electron scattering. The lightness of the electron and the inelastic nature of the

DM-electron scattering process allow DM particles to transfer a large fraction of their

kinetic energy to the electron when they scatter, enabling DM as light as ∼1 MeV to

cause an ionization signal. Furthermore, detecting small ionization signals is already a

well-developed part of direct detection technology. In fact, the XENON10 experiment was

already sensitive to the ionization of a single electron [64], and results of a short single-

electron-sensitive run [65] were used in [31] to place direct detection bounds on DM with

masses as low as a few MeV. This serves as a proof-of-principle, motivating dedicated

LDM searches in other dual-phase noble liquid experiments such as XENON100 and LUX.

However, semiconductor targets have the potential to probe even smaller cross sections.

In semiconductors such as silicon or germanium, the band gap (the threshold to “ionize”

an electron by exciting it from a valence band to a conduction band) is ∼1 eV — a factor

of 10 to 20 times lower than the ionization threshold in liquid xenon. The consequences

of this lower energy threshold are significant. Not only could this allow sensitivity to DM

down to masses below an MeV, but it would also mean a substantial increase in event rate

for all DM masses [9, 25]. The reason for this is that, given the characteristic velocities

of DM particles and electrons, ∼1 eV recoil energies are typical, while recoil energies of

∼10 eV require velocities that are only found on the tails of the DM and electron velocity

distributions. Moreover, although the background that causes an ionization signal at such

low energies is still poorly understood, it is reasonable to expect that background event rates

in semiconductors may be significantly lower than in xenon-based detectors [66] (especially

since they may be operated cryogenically).1 There is currently an active program in, for

1Unlike for traditional WIMP searches, nuclear recoils are not an important background for our electron

recoil signal as their rates are expected to be much lower than background-induced electron recoils.
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example, both the SuperCDMS and DAMIC collaborations to develop germanium- and

silicon-based detectors that are sensitive to single electron-hole pairs [66, 67], enabling a

leap forward in LDM detection.

This developing experimental program presents a new theoretical challenge: the cal-

culation of the expected signal rate. Unlike for elastic nuclear recoils, this calculation is

highly non-trivial. In this paper, we tackle this calculation head on and present detailed

new results for germanium and silicon targets.

1.3 The challenge of calculating event rates

Several factors complicate the calculation of DM-electron scattering rates. Bound electrons

in dense media have a) typical speeds of order α ≈ 1/137 or greater, much faster than DM

particles (with v∼ 10−3), b) indefinite momentum, with even very large momenta having

non-zero probability, and c) a complicated structure of energy-levels. This greatly modifies

the scattering kinematics and breaks the simple link between momentum transfer and

energy deposition. As we discuss in more detail below, event rates can be highly sensitive

to the energy-level structure and the tails of the electrons’ momentum distributions. In

addition, the quantum nature of both the initial and final electron states is important, and

they cannot be correctly treated classically. As a result, approximate calculations which

do not fully account for these details may not give accurate results. This becomes even

more important for the large energy depositions, well above O(eV), since these rely on the

tails of the electron’s momentum distribution. Once correctly calculated, the effect of all

these complications can be completely encoded in an atomic form factor [9]. This function

is different for each specific target material, but is independent of the DM model. Once it

is known, event rates can be calculated relatively simply.

When the target is an isolated noble gas atom, the combination of spherical symmetry

and previously-compiled bound-state electron wavefunctions makes calculation of the ion-

ization form factor relatively straightforward. Refs. [9, 31] used this as an approximation

for the form factor of a liquid xenon target. However, calculating the form factor for a crys-

tal target (such as a semiconductor) is far more challenging. A periodic crystal lattice is

a complex multi-body system, with outer-shell (valence) electrons delocalized and occupy-

ing a complicated energy band-structure. Accurate wavefunctions of the valence electrons

cannot be found analytically, but must be computed numerically with an expansion in

a discrete set of plane waves.2 Taking this approach, a first calculation was done in [9],

assuming a single-electron threshold in a germanium target. A second approach was taken

in [25], which succeeded in simplifying the calculation until it was analytically tractable.

However, the approximations required for this were so extensive that the result might

be considered only as an order-of-magnitude estimate. A third, semi-analytic approach

was taken in [68] (see “Note added”), where numerical bound-state wavefunctions for free

germanium and silicon atoms are used and the outgoing electrons are described by plane

waves. The latter approach gives answers much closer to our full numerical calculation,

but important differences remain.

2Note that inner-shell (core) electrons, which are important in some cases, are more localized so that

their wavefunctions are closer to those computed assuming an isolated atom.
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1.4 Overview of the paper

In this paper, we present the results of a detailed numerical computation of DM-electron

scattering rates in germanium and silicon targets as a function of the electron recoil energy.

This significantly expands on the previous calculation in [9]. Higher recoil energies for the

scattered electron allow a larger number of additional electron-hole pairs to be promoted via

secondary scattering. Using a semi-empirical understanding of these secondary scattering

processes, we convert our calculated differential event rate to an estimated event rate as

a function of the number of observed electron-hole pairs. These results will allow several

experimental collaborations, such as DAMIC and SuperCDMS, to calculate their projected

sensitivity to the DM-electron scattering cross-section, given their specific experimental

setups and thresholds. It will also allow them to derive limits on this cross section in

the absence of a signal, or the preferred cross section value should there be a signal, in

forthcoming data. Achieving low ionization thresholds could allow these experiments to

probe large regions of LDM parameter space in the near future, as illustrated in figure 1.

In section 2, we briefly discuss the direct detection prospects for a few popular LDM

models. We will see that the upcoming generation of experiments with semiconductor tar-

gets play an essential role in testing these models. In section 3, we outline how to calculate

the rate for DM to scatter off bound electrons. We provide an intuitive understanding

of the scattering kinematics. Our discussion is general and applicable to both electrons

bound to (free) atoms as well as electrons in semiconductor targets. The details of this

calculation as well as comprehensive formulas are contained in appendix A, significantly

expanding on the information contained in [9, 31]. We then focus on semiconductor targets,

and describe the numerical computation of the scattering rates in section 4. We describe

our code QEdark, which is an additional module to the publicly available code Quantum

ESPRESSO [69]. The latter calculates the band structure and all electron wavefunctions

using density functional theory (DFT) and pseudopotentials, two established condensed

matter computational tools, to calculate the Bloch wavefunction coefficients for the initial

and final state electrons. In QEdark, we use this information to calculate the crystal form

factor for DM-electron scattering as well as the scattering rates. QEdark and the crystal

form factors will be publicly available at this link. In section 5, we discuss the conversion

from the energy of the primary scattered electron to the size of the final ionization signal.

We present a conversion formula and discuss the uncertainty associated with it. In sec-

tion 6, we present the results of our computation, showing the cross-section sensitivity as a

function of detector threshold, as well as the potential discovery reach using annual mod-

ulation. We also provide detailed sensitivity estimates for two representative, near-term

experiments that may soon reach the required sensitivity to detect LDM, namely DAMIC

and SuperCDMS. We conclude in section 7. The appendices contain additional technical

details: appendix A provides a detailed derivation of the formulae for the scattering rate

and crystal form-factor, appendix B describes our choice of local DM velocity distribution,

appendix C discusses the convergence of our numerical results, appendix D studies the

effects of inner-shell electrons on the overall scattering rate, appendix E presents details

of the systematic study of secondary interactions, and appendix F gives a brief review of

DFT and pseudopotentials.
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Figure 1. Prospects for upcoming DM-electron

scattering searches : selected near-term projec-

tions of DM-electron scattering cross-section σe
as a function of DM mass mχ for the DAMIC

(green curves) and SuperCDMS-silicon (dark

red curves) experiments, for different ionization

thresholds and (background-free) exposures, as

indicated. Solid curves show the 95% C.L. exclu-

sion reach from simple counting searches, while

dashed curves show the 5σ-discovery reach from

annual modulation searches. The gray shaded

region shows the current XENON10 bound [31],

while the shaded green region shows the esti-

mated bound from 2012 DAMIC data with a

∼11-electron-hole pair threshold. The projec-

tions for SuperCDMS-germanium (not shown)

are comparable to silicon. See section 6.5 for

more details. The three plots show results for

the different indicated DM form factors, corre-

sponding to different DM models.

We note that our main results are contained in figures 1, 2, 6, and 9 and described in

section 2 and section 6.

2 Models of Light Dark Matter

Theories of LDM have been receiving increased attention in recent years. Here we illustrate

with just a few benchmark LDM models how the upcoming generation of experiments with

semiconductor targets, including SuperCDMS and DAMIC, play an essential role in the

search for LDM. Classes of models that are probed by LDM direct detection include DM

that scatters through a dark-photon mediator or through a dipole moment interaction. We
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focus on DM coupled to a dark photon, leaving a discussion of dipole moment interac-

tions [25, 70], the SIMP [29, 30], and other models that can be constrained by electron

recoils to an upcoming publication [71].

For illustration, we consider models of LDM based on the vector-portal, in which the

dark sector (and the DM particle, χ) communicates with the SM through a U(1)D gauge

boson A′. The A′ is kinetically mixed with the SM hypercharge U(1)Y via the interaction

L ⊃ ε

2 cos θW
FµνY F ′µν , (2.1)

causing it to couple dominantly to electrically charged particles at low energies. Here ε

is the kinetic mixing parameter, θW is the Weinberg mixing angle, and FµνY (F ′µν) is the

U(1)Y (U(1)D) field strength.

DM particles can scatter off electrons in direct-detection experiments through A′ ex-

change. In the notation of section 3.2 below, the DM-electron reference cross section is

given by

σe =
16πµ2

χeαε
2αD

(m2
A′ + α2m2

e)
2
'


16πµ2χeαε

2αD
m4
A′

, mA′ � αme

16πµ2χeαε
2αD

(αme)4
, mA′ � αme

, (2.2)

where µχe is the DM-electron reduced mass and αD ≡ g2
D/4π (with gD the U(1)D gauge

coupling). We note that this expression is the same for DM that is a complex scalar or a

fermion. The corresponding DM form factor is

FDM(q) =
m2
A′ + α2m2

e

m2
A′ + q2

'

{
1 , mA′ � αme

α2m2
e

q2
, mA′ � αme

(2.3)

where q is the momentum transfer between the DM and electron.

In figure 2, we illustrate the parameter spaces of both the mA′ � αme and mA′ � αme

regimes, taking the fermionic and complex-scalar cases separately for the former. We

study three cases, which highlight different possible production mechanisms, and show the

interplay between different experimental probes.

(i) Freeze-out via the vector portal: complex scalar LDM.

We consider the phenomenologically interesting and predictive region mA′ > 2mχ,

corresponding to FDM(q) = 1. Annihilation to SM particles occurs via an off-shell A′

(χχ∗ → A′∗ → SM). This process is p-wave suppressed, allowing the DM abundance

to be set by thermal freeze-out while evading constraints from the cosmic microwave

background (CMB), e.g. [72, 73], and from gamma-rays in the Milky-Way halo [74].

We show the parameter space for this scenario in figure 2 (top left), taking mA′ =

3mχ for concreteness. The thick blue curve shows the cross-section for which the

correct relic abundance is obtained from freeze-out [73] (this is largely insensitive

to the specific choice of mA′). Above this line, an asymmetric DM component may

complete the DM abundance. Below it, the abundance is naively too large, but

this region may be viable with alternate hidden-sector freeze-out channels. We also

show various constraints on this model. The black curve labelled “XENON10” shows

– 6 –



J
H
E
P
0
5
(
2
0
1
6
)
0
4
6

� �� ��� ��� ���
��-��
��-��
��-��
��-��
��-��
��-��
��-��
��-��
��-��
��-��
��-��
��-��
��-��

�χ [���]

σ
�
[�
�
�
]

������-���� ������� ������� ��� = � �χ

�
μ�±�σ �������

��
��

�
��
��

����

����

�������

�����

��� ���
�-��� ���

=��
-

������
���

��� ��
��-��

� ���=
��

-

������-���

Ω
χ >

Ω
��

(�����-���������)

�������
��

�����������
���������
��� �����

����

���=�

� �� ��� ��� ���
��-��
��-��
��-��
��-��
��-��
��-��
��-��
��-��
��-��
��-��
��-��
��-��
��-��

�χ [���]

σ
�
[�
�
�
]

����������� ����� �������� ��� = � �χ

�
μ�±�σ �������

��
��

�
��
��

����

����

�������

�����

��� ���
�-��� ���

=��
-

������
���

��� ��
��-��

� ���=
��

-

��
�

(�����-���������)

�������
��

�����������
���������
��� �����

����

���=�

��-���-���-� ��� ��� ��� ��� ��� ��� ��� ���
��-��
��-��
��-��
��-��
��-��
��-��
��-��
��-��
��-��
��-��
��-��
��-��
��-��
��-��

�χ [���]

σ
�
[�
�
�
]

������-��� �� ���� ���������� ���� ������

�������
��

������
-��

��
�
��

���
��
� �

-�
�� �

��
=�
�
-

��
��
��
��
�

��
� �
� �
�-
��
� �

��
=�
�
-

��
�
��

��
�
��
���
��

���∝�/�
�

���
��

��

��

Figure 2. Prospects for benchmark models :

selected 95% C.L. exclusion reach for the DAMIC

(green curves) and SuperCDMS-silicon (dark red

curves) experiments, compared with other con-

straints for the benchmark models discussed in

section 2. White regions are unconstrained,

while thick blue curves illustrate possible predic-

tive mechanisms for generating the DM abun-

dance. Top: DM interacting via a massive

dark photon (FDM(q) = 1), for complex-scalar

DM with freeze-out abundance (left), and Dirac-

fermion DM with asymmetric abundance (right).

Bottom: DM interacting via an ultralight dark

photon (FDM(q) = (αme/q)
2), with an abun-

dance generated by freeze-in. The DAMIC and

SuperCDMS projections assume 100 g-year and

10 kg-years background-free exposures, with 2-

and 1-electron thresholds, respectively, in a sili-

con target. See text for details.

the electron-recoil DM constraint set with XENON10 data [31]. The black curve

labelled “Current NR Constraints” shows constraints from conventional nuclear-recoil

searches from [3, 75, 76]. Some measurements only constrain ε as a function of

mA′ . Among these, we only show the strongest constraints, which are a BaBar

search for e+e− → γ + invisible [49, 51, 52] as well as electroweak precision tests

(EWPT) [80, 81]; however, to guide the eye, we also show the “favored” 2σ-region

for which the A′ can explain the discrepancy between the measurement and SM

prediction for the muon anomalous magnetic moment, aµ [82]. We translate these into

the σe versus mχ plane by using the constraint on αD from either perturbativity [83]
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or χ self-interactions [22]. For these we require that αD is less than 1.0 and small

enough so that σself−int/mχ . 1 cm2/g for clusters [84]. A second set of constraints

bound some combination of ε, αD, and mA′ : the electron beam-dump E137 [57, 85]

and the proton beam-dump LSND [60, 86, 87]. We again use the constraint on

αD from self-interactions and perturbativity to translate these into the σe versus

mχ plane. We also show a rough bound on Neff , see [53, 54, 73]; the presence of

additional relativistic degrees of freedom could allow this bound to be evaded. For a

complementary representation of this parameter space see [59].

(ii) Freeze-out via the vector portal: Dirac fermion LDM.

In figure 2 (top right), we consider the same scenario as in (i) but take χ to be a Dirac

fermion. This also corresponds to FDM(q) = 1. The main difference between this

scenario and (i) is that the annihilation cross section is now s-wave, so that constraints

from the CMB preclude the abundance being set by freeze out. Instead, we assume

the abundance to be asymmetric [88–90], and require the symmetric component to be

small enough after freeze-out to avoid the CMB bounds [20]. This provides a lower

bound on the annihilation cross-section and thus on σe, shown with a black solid line.

As before, this lower bound is model-dependent and can be evaded with additional

annihilation channels. The other constraints are similar.

(iii) Freeze-in via the vector portal.

In figure 2 (bottom), we consider an ultra-light A′ mediator (mA′ � αme), corre-

sponding to FDM(q) = (αme/q)
2. Here the couplings are so small that the DM would

never have thermalized with the SM sector. The χ abundance can receive an irre-

ducible “freeze-in” [91] contribution from 2 → 2 annihilation of SM particles to χχ̄

as well as Z-boson decays to χχ̄, computed in [9] (see also [24]). The parameters

required for the abundance again uniquely constrain σe versus mχ, as shown by the

thick blue curve. In addition to the XENON10 electron-recoil constraint [31], we

also show the bounds from conventional nuclear-recoil searches. The nuclear recoil

cross-section, σNR, can be related to the electron recoil cross-section by

d〈σNRv〉
dENR

=
Z2σe(αme)

4

8µ2
χemNE2

NR

η(vmin,NR) , (2.4)

where the target nucleus has mass mN and atomic number Z, ENR is the nuclear

recoil energy, and vmin,NR =
√

2mNENR/(2µχN ), v is relative velocity of the DM,

and η is the inverse mean speed defined in appendix B. Since this recoil spectrum

is peaked towards low energies more than for a contact interaction, determining

accurate DM constraints requires a careful analysis of the experimental data. We

place approximate bounds from “CDMSLite” [92] and LUX [3] results, taking the

former to have 6.2 kg-days germanium exposure, a 0.84 keV threshold, 100% signal

efficiency and 10 observed events, and taking the latter to have 10 tonne-days xenon

exposure, a 5 keV threshold, 50% signal efficiency and 0 observed events. Due to the

smallness of the couplings, the other constraints seen in the previous scenarios are

absent in this one.
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In each of the figures in figure 2 we show the prospects for DAMIC (100 g-years, silicon

target, 2-electron threshold) and SuperCDMS (10 kg-years, silicon, 1-electron threshold),

discussed in section 6.5. We note that a magnetic-dipole-moment interaction would also

give FDM(q) = 1, while an electric-dipole-moment interaction would give FDM(q) = αme/q.

We see that these models above all have concrete predictions that the upcoming generation

of direct detection experiments can test.

3 Direct detection of dark matter by electron scattering in

semiconductors

In this section, we review the theory of DM scattering with bound electrons. We begin in

section 3.1 by considering the simple kinematics of LDM scattering with both nucleons and

electrons. This makes clear the motivation for using electron recoils to probe LDM. The

discussion also shows that the DM-electron scattering rate is expected to be sensitive to the

details of electron binding in the target, especially for higher energy/ionization thresholds.

A consequence of this is that to calculate accurate scattering rates, detailed modeling

of the electronic structure of the target material is required, involving knowledge of the

wavefunctions of all accessible occupied and unoccupied electron levels.

In section 3.2, we summarize how this scattering-rate calculation is formulated, with a

focus on the case of semiconductor targets. The key results are eqs. (3.13) and (3.17). The

former gives the differential scattering rate in terms of the DM model, the DM velocity

profile, and crystal form factor. The latter gives the crystal form-factor, which encodes all

the relevant electron binding effects for a given target material. This reviews and extends

the discussion from ref. [9]. In appendix A, we provide a full derivation of all the results

given here. For the interested reader, in appendix A.3 we present a derivation of the

ionization rate in free atomic targets, as is relevant for xenon targets and which was used

in refs. [9, 31].

3.1 Kinematics of dark matter-electron scattering

Conventional DM direct detection experiments assume that the DM particle scatters elasti-

cally off a target nucleus. This recoiling nucleus then collides with the surrounding matter

within the detector, giving off energy in the form of heat, phonons, ionized electrons, scin-

tillation photons, etc, depending on the detector material. However, if the DM particle is

light, the momentum transfer, ~q, between the DM and the target nucleus is small and may

not provide enough energy for the recoil of the nucleus to be detected. We can see this

through the following argument. The energy of the recoiling nucleus in nuclear scattering is

ENR =
q2

2mN
≤

2µ2
χNv

2

mN
' 1 eV ×

( mχ

100 MeV

)2
(

20 GeV

mN

)
. (3.1)

For the scaling in the last step of this equation, we have taken the typical DM speed to

be 300 km/s ≈ 10−3c, and assumed mχ � mN . For mχ = 30 GeV, we find ENR ∼ 2

keV. However, if we consider lighter DM masses, such as mχ = 100 MeV, the recoil energy

drops to ENR ∼ eV, which is well below the detection thresholds of current direct detection
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χ χ

p p-q

e- e-

N + N +X X *{ }

Figure 3. The scattering of a DM particle with a bound electron. The DM transfers momentum

~q to the target, exciting it from the ground state X to an excited state X∗, which can be either a

higher-energy bound state or an ionized state.

experiments (e.g. ∼ 840 eVNR for CDMSlite [92] and ∼ 4 keVNR for LUX [3]). Note that

the energy of the recoiling nucleus is also not efficiently transferred to electrons, and so

is not nearly large enough to ionize or excite even a single electron; it is also well below

current phonon detection thresholds. As a result, DM masses below a few hundred MeV

escape detection no matter how large their cross section.

Now consider a DM particle colliding directly with a bound electron, exciting it to

a higher energy level or an unbound state, as illustrated in figure 3. The kinematics are

very different from those of a nuclear recoil. Firstly, being in a bound state, the electron

does not have definite momentum — in fact it may have arbitrarily high momentum (albeit

with low probability). This breaks the direct relation between recoil energy and momentum

transfer given in eq. (3.1). The energy transferred to the electron, ∆Ee, can still be related

to the momentum lost by the DM, ~q, via energy conservation:

∆Ee = −∆Eχ −∆EN = −|mχ~v − ~q|2

2mχ
+

1

2
mχv

2 − q2

2mN
= ~q · ~v − q2

2µχN
. (3.2)

Here the ∆EN term accounts for the fact that the whole atom also recoils. In practice this

term is small, which also allows us to replace µχN with mχ. We thus define

Ee ≡ ∆Ee = −∆Eχ (3.3)

as the energy transferred to the electron.3 Since an arbitrary-size momentum transfer is

now possible, the largest allowed energy transfer is found by maximizing ∆Ee with respect

to ~q, giving

∆Ee ≤
1

2
µχNv

2 ' 1

2
eV ×

( mχ

MeV

)
. (3.4)

This shows that all the kinetic energy in the DM-atom collision is (in principle) available

to excite the electron. For a semiconductor with an O(eV) bandgap, ionization can be

caused by DM as light as O(MeV).

What is the likelihood of actually obtaining a large enough q to excite the electron?

This brings us to the second major difference compared to DM-nuclear scattering: the

3We emphasize that Ee is the energy transferred to the electron, not its kinetic energy. Some of this

energy goes to overcoming the binding energy. As we will discuss further in section 5, in semiconductors

the remaining energy is rapidly redistributed by secondary scattering processes, which can produce further

electron-hole pairs.
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electron is both the lightest and fastest particle in the problem. The typical velocity of a

bound electron is ve ∼ Zeffα, where Zeff is 1 for outer shell electrons and larger for inner

shells. This is much greater than the typical DM velocity of v ∼ 10−3. The typical size of

the momentum transfer is therefore set by the electron’s momentum,

qtyp ' µχevrel ' meve ∼ Zeffαme ' Zeff × 4 keV (3.5)

where vrel is the relative velocity between the DM and electron.

Returning to eq. (3.2), the first term on the right dominates as long as mχ is well

above the bound in eq. (3.4). This gives a formula for the minimum momentum transfer

required to obtain an energy ∆Ee:

q &
∆Ee
v
∼ ∆Ee

4Zeff eV
× qtyp . (3.6)

This scaling suggests that the typical available momentum is enough to cause a transition

of just a few eV, such as for an electron being excited just across the germanium or silicon

bandgap. Exciting a more energetic transition will require a momentum out on the tail

of the electron’s momentum-space wavefunction (or probing the tail of the DM velocity

distribution), and its probability will be correspondingly suppressed (as can be seen clearly

in figure 5 below, which we will discuss in section 6.1). Ionization of a xenon atom,

requiring ∼10 eV energy, falls into the second category, as do most possible transitions to

the conduction band in germanium or silicon.

From this argument we expect the rate of DM-electron scattering to be sensitive to

the precise forms of the electron energy levels and wavefunctions in the target. The com-

putation we present below is designed to address this sensitivity by modeling in detail the

electronic structure in germanium and silicon crystals. A corollary of this argument is that,

given the v-dependence in eq. (3.6), the rate should also be sensitive to the DM velocity

profile. As this varies over the year, we expect a significant annual modulation in the signal

size, a potentially crucial test of the DM origin of a signal. We discuss the expected annual

modulation in section 6.4.

3.2 Calculating excitation rates

3.2.1 General formulation for dark matter-induced electron transitions

If a DM particle scatters with an electron in a stationary bound state such as in an atom,

it can excite the electron from an initial energy level 1 to an excited energy level 2 by

transferring energy ∆E1→2 and momentum ~q. The cross section for this process takes

quite a different form to the free elastic scattering cross section.

If Mfree(~q ) is the matrix element for free elastic scattering of a DM particle and an

electron, then we parametrize the underlying DM-electron coupling using the following

definitions [9]:

|Mfree(~q )|2 ≡ |Mfree(αme)|2 × |FDM(q)|2 (3.7)

σe ≡
µ2
χe|Mfree(αme)|2

16πm2
χm

2
e

, (3.8)
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where |M|2 is the absolute square of M, averaged over initial and summed over final

particle spins. The DM form factor, FDM(q), gives the momentum-transfer dependence of

the interaction — for example, FDM(q) = 1 results from a point-like interaction induced by

the exchange of a heavy vector mediator or magnetic dipole moment coupling, FDM(q) =

(αme/q) for an electric dipole moment coupling, and FDM(q) = (αme/q)
2 for exchange of

a massless or ultra-light vector mediator (see section 2). σe parameterizes the strength of

the interaction, and in the case of FDM(q) = 1 is equal to the cross section for free elastic

scattering. All sensitivity estimates or constraints on LDM will be given for σe, which

plays the analogous role to σχN , the DM-nucleon scattering cross section, in (WIMP) DM

scattering with nuclei.

With these definitions, the cross section for a DM particle to excite an electron from

level 1 to level 2 can be written as (see appendix A.1)

σv1→2 =
σe
µ2
χe

∫
d3q

4π
δ
(

∆E1→2 +
q2

2mχ
− ~q · ~v

)
× |FDM(q)|2|f1→2(~q )|2 , (3.9)

where f1→2(~q ) is the atomic form factor for the excitation. It is given by

f1→2(~q ) =

∫
d3xψ∗2(~x)ψ1(~x)ei~q·~x , (3.10)

where ψ1 and ψ2 are the normalized wavefunctions of the initial and final electron levels.

We now apply this general result to the special case of electrons in a periodic crystal lattice,

such as a semiconductor.

3.2.2 Excitation rate in a semiconductor crystal

The periodic lattice of a semiconductor crystal has a continuum of electron energy levels,

forming a complicated band structure (see figure 4). A small energy gap separates the

occupied valence bands from the unoccupied conduction bands; exciting electrons across

this bandgap creates mobile electron-hole pairs, which can be manipulated and detected.

In order to perform practical calculations for this system, the true multi-body electron

wavefunction must be replaced with a product of single-particle wavefunctions (this is a

well-understood procedure, which we discuss further in section 4). Once found, these single-

particle wavefunctions can be used in eqs. (3.9) and (3.10), giving the cross-section to excite

an electron between specific energy levels. To find the total rate, these cross sections are

integrated over initial and final electron levels, and over the DM velocity distribution.

DM halo dependence. Neither the electron band structure, nor the electron wavefunc-

tions, nor the DM velocity distribution are spherically symmetric. As noted in [9], the

excitation rate will therefore depend on the orientation of the crystal with respect to the

galaxy, an effect which may be extremely useful in verifying the DM origin of a signal. Here,

however, we sidestep this complication by approximating the DM velocity distribution as

being a spherically symmetric function gχ(v). All the relevant information about the DM

velocity profile can then be encoded in the function η(vmin) (see appendix A.2), defined as

η(vmin) =

∫
d3v

v
gχ(v) Θ(v − vmin) (3.11)

where Θ is the Heaviside step function.
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Figure 4. Scissor corrected band structure for silicon (left) and germanium (right) as calculated

with Quantum ESPRESSO [69] with a very fine k-point mesh. The horizontal dashed line indicates

the top of the highest valence band. The four bands below the horizontal dashed line are the

valence bands while the bands above the dashed line are the conduction bands. We also show the

density-of-states (DOS) as a function of the energy for a very fine k-point mesh (blue) and for our

243 k-point mesh (red). A Gaussian smearing of 0.15 eV was used to generate a smooth function.

When calculating rates, we assume a Maxwell-Boltzmann distribution with a sharp cut-

off (we describe this in more detail, and give analytic formulas for η(vmin), in appendix B).

The requirement of energy conservation is captured by vmin(q, Ee), the minimum speed

a DM particle requires in order for the electron to gain an energy Ee with momentum

transfer q (note that Ee was also denoted as ∆Ee in section 3.1). This is given by

vmin(q, Ee) =
Ee
q

+
q

2mχ
. (3.12)

Differential rate. As we show in appendix A.4, the differential electron scattering rate

in a semiconductor target (with the approximation of a spherically symmetric DM velocity

distribution) can be written as

dRcrystal

d lnEe
=

ρχ
mχ

Ncell σe α

× m2
e

µ2
χe

∫
d ln q

(
Ee
q
η
(
vmin(q, Ee)

))
FDM(q)2

∣∣fcrystal(q, Ee)
∣∣2 , (3.13)

where ρχ ' 0.4 GeV/cm3 is the local DM density, Ee is the total energy deposited, and

Ncell = Mtarget/Mcell is the number of unit cells in the crystal target. (Mcell = 2×mGe =

145.28 amu = 135.33 GeV for germanium, and Mcell = 2×mSi = 56.18 amu = 52.33 GeV

for silicon.) We have written this in such a way that the first line gives a rough estimate

of the rate, about 29 (11) events/kg/day for silicon (germanium) for ρχ = 0.4 GeV/cm3,

mχ = 100 MeV, and σe ' 3.6 × 10−37 cm2 (the current limit from XENON10 [31]), while

every factor in the second line is a roughly O(1) number for the preferred values of q and Ee.
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All the necessary details of the target’s electronic structure are contained in the dimen-

sionless crystal form factor, fcrystal(q, Ee), which is a property purely of the target material

and is independent of any DM physics. The computation of this form factor is one of the

main results of this paper.

Crystal form factor. In the periodic lattice of a semiconductor crystal, each electron

energy level is labelled by a continuous wavevector ~k in the first Brillouin Zone (BZ), and

by a discrete band index i. The wavefunctions of these states can be written in Bloch form,

ψ
i~k

(~x) =
1√
V

∑
~G

ui(~k + ~G)ei(
~k+ ~G)·~x , (3.14)

where the ~G’s are the reciprocal lattice vectors. Here V is the volume of the crystal, and

the wavefunctions are taken to be unit-normalized, so that∑
~G

∣∣ui(~k + ~G)
∣∣2 = 1 . (3.15)

Using this form for the wavefunctions, we can define the form factor for excitation

from valence level {i~k} to conduction level {i′ ~k′},

f
[i~k,i′~k′, ~G′] =

∑
~G

u∗i′(
~k′ + ~G+ ~G′)ui(~k + ~G) . (3.16)

The crystal form factor required in eq. (3.13) is then given by

∣∣fcrystal(q, Ee)
∣∣2 =

2π2(αm2
eVcell)

−1

Ee

∑
i i′

∫
BZ

Vcell d
3k

(2π)3

Vcell d
3k′

(2π)3
×

Ee δ(Ee − Ei′~k′ + E
i~k

)
∑
~G′

q δ(q − |~k′ − ~k + ~G′|)
∣∣f

[i~k,i′~k′, ~G′]

∣∣2 . (3.17)

(See appendix A.4 for the derivation.) The band index i is summed over the filled energy

bands, while i′ is summed over unfilled bands, and the momentum integrals are over the 1st

BZ. E
i~k

is the energy of level {i~k}, and Vcell is the volume of the unit cell. The numerator in

the first factor has units of energy, with value 2π2(αm2
eVcell)

−1 = 1.8 eV for germanium and

2.0 eV for silicon. The crystal form factor can be computed numerically using established

solid-state computational techniques. Once it is known, it can be used to find event rates

for any DM model and halo profile, using eq. (3.13), along with eqs. (3.7), (3.8), (3.11),

and (3.12). We now turn to our own numerical evaluation of the crystal form factor.

4 Numerical computation of the form factor

Our aim is to compute the crystal form factor, given by eq. (3.17), for silicon and germanium

targets with low energy thresholds (<∼ 30 eV). Once these are found, it is possible to calcu-

late scattering rates for any DM model. Calculating the form factor requires knowledge of

the electron wavefunction coefficients ui(~k+ ~G) for all energetically accessible electron lev-

els. To calculate these coefficients, we utilize the “plane wave self-consistent field” (PWscf)
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code within the Quantum ESPRESSO [69] package, based on the formalism of DFT. We then

input these into our own postprocessing code, QEdark, to calculate the form factors. In this

section, we summarize the key conceptual and numerical details of our computation. We

provide a review of DFT in appendix F, detail the approximations used in the computation

of the wavefunctions, and lay out the numerical methods. In appendix C, we discuss the

convergence of our computation.

4.1 Computational framework

It is impossible in practice to obtain the exact many-electron wavefunctions that describe

interacting electrons in a many-body system such as a crystal. Instead, several methods

exist to obtain excellent numerical approximations to these wavefunctions. We use DFT,

which reformulates the interacting quantum many-body problem in terms of functionals

of the particle density n(~r). For the case of electrons, the Hohenberg-Kohn theorems [93]

imply that all properties of the interacting system are determined once the ground-state

electron density is known. In order to obtain the ground-state density, we use the Kohn-

Sham method [94] to map the system of interacting electrons into a system of independent

electrons under the presence of an auxiliary potential that produces the same ground-state

density. After this mapping, one has to solve the much simpler non-interacting electron

system in order to obtain the ground-state energy and electron density.

The mapping from an interacting to a non-interacting many-body system comes at the

expense of having to use an approximate auxiliary potential. Typically this potential is

split into the mean-field Hartree potential and an exchange-correlation potential. The latter

captures the quantum mechanical effect of having identical electrons and also attempts to

capture the correlation energy among the interacting electrons. The exchange-correlation

potential is not known exactly and needs to be approximated. We use the Perdew-Burke-

Ernzerhof (PBE) functional [95], which belongs to the class of the Generalized Gradient

Approximations (GGA). We discuss this further in appendix F.

Both silicon and germanium have a diamond lattice structure that contains two atoms

in the unit cell. There are two s-shell and two p-shell valence electrons per atom (3s and

3p (2s and 2p) for germanium (silicon)), which makes a total of 8 electrons per cell. This

translates to 4 valence bands, since each band is doubly degenerate in electron spin. In

silicon, the core electrons have binding energies of ∼100 eV and above, and so are irrelevant

for the energies we consider here. One must take more care with germanium, since the

3d electrons have binding energies of ∼30 eV, and so can be relevant for the higher energy

thresholds we consider here.4 In the computation, energetically-inaccessible core electrons

can be replaced with a pseudopotential, which increases the computational efficiency by

reducing the number of initial states required, and by reducing the resolution needed to

describe the wavefunctions. We use ultrasoft pseudopotentials [96] in place of all but

the outer two s-shell and two p-shell valence electrons. For germanium, we also use a

pseudopotential that allows us to treat the 3d electrons as valence states. As a result,

the computational cost for germanium is slightly higher than that of silicon. We use an

4We thank the authors of [68] for discussions regarding this point.
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empirical “scissor correction” approach [97, 98] to set the band gap to 1.11 eV for silicon

and 0.67 eV for germanium [99].5

4.2 Discretization procedure and cutoff choices

In order to obtain the crystal form factor with a finite computation, several modifications

must be made to eq. (3.17):

• Binning in q and Ee. The form factor must be evaluated for finite grid of q- and

Ee-values. We do this by averaging over bins of equal width in q and Ee:∣∣f (binned)
crystal (qn, Em)

∣∣2 ≡ ∫ qn+ 1
2

∆q

qn− 1
2

∆q

dq′

∆q

∫ Em+ 1
2

∆E

Em− 1
2

∆E

dE′

∆E

∣∣fcrystal(q
′, E′)

∣∣2 . (4.1)

Here qn is the central value of the nth q bin, and Em is the central value of the mth

energy bin, and ∆q and ∆E are the widths of the bins. We use 500 Ee-bins with

∆E = 0.1 eV and 900 q-bins with ∆q = 0.02αme.

• Discretization in ~k. The continuum of k-values in each energy band must be replaced

with a discrete mesh of representative k-points. The k-integrals in eq. (3.17) are then

replaced with finite sums:∫
BZ

d3k

(2π)3
(. . .) −→ VBZ

(2π)3

∑
~k

1

2
w~k (. . .) =

1

Vcell

∑
~k

1

2
w~k (. . .) . (4.2)

Here VBZ is the volume of the Brillouin Zone, Vcell is the volume of the crystal’s

unit cell, and w~k are the weightings of the k-points, with
∑
w~k = 2 (following the

convention of Quantum ESPRESSO). We use a uniform 243 k-point mesh.

• Cutoff in ~G, ~G′. The wavefunctions are expanded in a finite size plane-wave basis

whose reciprocal lattice vectors satisfy the “kinetic energy” cutoff (really a cutoff in

the space of ~G-vectors)

|~k + ~G|2

2me
≤ Ecut . (4.3)

Note that since q = |~k′ − ~k + ~G′|, and since | ~Gmax| � |~k| and |~k′|, the momentum

transfer q essentially has a cutoff of
√

2meEcut. We choose a value of Ecut = 70 Ry,

which allows us to sample a large enough q space to obtain O(1%) accuracy for our

rate calculations.

• Energy bands. As discussed above, we consider initial electron states in the 4 valence

bands for silicon and the 4 valence bands + 10 outer core bands (corresponding to

the 3d-shell electrons) for germanium. We include final-state energy bands up to the

52nd conduction band in both germanium and silicon. The lowest conduction states

not included are about 57 eV above the band gap, while the highest energy core states

not included are more than 60 eV below the band gap. Our choice of bands therefore

fully covers any energy transition below ∼57 eV.

5These values are measured at 300 K, and change by 5–10% as the temperature approaches 0 K [96].

The effect of this on our results is a few percent and therefore negligible.
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We can now write the form factor in the form that is implemented in our numerical code:

∣∣f (numerical)
crystal (qn, Em)

∣∣2 =
2π2(αm2

eVcell)
−1

Em

∑
i i′

∑
~k,~k′

∑
~G′

Em
∆E

qn
∆q

w~k
2

w~k′

2

∣∣f
[i~k,i′~k′, ~G′]

∣∣2×
Θ

(
1−
|E

i′~k′−Ei~k − Em|
1
2∆E

)
Θ

(
1−

∣∣|~k′ − ~k + ~G′| − qn
∣∣

1
2∆q

)
.

(4.4)

Note that the first line here represents summing over bands, k-points, and reciprocal lattice

vectors, and calculating the contribution to the form factor from each. The sums are all

over finite ranges as discussed above. The second line represents adding each contribution

to the appropriate {q, Ee} bin. We present the results of our computation, including

prospects for upcoming experiments, in section 6. In appendix C we discuss convergence

with respect to the choice of k-point mesh and Ecut.

5 Conversion from energy to ionization

The calculation described in the previous two sections gives the DM-electron scattering

rate in a semiconductor crystals as a function of the total energy deposited by the dark

matter, Ee.

However, experiments will not directly measure the deposited energy itself, but rather

the ionization signal Q — i.e., the number of electron-hole pairs produced in an event.

Linking the two is a complicated chain of secondary scattering processes, which rapidly

redistribute the energy deposited in the initial scattering.

A realistic treatment of the conversion from energy to ionization is a crucial step in

calculating the sensitivity of experiments. Unfortunately, exact modeling of the secondary

scattering processes is extremely challenging and is beyond the scope of this paper. Instead,

we assume a linear response, which we believe does a reasonable job of capturing the

true behavior. Specifically we assume that, in addition to the primary electron-hole pair

produced by the initial scattering, one extra electron-hole pair is produced for every extra ε

of energy deposited above the band-gap energy. Here ε is the mean energy per electron-hole

pair as measured in high-energy recoils. The ionization Q is then given by

Q(Ee) = 1 + b(Ee − Egap)/εc , (5.1)

where bxc rounds x down to the nearest integer. ε and the band-gap energy Egap are

measured to be [99, 100]

ε =

{
3.6 eV (silicon)

2.9 eV (germanium)
, Egap =

{
1.11 eV (silicon)

0.67 eV (germanium)
. (5.2)

We devote section 5.1 and appendix E to a discussion motivating this simple treatment.

We emphasize that, while our treatment is approximate, it (a) is quite separate from the

systematic, first-principles calculation of dR/dEe described in section 3 and section 4, and

does not affect that calculation’s accuracy; (b) is probably conservative, since it does not
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account for fluctuations that could push a low-energy event above the ionization threshold;

and (c) should be possible to improve upon in the future, both with better theoretical

modeling and with experimental calibration.

5.1 Understanding the secondary scattering processes

It is experimentally well-established that for high energy electron recoils (>∼ keV), the

ionization signal is directly proportional to the deposited energy, with a constant average

energy ε deposited per electron-hole pair created,

〈Q〉 ' Ee
ε
. (5.3)

ε is several times the bandgap energy, accounting for the fact that only a fraction of

the energy deposited goes directly into pair production. Fluctuations around the average

ionization are quite small, with the Fano factor (defined as the ratio of the variance to the

mean) measured to be [101, 102]

F ≡
σ2
Q

〈Q〉
≈ 0.1–0.15 . (5.4)

At the low energies we are interested in, O(1–50 eV), the energy-ionization relationship

has not been directly measured. Fortunately, there is reason to expect that the high-

energy response can be extrapolated to lower energies. It has long been understood (see

e.g. [100, 103]) that following a high-energy electron recoil, an electronic cascade occurs that

rapidly redistributes the energy between many low-energy electrons and holes. Roughly

speaking, any electron or hole is expected to re-scatter and create an additional electron-

hole pair, so long as it has sufficient energy to do so. This repeats, distributing the energy

over an exponentially increasing number of electron-hole pairs, until all electrons and holes

have energy below the pair-creation threshold. Note that this threshold is larger than the

band gap energy due to the constraints of momentum conservation [100]. The excess energy

carried by the electrons and holes after the cascade is slowly lost to phonons, as is a fraction

of the energy during the cascade. As a result of the cascade, the vast majority of secondary

scatterings that occur after the initial electron recoil are low energy scatterings. This means

that, for example, a single 10 keV electron recoil is approximately equivalent to 100 recoils

with 100 eV each, or 1000 recoils with 10 eV each. This justifies the extrapolation of the

high-energy behavior to low energies.

The linear response described by eq. (5.1) is not the only tractable approach. Other,

less simplistic approaches can be taken without resorting to a full first-principles treatment.

For comparison, in appendix E we construct a phenomenological Monte Carlo model of the

secondary scattering cascade, following [103]. The model is intended to capture the general

features of the cascade, without knowledge of the specific microscopic structure of the target

material. The model reproduces the known high-energy behavior well with only a single

tunable parameter, and can be used instead of eq. (5.1) when calculating DM scattering

rates. Unlike the linear treatment, the Monte Carlo model predicts fluctuations about the

mean, which can have an important effect for DM masses that are right on the edge of
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detectability. For typical masses, however, we find that the two approaches agree to within

a few 10’s of percent (see figure 17). We conclude that the linear treatment of eq. (5.1) is a

reasonably realistic approximation, and postpone a more careful treatment to future work.

6 Results

In this section, we present the results of our calculation of the DM-electron scattering

rates in silicon and germanium detectors. We show the potential reach for single-electron-

sensitive experiments, as well as the effect of higher experimental thresholds. We also

give the full recoil spectra and the annual modulation fraction, which may be crucial for

discriminating a possible signal from background. Lastly we discuss near-term prospects,

focussing on upcoming searches expected from the SuperCDMS and DAMIC collaborations.

Experimental thresholds are set in terms of the ionization signal Q (the number of

electron-hole pairs produced in an event) rather than the deposited energy Ee. In the

following results, we model the conversion of deposited energy to ionization with the lin-

ear treatment described in section 5. We take the DM halo to have a local density of

ρDM = 0.4 GeV/cm3 [104, 105], and a Maxwell-Boltzmann velocity distribution with a

mean velocity v0 = 230 km/s and escape velocity vesc = 600 km/s, and we take the average

Earth velocity to be vE = 240 km/s (see appendix B for explicit formulae). In appendix C

we discuss the numerical convergence of our results.

Event rates as a function of Q, for an extensive range of DM masses, are available

online at this link. The crystal form-factor, as a function of q and Ee, is also available there.

Using eq. (3.13), the information online can be used to re-derive rates using a different DM

form-factor or velocity profile, or using a different treatment of the energy-to-ionization

conversion.

6.1 The crystal form factor

Much of the behavior of the scattering rates can be understood from the behavior of the

crystal form factor, |fcrystal(q, Ee)|2, in eq. (3.17). We show the crystal form factor in

figure 5 as a function of q and Ee, for both silicon and germanium. The rapid fall-off as

q increases is clearly visible. The solid line in the figure corresponds to vmin = vesc + vE
from eq. (3.12) as mχ → ∞. The region below this line is kinematically inaccessible for

any DM mass. The dashed line uses the velocity of a typical DM particle in the halo,

i.e. vmin = 300 km/s. We see that larger recoil energies require larger q, for which the

crystal form factor is suppressed. The implication of this is that the DM-electron scattering

rates increase dramatically for smaller recoil energies, resulting in a dramatic increase in

sensitivity as detector thresholds are lowered.

6.2 Cross-section reach versus detector threshold

In figure 6, we show the sensitivity to the DM-electron scattering cross section, σe, versus

the DM mass, mχ, for hypothetical silicon- and germanium-based experiments with a 1

kg-year exposure and zero background, and with various detector thresholds. The curves

show 95% C.L. limits, i.e. 3.6 signal events. The blue, green, and red lines show ionization
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Figure 5. The crystal form factor |fcrystal(q, Ee)|2 as a function of q and Ee for silicon (left) and

germanium (right) (see eq. (3.17)). In the region below the solid line, vmin > vesc + vE for any

DM mass, and electron scattering is thus kinematically inaccessible. The dashed line corresponds

to vmin = 300 km/s (a typical DM halo velocity) in the heavy DM limit; the region below this

line is only kinematically accessible to DM particles with velocities larger than the average velocity.

For energies above ∼ 10 eV, the scattering rate is suppressed by both the form factor and DM

velocity distribution. We see that the 3d electrons in germanium give a sizable contribution to

|fcrystal(q, Ee)|2 for Ee > 25 eV.

thresholds, Qth, of 1, 5, and 10 detected electron-hole pairs, respectively, which correspond

to deposited energies, Ee, of 0.67, 12.3, and 26.8 eV in germanium, and 1.1, 15.5, and

33.5 eV in silicon (to get the corresponding ionization energy thresholds, subtract 0.67 eV

for germanium and 1.1 eV for silicon from these numbers, see eq. (5.1)). The three plots

show results for different DM form factors, corresponding to different classes of DM models:

FDM(q) = 1 (top left), FDM(q) = αme/q (top right), and FDM(q) = (αme/q)
2 (bottom),

see section 2 for details.

As expected, the reach dramatically improves when the threshold is lowered, since

the crystal form factor strongly suppresses the rate for high electron recoil energies. This

improvement is most pronounced for FDM(q) = (αme/q)
2, since lower q tends to correspond

to lower recoil energies. With a single-electron threshold, the difference in sensitivity

for silicon and germanium targets can be accounted for by the fact that germanium is

2.6 times heavier, and so has correspondingly fewer valence electrons per kg. However,

germanium targets are sensitive to slightly lower DM masses due to their lower band-gap.

In addition, germanium targets become comparably more sensitive than silicon targets

for ionization thresholds of Qth & 9 due to the additional contribution from the 3d-shell

electrons (see below).

Figure 7 shows the spectrum of events as a function of the ionization signal Q, for

different DM form-factors and masses, in silicon (left) and germanium (right) targets. The

fast fall-off with Q shows the large gain to be made from lowering experimental thresholds
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Figure 6. Dark matter-electron cross-section

sensitivity : the 95% C.L. exclusion reach in the

DM-electron scattering cross-section, σe, of an

experiment with 1 kg-year exposure and zero

background events, for different experimental

thresholds. Solid (dashed) lines show the reach

for silicon (germanium) targets. Ionization

thresholds of 1, 5, and 10 electron-hole pairs are

shown with blue, green, and red lines, respec-

tively. The corresponding energy thresholds are

0, 11.6, and 26.1 eV in germanium, and 0, 14.4,

and 32.4 eV in silicon. The gray shaded region

shows the existing constraint from XENON10

data [31]. The three plots assume different DM

form factors, FDM(q) = 1, αme/q, (αme/q)
2,

corresponding to different DM models.

towards a 1- or 2-electron threshold, especially for the steeper DM form-factors and for

lower DM masses. The shape of the spectra may be useful in discriminating a signal from

background.

In germanium, the 3d-shell electrons dominate the rate for Ee & 24 eV, corresponding

to Q & 9 electron-hole pairs (the 3d-shell electrons lie about ∼15 eV below the bottom of

the valence band and ∼24 eV below the bottom of the conduction band). The intuitive

reason for the 3d-shell electrons dominating over the valence electrons at large Ee can be

seen from eqs. (3.5) and (3.6). The typical velocity of the 3d-shell electrons, and hence the

typical momentum transferred from the DM, is larger than for the valence electrons, so

that the 3d-shell electrons can dominate if they are kinematically accessible.6 We show the

effect of neglecting the 3d-shell electrons in figure 15 in appendix D, where we compare the

6For even larger deposited energies, Ee & 100 eV, it is likely that the deeper shells will dominate the

rate, for both silicon and germanium.
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Figure 7. Spectrum of events as function of the ionization signal Q. The different lines show

different DM masses and form-factors, as indicated, in a silicon (left) or germanium (right) target.

The spectra are normalized to 1 in the first bin. The top axes show the values of the deposited

energy Ee corresponding to the edges of the bins. Since the typical Ee is around a few eV, the

distributions peak at Q = 2 (see section 3.1).

cross-section reach and the recoil spectrum generated by DM scattering with and without

the inclusion of the 3d-shell electrons. The effect is significant for ionization thresholds

above Qth ≈ 7 or 8, but not important at lower thresholds.

We note that there are some differences between our results and those in [9, 25]. In [9],

only the case Qth = 1 was considered and we find that the new computation predicts a

somewhat lower rate. We find that the shape of the recoil spectra in [25] is noticeably

different from ours, which gives rise to several differences in the expected limits for the

different Q thresholds. Furthermore, for germanium, we also include the 3d-shell electrons,

which can be important as discussed above.

6.3 Comparison with existing XENON10 limit and discussion of background

We see from figure 6 that to surpass the existing limits obtained with XENON10 data [31], a

germanium- or silicon-based experiment with an ionization threshold of 10 electrons would

require a background-free exposure of less than 1 kg-year. However, with a single-electron

threshold, such an experiment would surpass the XENON10 limit at all masses with a

background-free exposure of around 1 kg-day for FDM(q) = 1, 10 g-days for FDM(q) =

αme/q, or just a 1 g-day for FDM(q) = (αme/q)
2. In addition, with any exposure such

an experiment would place the first ever bounds in the ∼1-5 MeV mass range, below the

threshold of the XENON10 search. The XENON10 detector had a threshold of one electron

with an O(1) detection efficiency, but to obtain one electron required an energy of at least
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12.4 eV to overcome the binding energy of an electron in the outer shell.7 Moreover,

the background in the XENON10 data was much larger than conventional nuclear-recoil

background, so that the number of DM events leading to single (two, and three) electrons

was only limited, at 90% C.L., to be less than 8,550 (1,550, and 330) counts/kg/year,

respectively.

While the single-electron background in the XENON10 data was rather large, its origin

is likely specific to its dual-phase detector setup. Many of the single electron backgrounds

likely had one, or a combination, of the following origins [31]: (i) electrons, trapped in

the potential barrier at the liquid-gas interface, were randomly drawn into the gas phase

(these transiently trapped electrons likely originated from other background events that

caused xenon atoms to ionize); (ii) photo-dissociation of a negatively charged O2-ion, which

received its negative charge from a drifting electron that originated from another event;

(iii) field emission from the cathode. XENON100 and LUX may face similar challenges,

although an analysis is still in progress.

The semi-conductor targets will not suffer from these same detector-specific back-

grounds. They will, of course, have their own unique experimental challenges to deal with,

including detector noise and dark current, as we will discuss in more detail in section 6.5

for DAMIC and SuperCDMS. These will likely be the limiting instrumental factors in

setting the threshold for a particular experiment. Once these challenges are overcome,

one needs to deal with the physics backgrounds. As argued in [9], neutrinos are not an

important source of background even for the largest exposures considered in this paper

(O(20 kg-years) for SuperCDMS, see section 6.5). Compton scattering or other events that

produce recoiling electrons will usually lead to a much larger energy deposition and most of

them could thus be vetoed, although some backgrounds will persist to the lowest energies.

The size of this background will depend on the shielding and purity of the materials around

the detector; for SuperCDMS at SNOLAB, the Compton background is estimated to be

O(6× 10−3) events/kg/day/keV [106]. Assuming that it is flat at low energies, this trans-

lates into O(0.04) events/eV for 20 kg-years, which would be negligible. We do not expect

there to be backgrounds from neutrons, and (cosmogenic) x-ray lines will lie well above our

energies of interest. Surface events and other, unknown, backgrounds may be present at

low energies. As experiments reach the required sensitivity to probe the few-electron events

expected from LDM scattering off electrons, a better understanding of all backgrounds will

emerge allowing for an attempt to mitigate them if necessary. It is possible that a spectral

analysis of a signal will further allow for the removal of some background events. Our

assumption of zero background for the plots should be taken as the best-case scenario.

6.4 Annual modulation

Even with a significant background event rate, it may be possible to distinguish a signal

from background using annual modulation, as long as the background is stable on year time-

scales. Annual modulation is a distinguishing feature of a LDM scattering signal [9, 107],

7Note that in [31], the electrons were treated as bounded inside free (xenon) atoms, unlike the electrons

in the semiconductor targets here.
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Figure 8. Annual modulation fraction of the DM signal, fmod. Left : fmod as a function of

the ionization threshold Qth, in silicon, for 10 MeV (blue) and 1 GeV (black) DM masses. The

solid (dashed) lines correspond to FDM = 1 (FDM = (αme/q)
2). The top axis indicates the ener-

gies corresponding to the edges of the bins. Center : same as left for germanium. Right : fmod

as a function of DM mass, for ionization thresholds of 1 and 5 electron-hole pairs. The solid

(dashed) lines correspond to FDM = 1 (FDM = (αme/q)
2), while the blue (green) lines correspond

to germanium (silicon).

occurring due to the change in the earth’s velocity through the DM halo as it rotates around

the Sun. For a standard smooth and isotropic DM velocity distribution, the modulation

is approximately sinusoidal with year period and a peak around June 2nd (the presence

of DM streams or non-trivial DM structure may complicate this, as may gravitational

focusing by the Sun [68, 108], which we do not include). The modulation fraction, fmod,

is defined to be the ratio of the amplitude of the modulating signal to the median signal

rate, which for our assumed halo profile (see appendix B) corresponds to

fmod =
RJune 2 −RDec 2

2R0
, R0 ≡ RMar 2 = RSept 2 (6.1)

where Ri represents the rate at time of year i.

For DM scattering off electrons, the modulation fraction can be significantly larger

than for the usual elastic scattering of (heavy) WIMPs off nuclei. As we saw in figure 5

(see discussion in section 3.1), DM-electron scattering relies on the tail of the DM velocity

distribution, especially for energies above ∼ 5–10 eV. We plot the modulation fraction in

figure 8. The left and center plots show fmod as a function of ionization Q for different

masses and DM form-factors for the two elements. fmod rises from a few percent for single-

electron events to above 10% for events with more than ∼ 3 electrons. Comparing with the

spectrum in figure 7, we see that there is a trade-off between modulation fraction and event

rate. Events with several electron-hole pairs provide large modulation without sacrificing

too much in the rate, and may give the best prospects for annual modulation searches

depending on the background. The modulation fraction also rises near the mass threshold,

as we show on the right of figure 8 for ionization thresholds of Qth = 1 and 5. Note that

the high-mass value of fmod for the single-electron threshold, at 4–6%, is larger than the
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Figure 9. Annual modulation: discovery reach :

the 5σ discovery reach in the mχ–σe plane of

an annual modulation search for DM-electron

scattering for an experiment with a 1 kg-year

background-free exposure. Solid (dashed) lines

show the reach for silicon (germanium) targets.

Ionization thresholds of 1, 5, and 10 electron-

hole pairs are shown with blue, green, and red

lines, respectively. The corresponding energy

thresholds are 0, 12.3, and 26.8 eV in germa-

nium, and 0, 15.5, and 33.5 eV in silicon. The

gray shaded region shows the existing constraint

from XENON10 data [31]. The three plots as-

sume different DM form factors, as indicated,

corresponding to different DM models. Thin

lines are from figure 6, showing the exclusion

reach of a search with the same exposure seeing

no events.

values in the Q = 1 bin of the left and center plots, because the total rate is not dominated

by the single-electron events.

Once a signal is found in an electron scattering search, increasing the exposure of the

experiment until the annual modulation can be tested will be a crucial step in claiming a

DM discovery. In figure 9 we show the 5σ discovery reach of an annual modulation search

in the mass-cross-section plane. We calculate this cross section by requiring

∆S/
√
Stot +B = 5 , (6.2)

where ∆S ≡ fmodStot is the modulation amplitude, Stot is the total number of signal

events, and B is the number of background events. The thick curves in figure 9 show the

discovery reach for different thresholds and DM form-factors, assuming a background-free

exposure of 1 kg-year. (A non-zero background will of course weaken the reach, following
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the equation above.) This figure mirrors figure 6, which shows the exclusion reach obtained

using a simple counting search instead of a modulation search, but otherwise with the

same assumptions. The curves of figure 6 are replotted as the thin curves in figure 9, for

comparison. We see that a substantial discovery reach is possible with a 1 kg-year exposure:

at low masses for FDM(q) = 1, and at all masses for FDM(q) = αme/q or (αme/q)
2.

Finally, we comment that taking into account the directional (sub-daily) modulation,

which is expected in crystalline detectors, will further allow for an improved sensitivity to

a DM signal. As discussed in section 3.2.2, we have averaged-out such directional effects

in this work, and we postpone their study to future work.

6.5 Prospects for near-term experiment

In this subsection, we discuss the near-term prospects for electron-scattering searches with

the DAMIC and SuperCDMS experiments.

6.5.1 DAMIC

DAMIC [78, 109, 110] uses thick, fully-depleted silicon CCDs for their target material.

These CCDs are ten times more massive than conventional CCDs, allowing them to be

competitive targets for DM direct detection. In [78], DAMIC used one 0.5 g CCD to

perform an engineering run, obtaining an exposure of 107 g-days. They were able to

constrain DM-nuclear scattering for DM masses almost as low as 1 GeV. Work is ongoing

to increase the total mass of the detector (by using more CCDs) as well as the detector’s

sensitivity to low threshold energies (by using so-called “Skipper CCDs”) [67].

The first direct detection limit using a semi-conductor target. Here we investi-

gate the (albeit weak) constraints on DM-electron scattering from their existing result, and

give reach estimates based on their projected detector improvements. For the engineering

run [78], DAMIC used a single 0.5 g CCD, for an exposure of 107 g-days. They obtained

the following values for the read-out noise and the dark current:

(i) A readout noise of below 2 electrons/pixel, corresponding to 2 × 3.6 eV = 7.2 eV of

r.m.s. readout noise. The CCD has about 4.2 million pixels, so that one requires a

threshold of ∼ 13 electrons (∼ 47 eV) for the noise to produce a signal above threshold

in less than one pixel. DAMIC chose a threshold of ∼ 40 eV (∼ 11 electrons) for the

search for DM-nuclear scattering; we expect ∼ 35 pixels to reach this threshold. In

our recast of their data for DM-electron scattering below, we will use the same 40 eV

threshold.

(ii) A dark current of ∼ 1 electron/CCD/day (at the chosen 120 K operating tempera-

ture). Since the exposure of the CCD is a few hours, before being read-out within a

few minutes, the threshold is limited by the read-out noise, and not the dark current.

We can use the result in [78] to constrain DM-electron scattering. We will assume that the

efficiency to select electron recoil events is the same as selecting nuclear recoils, i.e. 7×10−3.

Figure 12 in [78] shows the data that was recorded by DAMIC, and we see that zero events
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were recorded in the first bin above the threshold (40 eV to 100 eV). This may be as a

result of the efficiency being very low in this bin; nevertheless, it could also be a sign that

backgrounds may be small at such low energies, boding well for future runs with even lower

energy thresholds. In any case, this information is sufficient to derive the current DAMIC

limit on LDM, which we show with a green shaded region (bounded by a green line) in

figure 1. We see that with the current threshold, the form-factor suppression is too large

for this constraint to compete with the existing XENON10-based limit [31]. Nevertheless,

this is the first direct detection limit for sub-GeV DM using a semi-conductor target.

Projections for future DAMIC runs with improved “Skipper” CCDs. There

are two main challenges that need to be overcome by DAMIC (and similar experiments)

to allow them to push to low thresholds [67]: (i) reduce the noise in reading out the

ionization deposited in the detector, and (ii) reduce the dark current. The read-out noise

can be reduced substantially by taking more time to read the CCD, while the dark current

(i.e. genuine electron-hole pairs produced by thermal excitations in the silicon substrate)

can be reduced by lowering the temperature and improving the quality of the silicon. The

contribution from the dark current will increase with the readout time, so it will take some

optimization to find a way to reduce the readout noise while keeping the contribution from

the dark current manageable. Lowering the temperature also reduces the electron mobility

in the substrate, requiring a careful trade-off. Here we project what future data runs can

achieve with the improved DAMIC Skipper CCDs.

The DAMIC Collaboration has been working on so-called “Skipper CCDs”, which will

reduce the r.m.s. read-out noise down to 0.2 electrons/pixel/day, with the possibility of

going down to 0.1 electrons/pixel/day [67, 78]. This is done with a new output circuit that

enables multiple read-outs. The size of the CCDs can be anything up to 4× 4 = 16 million

pixels (Mpix) [111], but we will assume 8 Mpix for the projections below. The 0.2 (0.1)

electrons/pixel/day correspond to read-out noise of 0.72 (0.36) eV; assuming gaussian noise,

the 0.1 electron/pixel/day will allow for sensitivity down to single electrons, although the

0.2 electrons/pixel/day may require a threshold of two electrons to avoid the noise faking

a DM signal. However, for such low read-out noise, the dark current becomes the limiting

factor in determining the energy threshold. Significant non-gaussian tails could change

this conclusion.

The dark current has been measured currently at 5×10−3 electrons/pixel/day [111]. As

mentioned above, lowering the operating temperature and improving the silicon substrate

quality will decrease this, and it is reasonable to expect further improvement; the theoretical

lower limit is O(10−7) [111]. Below we provide projections under both assumptions.

The effect of the dark current on the threshold depends on the number of pixels and the

exposure length of the CCD. The CCD is read pixel-by-pixel, and can be read continuously

from one side to the other, before cycling back again to the beginning. We will assume

that the 8 million pixels of the CCD are all read in one hour, so that its exposure is one

hour for the purposes of calculating the dark current. We will consider the following two

scenarios for the number of CCDs, the mass, and exposure (we assume an efficiency of 1

for making our projections below):
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Ionization threshold
dark current: 5×10−3elec./pixel/day dark current: 10−7elec./pixel/day

1 kg-day 100 g-year 1 kg-day 100 g-year

Qth = 1 1.6× 107 5.8× 108 320.0 1.2× 104

2 1.7× 103 6.1× 104 6.7× 10−7 2.4× 10−5 (?, †)
3 0.1 (?) 4.2 (�) 9.3× 10−16 3.4× 10−14

4 6.0× 10−6 2.2× 10−4 9.6× 10−25 3.5× 10−23

Table 1. Expected number of events with at least Qth electron-hole pairs under different assump-

tions for the dark current and exposure (5× 10−3electrons/pixel/day and 10−7electrons/pixel/day)

and assuming either (i) 4 CCDs (10 g) and an exposure of 1 kg-day; or (ii) 40 CCDs (100 g) and an

exposure of 100 g-years. In both cases, we assume that it takes one hour to read the entire CCD,

and that it is read continuously. Projected exclusion reach based on a simple counting experiment

are given in figure 1 for the entries marked with a single star (?). A projected discovery reach based

on seeing the annual modulation of the signal, with negligible background, is also given in figure 1

for the entry marked with a dagger (†) (we find that the prospects from annual modulation for the

entry marked with a diamond (�) are very similar). See text for details.

(i) There are currently four prototype skipper CCDs, each with a mass of 2.5 g, which

were produced as part of an R&D project (these will be deployed at the MINOS near

site this year). For our first set of projections, we will assume that data is taken over

100 days (livetime), for a total exposure of 1kg-day.

(ii) If the testing of the skipper CCDs at MINOS goes well, one can expect that several

more of them will be deployed to search for DM. Thus, for our second set of projec-

tions, we will assume that 40 CCDs are deployed (for a total mass of 100 g) and that

data is taken again over 365 days (livetime) for a total exposure of 100 g-years.

Table 1 gives the expected number of events with at least Q electron-hole pairs for the two

scenarios assuming Poisson statistics. We see that DAMIC could have a threshold of 2 elec-

trons if the dark current can be reduced to below 10−7electrons/pixel/day, but a 3-electron

threshold is required for the present dark current rate of 5 × 10−3electrons/pixel/day. In

figure 1, we show solid green lines that indicate the 95% C.L. prospects for the entries

marked with a star (?), i.e. we show the cross section to obtain 3.6 signal events, assum-

ing zero background events. We also show the reach of an annual modulation search for

the entry marked with a dagger (†), i.e. a 2-electron threshold with no background in a

100 g-year exposure. This is shown by the dashed green line in figure 1. We checked that

the prospects from annual modulation for the entry marked with diamond (�) are very

similar. We see from these projections that DAMIC can significantly improve upon the

current XENON10 limit, especially at the lowest DM masses.

6.5.2 (Super)CDMS

The CDMS experiment uses cryogenic solid state detectors operated at temperatures below

100 mK. In the WIMP search, they distinguish electron from nuclear recoils by measuring

the ratio of the ionization versus phonon energy deposited into the crystal. This ratio will

be smaller for nuclear recoils than for electron recoils. Here, we are interested in their

ability to detect electron recoils.
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The signal from a low-energy recoiling electron can be dramatically enhanced by ap-

plying a relatively large bias voltage, Vb ∼ O(50–100 V), across the target material. The

work done in drifting an electron-hole pair out of the crystal, eVb, is emitted as Luke-

Neganov [112–114] phonons, which will be picked up by the phonon sensors. This was

done for “CDMSlite”, which has yielded electron recoil thresholds with an O(1) detection

efficiency of 170 eV (i.e. O(50) electrons) [92]. Here we discuss the prospects of future

versions of SuperCDMS.

In figure 1, we show 3 projections for SuperCDMS, two for silicon (with an exposure

∼10 kg-years) assuming an electron-hole pair threshold, Qth, of either 4 or 1, and a signal

detection efficiency of 0.7, and one for an annual modulation search assuming Qth = 2 with

the same exposure and efficiency. The cross-section reach for germanium is very similar to

those of silicon.

The electron-hole-pair thresholds are based on the following assumptions. The Qth = 4

threshold is based on the numbers used by SuperCDMS for Snowmass [63], while the Qth =

1 threshold is based on an ambitious but achievable best-case scenario. For Snowmass, a

phonon energy resolution of 50 eV was assumed. As there may be non-gaussian tails, a

7σ threshold was assumed, corresponding to a threshold of Ee = 350 eV. Taking the bias

voltage to be 100 V, this translates into Qth = 3.5, which we round up to 4. For the

second set of projections, we assume that further R&D can push the noise threshold down

to better than ∼14 eV, which is ambitious but achievable in principle [115]. A 7σ threshold

corresponds to ∼100 eV, so that a bias voltage of 100 V is sufficient to achieve sensitivity to

Qth = 1. In practice, the bias voltage can be optimized as well. A larger bias voltage would

allow for a reduced threshold in terms of the number of electron-hole pairs needed to pass

the phonon energy threshold, but could lead to breakdowns of the substrate. However,

it has been demonstrated that the bias voltages needed for sensitivity to Qth = 1 are

achievable in both silicon and germanium [66].

As can be seen from figure 1, SuperCDMS has the potential to improve drastically

upon the existing XENON10 limit, especially at low DM masses.

7 Conclusions

Direct detection experiments have so far primarily focused on searching for WIMPs, and as

a result of an intense research effort, the path forward in this direction is rather well-defined.

Within the next decade, WIMPs will either be found or become significantly less motivated.

However, other theoretically motivated candidates exist that could constitute the DM in

our Universe. In this work, we focused on a class of DM candidates that have a mass

between a few-hundred keV to a GeV. We showed that tremendous progress can be made in

exploring the direct-detection parameter space of these candidates over the next few years,

by searching for DM-induced electron recoils in experiments with targets that consist of

semiconductor materials. The technology currently used in WIMP searches can be adapted

for such light-DM searches by improving the ionization sensitivity, and this is being actively

pursued. The backgrounds are expected to be quite different in nature to those in WIMP

searches, and there is reason to believe that they will be small and controllable.
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The calculation of the DM-electron scattering rate and the subsequent electron recoil

spectrum in semiconductor targets is much more challenging than for DM-nuclei scattering.

We have provided detailed formulae for the scattering rate and recoil spectrum, expressed in

terms of simple DM properties and a target-dependent “crystal form factor”, which encodes

the quantum structure of the target electrons. We numerically calculated the crystal form

factor for germanium and silicon with our code QEdark, which is based on the software

package Quantum Espresso that calculates the crystal wave functions and energy levels.

Convergence tests indicate that our results are accurate at the few percent level. QEdark will

be publicly available at http://ddldm.physics.sunysb.edu, together with the crystal form

factors. With these, upcoming experiments can derive their own sensitivities or limits.

The crystal form factor is a steeply falling function of the electron recoil energy. Con-

sequently, even a small improvement in an experiment’s detector threshold translates into

a significant increase in the sensitivity to DM-electron scattering. We have provided the

projected sensitivity for a variety of experimental thresholds, showing that upcoming ex-

periments including DAMIC and SuperCDMS can probe orders of magnitude of unexplored

DM parameter space in the next few years. In addition to setting limits, sub-GeV dark

matter can be discovered via its expected modulation signal. We showed that in the case of

electron-scattering, annual modulation is sizable and could provide the necessary signal for

discovery. Additional sub-daily modulation is expected due to the orientation-dependent

nature of scattering in crystalline detectors. We have ignored directionality in this work,

deferring it to future study.

Calculating the experimentally observable signal requires a conversion from energy

deposition to the ultimate ionization signal. This conversion requires a detailed knowledge

of the secondary scattering processes in crystals, at energies below the existing experimental

sensitivity. We therefore used a phenomenological model for secondary interactions, and

studied its possible systematic uncertainties using a Monte Carlo model. We find that our

predictions suffer from systematic uncertainties of order a few tens of percent, and is likely

conservative. Further theoretical and experimental study of secondary interactions would

be useful to improve the modeling of this conversion.

To summarize, our work provides the necessary tools for experiments which use semi-

conductor targets to search for sub-GeV dark matter to derive accurate limits. Technolo-

gies adapted from WIMP searches and currently under development can be employed in

searches for sub-GeV dark matter. This highly-motivated direction in dark matter searches

is a natural progression from the WIMP program, and we expect that it will take a leading

role in the search for dark matter.

Note added. While this work was being completed, ref. [68] appeared, which also deals

with DM-electron scattering in germanium. Ref. [68] is complementary to our work, its

main point being the effect of “gravitational focusing” on the modulation signal of DM-

electron scattering. Ref. [68] derives scattering rates using a semi-analytic approach, which

builds on the method of ref. [25], but is significantly less detailed than the method we have

presented here. We find that their results are comparable to ours within a factor of a few,

but with some notable differences. In particular, ref. [68] finds increasingly higher rates
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than us at increasingly higher recoil energies. Most strikingly, ref. [68] finds that scattering

of the 3d shell electrons dominates the total rate when it is kinematically accessible (we

find the the 3d shells cause a bump in the spectrum, but with a rate subdominant to

lower energy events). We attribute these differences to the inherent sensitivity of the

calculation to the tails of the electron wavefunctions for energies above O(10 eV), as we

discussed in section 3.1.
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A Derivation of scattering rate formulae

A.1 General formula for dark matter-induced electronic transitions

If a DM particle scatters with an electron in a stationary bound state such as in an atom,

it can excite the electron from an initial energy level 1 to an excited energy level 2, by

transferring to it energy ∆E1→2 and momentum ~q. The cross section for this process can

be derived in a standard way using non-relativistic quantum mechanics, but here we derive

it starting from the usual formula for the cross-section in field-theory, in order to make

easier connection with the underlying particle physics. We treat the electron as being

bound in a static background potential — in other words we approximate the atoms as

being infinitely heavy objects which can absorb momentum without recoiling. This is an

excellent approximation (< 1% error), since the momentum-transfers we will be interested

are typically of order keV.

– 31 –



J
H
E
P
0
5
(
2
0
1
6
)
0
4
6

The cross section for free 2 → 2 scattering is given by

σvfree =
1

4E′χE
′
e

∫
d3q

(2π)3

d3k′

(2π)3

1

4EχEe
(2π)4δ(Ei − Ef )δ3(~k + ~q − ~k′)|Mfree(~q )|2 , (A.1)

where Mfree is the usual field-theory matrix element, and |M|2 represents its absolute

square averaged over initial spins and summed over final spins.

If the electron were unbound, the non-relativistic scattering amplitude would be

given by

〈χ
~p−~q , e~k′ |Hint|χ~p , e~k〉 = CMfree(~q )× (2π)3δ3(~k − ~q − ~k′) , (A.2)

where |χ
~p
, e~k〉 is plane-wave state for a DM particle of momentum ~p and an electron of

momentum ~k, Hint is the interaction Hamiltonian, and C is an unimportant coefficient.

However, because the electron is bound it is instead given by

〈χ
~p−~q , e2|Hint|χ~p , e1〉 =

[ ∫ √
V d3k′

(2π)3
ψ̃∗2(~k′)〈χ

~p ′ , e~k′ |
]
Hint

[ ∫ √
V d3k

(2π)3
ψ̃1(~k)|χ

~p
, e~k〉

]
= CMfree(~q )×

∫
V d3k

(2π)3
ψ̃∗2(~k + ~q )ψ̃1(~k) , (A.3)

where ψ̃1, ψ̃2 are the (unit normalized) momentum-space wavefunctions of the initial and

final electron levels. We have purposefully used plane-wave normalization for both the free

and bound electron states: 〈e~k|e~k〉 = 〈e1|e1〉 = (2π)3δ3(~0) ≡ V , where V is the volume of

space (which always cancels in the end).

To find the cross section for this excitation process, we can use the free 2→ 2 scattering

cross section formula but with two replacements: one to account for the modified scattering

amplitude, and the other to account for the different final-state phase space. Squaring

eqs. (A.2), (A.3), we see that the bound-state scattering amplitude is accounted for by

making the replacement

V (2π)3δ3(~k − ~q − ~k′)|Mfree|2 −→ |Mfree|2 × V 2|f1→2(~q )|2 , (A.4)

where f1→2(~q ) is the atomic form factor,

f1→2(~q ) =

∫
d3k

(2π)3
ψ̃∗2(~k + ~q )ψ̃1(~k) . (A.5)

Fourier transforming eq. (A.5) gives the definition given in eq. (3.10).

Since there is only one final electron state being considered, we also need to remove

the usual final-state phase space integral:

free-electron phase space = V

∫
d3k′

(2π)3
−→ 1 . (A.6)

Combining eqs. (A.1), (A.4), (A.6), we can write the formula for the cross-section for

a DM particle to excite an electron from level 1 to level 2:

σv1→2 =
1

4E′χE
′
e

∫
d3q

(2π)3

1

4EχEe
2πδ(Ei − Ef )|Mfree(~q )|2 × |f1→2(~q )|2 . (A.7)
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Since we are in the non-relativistic regime, the energies are given by

Ei = mχ +me +
1

2
mχv

2 + Ee,1 (A.8)

Ef = mχ +me +
|mχ~v − ~q |2

2mχ
+ Ee,2 . (A.9)

Using the following definitions [9] to parametrize the underlying DM-electron coupling

|Mfree(~q )|2 ≡ |Mfree(αme)|2 × |FDM(q)|2 (A.10)

σe ≡
µ2
χe|Mfree(αme)|2

16πm2
χm

2
e

, (A.11)

the cross section simplifies to

σv1→2 =
σe
µ2
χe

∫
d3q

4π
δ
(

∆E1→2 +
q2

2mχ
− qv cos θqv

)
× |FDM(q)|2|f1→2(~q )|2 . (A.12)

A.2 Average rate in a dark matter halo

The actual rate of excitation events, for a given transition and a given target electron, is

found by multiplying eq. (A.12) by the DM density and averaging over the DM velocity

distribution gχ(~v),

R1→2 =
ρχ
mχ

∫
d3v gχ(~v)σv1→2 . (A.13)

In general, both the electron wavefunctions and the DM velocity distribution will not

be spherically symmetric. As noted in [9], the rate will then depend on the orientation of

the target with respect to the galaxy. Here we ignore this interesting complication, and

approximate the velocity distribution as being spherically symmetric. We can then use the

d3v integral to eliminate the δ-function in eq. (A.12), giving

R1→2 = ρχ/mχ
σe
µ2
χe

∫
d3q

4π

∫
v2dvdφv
qv

gχ(v) Θ
(
v−vmin(q,∆E1→2)

)
×|FDM(q)|2|f1→2(~q )|2

= ρχ/mχ
σe

8πµ2
χe

∫
d3q

1

q
η
(
vmin(q,∆E1→2)

)
|FDM(q)|2|f1→2(~q )|2 . (A.14)

Here η(vmin) has its usual definition,

η(vmin) =

∫
d3v

v
gχ(v) Θ(v − vmin) , (A.15)

and vmin is a function of q and the energy transfer given by

vmin(q,∆E1→2) =
∆E1→2

q
+

q

2mχ
. (A.16)
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A.3 Ionizing an isolated atom

For the purposes of connecting with previous work [9], in this subsection we consider

ionization of electrons bound in isolated atomic potentials. We derive the ionization rate of

such a system, assuming a spherical atomic potential and filled shells. This approximation

was used in [9] to model a liquid xenon target material, and the results below reproduce

eqs. (5) and (6) of that paper. The full calculation of event rates in liquid xenon would

require knowledge of electron wavefunctions in the dense, disordered xenon liquid. This is

a more challenging calculation than for a semiconductor crystal, but can in principle be

performed with similar methods — we leave this for future work. The corrections, however,

can be argued to be small, lowering the ionization threshold and increasing the event rate.

An electron ionized from an atom can be treated as being in one of a continuum of

positive-energy bound states. These states are affected by the potential well of the atom,

but can be approximated as free particle states at asymptotically large radii. We denote

their wavefunctions as ψ̃k′l′m′(~x), where l′ and m′ are angular quantum numbers, and k′

is the momentum at asymptotically large radius. The energy of such a state is therefore

ER = k′2/2me.

The ionization rate for such an atom is found by taking eq. (A.14), summing over

occupied electron shells, and integrating over the phase space of all possible ionized states.

Since these are asymptotically free spherical-wave states, the phase space is

ionized electron phase space =
∑
l′m′

∫
k′2dk′

(2π)3
=

1

2

∑
l′m′

∫
k′3d lnER

(2π)3
, (A.17)

when the wavefunction normalization is, as in [9], taken to be

〈ψ̃k′l′m′ |ψ̃klm〉 = (2π)3δl′lδm′m
1

k2
δ(k − k′) . (A.18)

Plugging this in, the ionization rate is given by

Rion =
ρχ
mχ

σe
16πµ2

χe

× (A.19)

∑
occupied

states

∑
l′m′

∫
k′3d lnER d

3q

(2π)3q
η
(
vmin(q, EBi + k′2/2me)

)
|FDM(q)|2|fi→k′l′m′(~q )|2 ,

where EBi is the binding energy of occupied state i.

Since the potential is assumed to be spherically symmetric, and we are ionizing a

full atomic shell, we can sum |f1→k′l′m′(~q )|2 over initial and final angular momentum

variables and the result cannot depend on the direction of ~q. This means we can define the

dimensionless ionization form factor,

∣∣fion(k′, q)
∣∣2 =

2k′3

(2π)3

∑
occupied

states

∑
l′m′

∣∣∣ ∫ d3x ψ̃∗k′l′m′(~x)ψi(~x)ei~q·~x
∣∣∣2 . (A.20)
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After applying this definition to the previous equation, we can replace the d3q integral with

4πq2dq, giving

dRion

d lnER
= ρχ/mχ

σe
8µ2

χe

∫
qdq |FDM(q)|2

∣∣fion(k′, q)
∣∣2η(vmin(q, EBi + k′2/2me)

)
. (A.21)

This reproduces the formulae given in [9].

A.4 Excitations in a semiconductor crystal

In the periodic lattice of a semiconductor crystal, the electron energy levels form a com-

plicated band structure, with an energy gap separating the filled valence bands and the

unoccupied conduction bands (figure 4). Each possible electron level is labelled by a band

index i and a wavevector ~k in the first Brillouin Zone (BZ). Due to the periodicity of the

potential, the wavefunctions of these states are in Bloch form,

ψ
i~k

(~x) =
1√
V

∑
~G

ui(~k + ~G)ei(
~k+ ~G)·~x , (A.22)

where the ~G’s are the reciprocal lattice vectors. Here V is the volume of the crystal, and

the wavefunctions are taken to be unit-normalized, so that∑
~G

∣∣ui(~k + ~G)
∣∣2 = 1 (A.23)

(We use the relations
∫
d3x ei

~k·~x = (2π)3δ3(~k) and (2π)3δ3(~0) = V .)

With this form for the wavefunctions, the form factor eq. (3.10) to excite from valence

level {i~k} to conduction level {i′ ~k′} becomes

∣∣f
i~k→i′~k′(~q)

∣∣2 =
∣∣∣∑
~G ~G′

(2π)3δ3(~k + ~q − ~k′ − ~G′)

V
u∗i′(

~k′ + ~G+ ~G′)ui(~k + ~G)
∣∣∣2 (A.24)

=
∑
~G′

(2π)3δ3
(
~q − (~k′ + ~G′ − ~k)

)
V

∣∣∣∑
~G

u∗i′(
~k′ + ~G+ ~G′)ui(~k + ~G)

∣∣∣2 . (A.25)

We define the term in the absolute square in eq. (A.25) to be f
[i~k,i′~k′, ~G′]:

f
[i~k,i′~k′, ~G′] =

∑
~G

u∗i′(
~k′ + ~G+ ~G′)ui(~k + ~G) . (A.26)

Inserting this into eq. (A.14), we can use the δ-function to eliminate the d3q integral, giving

R
i~k→i′~k′ =

ρχ
mχ

π2σe
µ2
χe

1

V

∑
~G′

1

q
η
(
vmin(q, E

i′~k′ − Ei~k)
)
|FDM(q)|2

∣∣f
[i~k,i′~k′, ~G′]

∣∣2∣∣∣∣
q=|~k′+ ~G′−~k|

.

(A.27)

The total excitation rate for an electron in level {i~k} is found by summing eq. (A.27)

over all unfilled final energy levels i′,

R
i~k→any

=
∑
i′

∫
BZ

V d3k′

(2π)3
R
i~k→i′~k′ . (A.28)
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Note that we do not sum over final electron spins here as that sum has already been

included in the definition of σe.

The total rate of excitation events in the crystal, Rcrystal, is given by summing eq. (A.28)

over all filled initial levels i,

Rcrystal = 2
∑
i

∫
BZ

V d3k

(2π)3
R
i~k→any

. (A.29)

Here the extra factor of 2 is the sum over the two degenerate spin states of the filled valence

bands.

Putting this together gives the total excitation rate in a crystal,

Rcrystal =
ρχ
mχ

2π2σe
µ2
χe

V
∑
i i′

∫
BZ

d3k d3k′

(2π)6

∑
~G′

1

q
η
(
vmin(q, E

i′~k′ − Ei~k)
)
FDM(q)2

∣∣f
[i~k,i′~k′, ~G′]

∣∣2 ,
(A.30)

where again q = |~k′ + ~G′ − ~k|. Note that this is the total event rate for the whole crystal,

and so it is appropriate that it is proportional to the volume V of the whole crystal. Since

the dependence on the DM velocity distribution and interaction type are entirely encoded

in η and FDM, which are functions only of the momentum transfer q and energy deposited

Ee, it is useful to insert delta-functions into the above expression as follows:

Rcrystal =
ρχ
mχ

2π2σe
µ2
χe

V

∫
d lnEe d ln q

1

q
η
(
vmin(q, Ee)

)
FDM(q)2 (A.31)

×
∑
i i′

∫
BZ

d3k d3k′

(2π)6
Eeδ(Ee − Ei′~k′ + E

i~k
)
∑
~G′

qδ(q − |~k′ + ~G′ − ~k|)
∣∣f

[i~k,i′~k′, ~G′]

∣∣2 .
Using V = NcellVcell, where Vcell is the volume of the crystal’s unit cell and Ncell is the

number of cells, the differential rate can then be written in the form of eq. (3.13),

dRcrystal

d lnEe
=

ρχ
mχ

Ncellσeα×
m2
e

µ2
χe

∫
d ln q

(
Ee
q
η
(
vmin(q, Ee)

))
FDM(q)2

∣∣fcrystal(q, Ee)
∣∣2 ,

(A.32)

where the crystal form-factor is defined as in eq. (3.17),∣∣fcrystal(q, Ee)
∣∣2 =

2π2(αm2
eVcell)

−1

Ee

∑
i i′

∫
BZ

Vcelld
3k

(2π)3

Vcelld
3k′

(2π)3
×

Eeδ(Ee − Ei′~k′ + E
i~k

)
∑
~G′

qδ(q − |~k′ − ~k + ~G′|)
∣∣f

[i~k,i′~k′, ~G′]

∣∣2 . (A.33)

B Derivation of inverse mean speed, η(vmin)

In this section, we will derive analytic expressions for η(vmin). For simplicity we assume that

the DM velocity distribution, gχ(~vχ), takes the form of a Maxwell-Boltzmann distribution

in the galactic rest frame, with a hard cutoff at the galactic escape velocity. In the Earth’s

frame the velocity distribution then takes the form

gχ(~vχ) =
1

K
e
− |~vχ+~vE |2

v20 Θ(vesc − |~vχ + ~vE |) , (B.1)
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where ~vχ is the DM velocity in the Earth frame, and ~vE is the Earth’s velocity in the

galactic rest frame. We take v0 = 230 km/s for the typical velocity, and vesc = 600 km/s

for the escape velocity. We take vE = 240 km/s for the average Earth velocity relative to

the DM halo, adding (subtracting) 15 km/s for the Earth velocity in June (December).

The normalization factor K is determined by requiring
∫
d3vgχ(~v) = 1, giving

K = v3
0π

[√
πErf

(
vesc

v0

)
− 2

vesc

v0
e
−
(
vesc
v0

)2]
. (B.2)

Using these values, we obtain K = 6.75× 1022 [cm/s]3 or 2.50× 10−9 in natural units.

We then define the function η(vmin),

η(vmin) =

∫
d3vχ gχ(~vχ)

1

vχ
Θ(vχ − vmin)

=
1

K

∫
2πd cos θ dvχ vχ e

−(v2χ+v2E−2vvEcθ)/v20Θ(vχ − vmin)Θ(vesc − vχ) , (B.3)

where cθ = cos θ is the angle between the velocity and the velocity of the Earth. We can

explicitly solve eq. (B.3), but need to consider two cases:

1. vmin < vesc − vE

2. vesc − vE < vmin < vesc + vE

where vesc, vE , vmin > 0.

This gives us

η1(vmin) =
v2

0π

2vEK

(
−4e−v

2
esc/v

2
0vE+

√
πv0

[
Erf

(
vmin+vE

v0

)
−Erf

(
vmin−vE

v0

)])
(B.4)

η2(vmin) =
v2

0π

2vEK

(
−2e−v

2
esc/v

2
0 (vesc−vmin+vE)+

√
πv0

[
Erf

(
vesc

v0

)
−Erf

(
vmin−vE

v0

)])
(B.5)

where the subscript corresponds to the case number. Note that the two cases converge to

the same value for vmin = vesc − vE .

C Convergence of the numerical results

In this section, we investigate the dependence of our calculation on the kinetic-energy

cutoff, Ecut, (see eq. (4.3)) and on the k-point mesh. The choice of Ecut determines the

maximum allowed three-momentum transfer q, which impacts the maximum Ee that we

sample. Truncating the range of q can have more of an effect for high DM masses and

high electron thresholds, since these two regimes depend on high values of q. On the other

hand, the k-points included in the mesh determine the computationally allowed values of

q. A higher-resolution mesh is particularly important for low Ee transitions to the bottom

of the conduction band, and is therefore especially important for low DM masses and low

electron thresholds.
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Figure 10. The minimum velocity, vmin as a function of q for mχ = 1 MeV, 10 MeV, and 1 GeV

and Ee = 1, 10, and 40 eV. The grey shaded region indicates where vmin > vE + vesc and is thus

prohibited. The vertical grey line indicates the maximum q value for a given Ecut = 70 Ry.
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Figure 11. Left : cross-section sensitivities for ionization thresholds of Qth = 5 and Qth = 11

electrons in silicon for Ecut = 30, 50, 70, 90, and 110 Ry (we take a mesh consisting of 27 k-points).

Note that most lines are on top of each other, demonstrating the weak dependence of σe on Ecut.

Right : difference in the rate, R, for a given Ecut, to that at Ecut = 70 Ry, R0, in silicon for

mχ = 1 GeV. We see that the error in choosing Ecut = 70 Ry is < O(1%) for the thresholds

considered in this paper.

In figure 10, we show the dependence of vmin in eq. (3.12) on q for different mχ and Ee.

The choice of Ecut (top axis) determines the range of q (bottom axis). In figure 11, we show

the ratio of the rate for different values of Ecut to the rate at Ecut = 70 Ry for mχ = 1 GeV

for silicon targets. We see that the error in the rate with our choice of Ecut = 70 Ry is

< O(1%). The Ecut convergence in germanium is slightly worse due to the fact that we are

solving for the 3d electrons instead of including them in the pseudopotential. This effect is

greatest near the 3d shell energies (a few percent uncertainty), as seen in figure 12. In left

plots of both figure 11 and 12, we see a step-like transition between 30 Ry and the other

curves for 11e because 30 Ry is not a high enough energy cutoff to accurately calculate the
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Figure 12. Left : cross-section sensitivities for ionization thresholds of Qth = 5 and Qth = 11

electrons in germanium for Ecut = 30, 50, 70, 90, and 110 Ry (we take a mesh consisting of 27 k-

points). Note that most lines are on top of each other, demonstrating the weak dependence of σe on

Ecut. Right : difference in the rate, R, for a given Ecut, to that at Ecut = 70 Ry, R0, in germanium

for mχ = 1 GeV. The structure of the distributions arise from the effect of the 3d electrons.
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Figure 13. Left : cross-section sensitivity for Q = 1 and Q = 5 electrons in germanium for 27,

77, 137, and 243 k-points. Right : the energy spectra using 27, 77, 137, and 243 k-points for

mχ = 10 MeV and σe = 10−37cm2. We see that the choice of the number of k-points used in the

mesh has an effect at low DM masses and low Q.

rate for 11e. The irregular behavior in the distributions on the right side of figure 12 are

from the semicore electrons in Ge. We do not see the same behavior in figure 11, which

considers Si and no semicore electrons.

We investigate the effects of our choice of k-point mesh on our results in two ways.8

First, we vary the number of k-points in our mesh and find that there is sensitivity to our

choice at low masses and thresholds, see figure 13. Second, we perturb each point on the

8We do this only for the valence electrons without including the 3d-shell electrons, since energy of the

latter are nearly constant as a function of ~k. In any case, the 3d-shell electrons are important at large Ee,

while the choice of k-point mesh is important only at low Ee.
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Figure 14. The effects of our choice of k-point mesh on our germanium results by perturbing the

mesh with random shakes of amplitudes up to half the lattice-spacing. On the left, we look at the

standard deviation of the shaken runs over the mean value as a function of DM mass. On the right,

we look at the standard deviation of the shaken runs over the mean value as a function of Ee for

mχ = 5 MeV. We see that our choice of k-mesh spacing is accurate to a few tens of percent for

masses above 1 MeV.

mesh with a random shake of amplitude up to half the lattice-spacing so as to cover the

entire k-space. We use an energy cutoff of Ecut = 70 Ry and 243 k-points. The amplitude

of our perturbations is ∆k = 0.08 a.u. as the lattice spacing for 243 k-points is 0.17 a.u.

We run 10 independent simulations and plot the results in figure 14. We find that our

choice of k-point mesh does not appreciably affect our results for masses above ∼ 1 MeV.

D The importance of the 3d-shell in germanium

The importance of the 3d-shell electrons in germanium are illustrated in figure 15. We

see that they dominate the rate at high recoil energies and thus for high thresholds. We

discuss this in more detail in section 6.2.

E A Monte Carlo model of secondary scattering

In the main results of this paper, we modeled the ionization response of a target crystal with

the linear treatment described in section 5. For comparison, here we attempt to mock-up

the secondary scattering with a Monte Carlo model, following [103]. The deposited energy

Ee is randomly split between an initial electron and hole. In each following step, each

electron or hole with energy above a threshold Eion then generates an extra electron-hole

pair, with the energy being randomly split between the three particles. This is iterated

until all particles have energy less than Eion.

The random energy splittings follows a distribution that weights all phase space volume

equally, with the density of states assumed to grow as
√
E above and below the bandgap,

as in a simple 2-band free electron/hole system. Explicitly, for the initial 1 → 2 splitting

the probability distribution for energy E0 to split into energies E1 and E2 has the form

dP ∝
√
E1

√
E2 δ(E0 − E1 − E2 − Egap) dE1 dE2 ,
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Figure 15. The importance of the 3d-shell electrons in germanium. Left : spectrum of events as

function of the ionization signal Q, for FDM = 1 and σe = 10−37 cm2. The thick, upper lines show

the rates including the 3d-shell electrons, while the thinner, lower lines include only the valence

electrons (the thick and thin lines overlap for Q ≤ 8). The shading highlights the difference between

the two. Right : the cross-section reach in germanium with a 1 kg-year background-free exposure,

with an ionization threshold of Qth = 5 for the dashed, lower lines and Qth = 10 for the solid,

upper lines. The lower (upper) line of the shaded region show results with (without) the 3d-shell

electrons (these overlap for the 5e threshold).

while for the subsequent 1→ 3 splittings it has the form

dP ∝
√
E1

√
E2

√
E3 δ(E0 − E1 − E2 − E3 − Egap) dE1 dE2 dE3 ,

where electon/hole energies are measured above/below the upper/lower edge of the band

gap. We ignore phonon losses during the cascade — these are understood to be quantita-

tively fairly small, and should not affect the qualitative conclusions.

The output of the Monte Carlo model is a probability distribution P (Q|Ee) to get

ionization Q given a deposited energy Ee. Given the band-gap energy of Egap = 0.67 eV

(1.11 eV) in germanium (silicon), we find that Eion = 2.67 eV (3.1 eV) reproduces the

measured values of ε for high energy recoils (see eq. (5.2)). The distributions for both

elements have Fano factors of F ≈ 0.1 for all energies above ∼ 10 eV, consistent with

measurements. We illustrate the probability distributions in figure 16. In figure 17, we

show the effect on the event rate of using this model rather than the naive linear model of

section 5. For thresholds of 2 to 4 electron-hole pairs, downward fluctuations reduce the

rate compared to the naive estimate. For higher thresholds, occasional upward fluctuations

combined with the steeply falling recoil spectrum lead to an increase in the rate. However,

the two models are consistent within a few tens of percent.

F Review of Density Functional Theory and pseudopotentials

In this appendix, we review the formalism of density functional theory (DFT), explain in

more detail the approximations used in the computation of the wavefunctions, and further

explain the numerical methods.
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Figure 16. Probability distribution of the ionization signal Q for a given energy deposition Ee in

germanium. The left plot shows the distribution of Q for the indicated fixed Ee, while the right

plot shows the probability to get a given Q with varying Ee. Solid, filled lines show the cascade

model discussed in section E, while dashed lines show the linear model described in section 5 and

used for our main results.
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Figure 17. Fractional increase in the rate when modeling the secondary scattering with the cascade

Monte Carlo instead of the linear model. (Explicitly, the y-axis is (RMC − Rnaive)/Rnaive.) The

rate here is the rate of event passing the ionization threshold Qthr, for a DM mass of 1 GeV. See

section E for more details.

F.1 Electronic structure within DFT

Non-relativistic electrons interacting electrostatically with fixed nuclei are described by the

electronic structure Schrödinger equation− 1

2me

∑
α

∇2
α−
∑
α,I

ZIe
2∣∣∣~rα− ~RI ∣∣∣+

∑
α<β

e2

|~rα−~rβ |

Ψi (~r1, . . . , ~rN ) = εiΨi (~r1, . . . , ~rN ) , (F.1)

where α, β = 1, 2, · · · , N label electrons, I = 1, 2, · · · ,M labels nuclei, and ZI is the atomic

number of nuclei I. The first term in the Hamiltonian is the electron kinetic energy T ,

the second term is the Coulomb electron-nucleus attraction Vext and the third term is the

electron-electron Coulomb repulsion Vee. The constant nuclei-nuclei term has been omit-

ted. Even though the question is well-posed, obtaining the many-electron wavefunctions

Ψi (~r1, . . . , ~rN ) computationally is an extremely difficult task because of the exponential
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scaling of the problem with the number of electrons N . This method becomes then helpless

for applications of interest, so in practice one needs to resort to approximate methods.

DFT is a reformulation of the interacting quantum many-body problem in terms of

functionals of the particle density n(r). For the case of electrons, the Hohenberg-Kohn

theorems [93] imply that all properties of the interacting system are determined once

the ground state electron density is known. Minimizing an energy functional E [n] will

provide the ground state density n0(r) and the ground state energy E0. Unfortunately

this energy functional is not known in general. The Kohn-Sham method [94] overcomes

this obstacle by replacing the description strictly in terms of functionals for a wavefunction

formulation: the system of interacting electrons with Hamiltonian H = T + Vee + Vext is

mapped into a system of independent electrons under the presence of an auxiliary potential

H̃ = T + Vaux + Vext which produces the same ground state density as H. This is of

great advantage because, once this mapping is built, one has to solve the much simpler

independent-particle system in order to obtain E0 and n0(r). However, this comes at

the expense of having to use an approximate auxiliary potential Vaux. Typically, Vaux is

split into the mean-field Hartree potential VHartree(~r) = e
∫
d3~r′n(~r′)/ |~r − ~r′| and the so-

called exchange-correlation potential Vxc, where the approximations are imposed. Once an

approximation for Vxc has been chosen, the non-interacting electron Schrödinger equation[
− ∇

2

2me
+ Vext(~r) + VHartree(~r) + Vxc(~r)

]
ψi(~r) = εiψi(~r), (F.2)

which are known as the Kohn-Sham equations, are solved to get the auxiliary Kohn-Sham

wavefunctions ψi(~r). From these, the density can be obtained as n(~r) =
∑

i fi |ψi(~r)|
2,

where fi are the occupation numbers (fi = 2 for spin-unpolarized systems) as well as the

ground state energy by evaluating the energy density functional9 E [n] = T [n] +Eext [n] +

EHartree [n] + Exc [n],10 as well as a set of wavefunctions ψi and eigenenergies εi. This

problem is solved self-consistently until convergence is reached.

Expanding the wavefunctions in a finite plane-wave basis with elements labeled by the

vectors ~G and ~G′, the Kohn-Sham equations become the matrix equations∑
~G′

H ~G, ~G′(~k)ui(~k + ~G) = Ei(~k)ui(~k + ~G). (F.3)

where the Hamiltonian is

H ~G, ~G′(~k) =
〈
~k + ~G

∣∣∣H ∣∣∣~k + ~G′
〉

=
1

2me

∣∣∣~k + ~G
∣∣∣2 δ ~G, ~G′ + V ( ~G− ~G′) . (F.4)

It should be noted that, since the potential is local, its reciprocal space form does not

depend on ~k. Furthermore, the Kohn-Sham equations in reciprocal space eq. (F.3) decouple

different ~k’s, so the eigenvalue problem can be carried out independently at each ~k.

Despite all the successes of DFT, several notable shortcomings are known today. The

most relevant one for us is that DFT is known to give an incorrect band gap. This is due

9The connection between an energy functional and its corresponding local potential is E[n] =∫
d3~r n(~r)V (~r).
10The kinetic energy is calculated from the Kohn-Sham wavefunctions as T = 1/2me

∑
i |∇ψi|

2.
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to a discontinuity in the DFT exchange-correlation potential δExc/δn(~r) when electrons

are added above the gap [116, 117]. There are methods based on many-body perturbation

theory to improve the DFT band gap and band shapes, such as the GW method [118].

However, since the largest contribution to the scattering rate comes from the low energy

excitations, we choose to follow an empirical “scissor correction” approach [97, 98]. In

this approach a rigid shift is imposed on the conduction bands with respect to the valence

bands in order to set the band gap to the experimental values of 1.11 eV for silicon and

0.67 eV for germanium [99]. It is worth noting that the semiconductor band gap features a

temperature variation of around 10 meV [96], but we are choosing the room temperature

band gap values for our calculation.

F.2 Energy density functionals

In order to be able to use DFT, a choice for the exchange-correlation functional Exc [n] is

required. The Local Density Approximation (LDA) [94] has been remarkably successful

because of its simplicity and transferability. In this method the exchange-correlation energy

functional is based only on physical considerations and is approximated locally by the

energy of a homogeneous electron gas (HEG) with the following density:

ELDA
xc [n] =

∫
d3~r n(~r)

[
εHEG
x (n(~r)) + εHEG

c (n(~r))
]
. (F.5)

The HEG exchange [119] and correlation [120] energy functionals are well established.

There are some faults in the LDA which are known to be most dramatic where the electrons

are highly localized and exchange repulsions are significant. In order to correct for that,

the Generalized Gradient Approximations (GGA) introduce a dependence on the density

gradient in the exchange-correlation energy density

EGGA
xc [n] =

∫
d3~r n(~r) εGGA

xc (n(~r), |∇n(~r)|). (F.6)

In this work we choose the well-established PBE functional [95] which is known to produce

a broad set of properties of materials to accuracies of order a few percent [121]. Since

LDA functionals tend to underestimate the energies of excited states compared to GGA

functionals, we find a difference in cross-section sensitivity of around 10-20%, with a larger

difference at higher thresholds.

F.3 Pseudopotentials

The valence electrons are responsible for the formation of interatomic bonds and their

wavefunctions are in general delocalized, spanning over interatomic distances. The core

electron wavefunctions, however, are very localized around the nucleus and they barely

change from the isolated atom to the condensed matter phase. This fact allows to use

the atomic core electron wavefunctions in the condensed matter phase by replacing the

bare positive nuclear Coulomb potential and the negative Coulomb potential generated

by the core wavefunctions with a pseudopotential in the Kohn-Sham problem eq. (F.2).

The advantage is two-fold: first, the number of electrons in the problem is reduced to the
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number of valence electrons and second, the only wavefunctions to be calculated are valence

wavefunctions which, since they are rather smooth, do not require as fine a grid to represent

them as a core electron wavefunction would, thus improving the computational efficiency.

In this work we use Vanderbilt-type ultrasoft pseudopotentials [96]. The pseudopotential

for Si includes the 3s and 3p electrons in the valence, while in the case of germanium, we

use a pseudopotential which includes the 3d, 4s and 4p electrons in the valence.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] M.W. Goodman and E. Witten, Detectability of Certain Dark Matter Candidates, Phys.

Rev. D 31 (1985) 3059 [INSPIRE].

[2] XENON100 collaboration, E. Aprile et al., Dark Matter Results from 225 Live Days of

XENON100 Data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].

[3] LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment

at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303

[arXiv:1310.8214] [INSPIRE].

[4] SuperCDMS collaboration, R. Agnese et al., Search for Low-Mass Weakly Interacting

Massive Particles with SuperCDMS, Phys. Rev. Lett. 112 (2014) 241302

[arXiv:1402.7137] [INSPIRE].

[5] J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the Invisible Axion, Phys. Lett. B 120

(1983) 127 [INSPIRE].

[6] M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett. B 120 (1983) 137

[INSPIRE].

[7] L.F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett. B

120 (1983) 133 [INSPIRE].

[8] E.W. Kolb, D.J.H. Chung and A. Riotto, WIMPzillas!, hep-ph/9810361 [INSPIRE].

[9] R. Essig, J. Mardon and T. Volansky, Direct Detection of Sub-GeV Dark Matter, Phys. Rev.

D 85 (2012) 076007 [arXiv:1108.5383] [INSPIRE].

[10] C. Boehm and P. Fayet, Scalar dark matter candidates, Nucl. Phys. B 683 (2004) 219

[hep-ph/0305261] [INSPIRE].

[11] M.J. Strassler and K.M. Zurek, Echoes of a hidden valley at hadron colliders, Phys. Lett. B

651 (2007) 374 [hep-ph/0604261] [INSPIRE].

[12] D. Hooper and K.M. Zurek, A Natural Supersymmetric Model with MeV Dark Matter,

Phys. Rev. D 77 (2008) 087302 [arXiv:0801.3686] [INSPIRE].

[13] I. Cholis, L. Goodenough and N. Weiner, High Energy Positrons and the WMAP Haze from

Exciting Dark Matter, Phys. Rev. D 79 (2009) 123505 [arXiv:0802.2922] [INSPIRE].

[14] N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A Theory of Dark Matter,

Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [INSPIRE].

– 45 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1103/PhysRevD.31.3059
http://dx.doi.org/10.1103/PhysRevD.31.3059
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D31,3059%22
http://dx.doi.org/10.1103/PhysRevLett.109.181301
http://arxiv.org/abs/1207.5988
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.5988
http://dx.doi.org/10.1103/PhysRevLett.112.091303
http://arxiv.org/abs/1310.8214
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.8214
http://dx.doi.org/10.1103/PhysRevLett.112.241302
http://arxiv.org/abs/1402.7137
http://inspirehep.net/search?p=find+EPRINT+arXiv:1402.7137
http://dx.doi.org/10.1016/0370-2693(83)90637-8
http://dx.doi.org/10.1016/0370-2693(83)90637-8
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B120,127%22
http://dx.doi.org/10.1016/0370-2693(83)90639-1
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B120,137%22
http://dx.doi.org/10.1016/0370-2693(83)90638-X
http://dx.doi.org/10.1016/0370-2693(83)90638-X
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B120,133%22
http://arxiv.org/abs/hep-ph/9810361
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9810361
http://dx.doi.org/10.1103/PhysRevD.85.076007
http://dx.doi.org/10.1103/PhysRevD.85.076007
http://arxiv.org/abs/1108.5383
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.5383
http://dx.doi.org/10.1016/j.nuclphysb.2004.01.015
http://arxiv.org/abs/hep-ph/0305261
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0305261
http://dx.doi.org/10.1016/j.physletb.2007.06.055
http://dx.doi.org/10.1016/j.physletb.2007.06.055
http://arxiv.org/abs/hep-ph/0604261
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0604261
http://dx.doi.org/10.1103/PhysRevD.77.087302
http://arxiv.org/abs/0801.3686
http://inspirehep.net/search?p=find+EPRINT+arXiv:0801.3686
http://dx.doi.org/10.1103/PhysRevD.79.123505
http://arxiv.org/abs/0802.2922
http://inspirehep.net/search?p=find+EPRINT+arXiv:0802.2922
http://dx.doi.org/10.1103/PhysRevD.79.015014
http://arxiv.org/abs/0810.0713
http://inspirehep.net/search?p=find+EPRINT+arXiv:0810.0713


J
H
E
P
0
5
(
2
0
1
6
)
0
4
6

[15] M. Pospelov and A. Ritz, Astrophysical Signatures of Secluded Dark Matter, Phys. Lett. B

671 (2009) 391 [arXiv:0810.1502] [INSPIRE].

[16] R. Essig, J. Kaplan, P. Schuster and N. Toro, On the Origin of Light Dark Matter Species,

arXiv:1004.0691 [INSPIRE].

[17] D.E. Morrissey, D. Poland and K.M. Zurek, Abelian Hidden Sectors at a GeV, JHEP 07

(2009) 050 [arXiv:0904.2567] [INSPIRE].

[18] J.L. Feng and J. Kumar, The WIMPless Miracle: Dark-Matter Particles without

Weak-Scale Masses or Weak Interactions, Phys. Rev. Lett. 101 (2008) 231301

[arXiv:0803.4196] [INSPIRE].

[19] T. Cohen, D.J. Phalen, A. Pierce and K.M. Zurek, Asymmetric Dark Matter from a GeV

Hidden Sector, Phys. Rev. D 82 (2010) 056001 [arXiv:1005.1655] [INSPIRE].

[20] T. Lin, H.-B. Yu and K.M. Zurek, On Symmetric and Asymmetric Light Dark Matter,

Phys. Rev. D 85 (2012) 063503 [arXiv:1111.0293] [INSPIRE].

[21] A. Loeb and N. Weiner, Cores in Dwarf Galaxies from Dark Matter with a Yukawa

Potential, Phys. Rev. Lett. 106 (2011) 171302 [arXiv:1011.6374] [INSPIRE].

[22] S. Tulin, H.-B. Yu and K.M. Zurek, Beyond Collisionless Dark Matter: Particle Physics

Dynamics for Dark Matter Halo Structure, Phys. Rev. D 87 (2013) 115007

[arXiv:1302.3898] [INSPIRE].

[23] J. March-Russell, J. Unwin and S.M. West, Closing in on Asymmetric Dark Matter I:

Model independent limits for interactions with quarks, JHEP 08 (2012) 029

[arXiv:1203.4854] [INSPIRE].

[24] X. Chu, T. Hambye and M.H.G. Tytgat, The Four Basic Ways of Creating Dark Matter

Through a Portal, JCAP 05 (2012) 034 [arXiv:1112.0493] [INSPIRE].

[25] P.W. Graham, D.E. Kaplan, S. Rajendran and M.T. Walters, Semiconductor Probes of

Light Dark Matter, Phys. Dark Univ. 1 (2012) 32 [arXiv:1203.2531] [INSPIRE].

[26] M. Kaplinghat, S. Tulin and H.-B. Yu, Direct Detection Portals for Self-interacting Dark

Matter, Phys. Rev. D 89 (2014) 035009 [arXiv:1310.7945] [INSPIRE].

[27] K.K. Boddy, J.L. Feng, M. Kaplinghat and T.M.P. Tait, Self-Interacting Dark Matter from

a Non-Abelian Hidden Sector, Phys. Rev. D 89 (2014) 115017 [arXiv:1402.3629]

[INSPIRE].

[28] K.K. Boddy, J.L. Feng, M. Kaplinghat, Y. Shadmi and T.M.P. Tait, Strongly interacting

dark matter: Self-interactions and keV lines, Phys. Rev. D 90 (2014) 095016

[arXiv:1408.6532] [INSPIRE].

[29] Y. Hochberg, E. Kuflik, T. Volansky and J.G. Wacker, Mechanism for Thermal Relic Dark

Matter of Strongly Interacting Massive Particles, Phys. Rev. Lett. 113 (2014) 171301

[arXiv:1402.5143] [INSPIRE].

[30] Y. Hochberg, E. Kuflik, H. Murayama, T. Volansky and J.G. Wacker, Model for Thermal

Relic Dark Matter of Strongly Interacting Massive Particles, Phys. Rev. Lett. 115 (2015)

021301 [arXiv:1411.3727] [INSPIRE].

[31] R. Essig, A. Manalaysay, J. Mardon, P. Sorensen and T. Volansky, First Direct Detection

Limits on sub-GeV Dark Matter from XENON10, Phys. Rev. Lett. 109 (2012) 021301

[arXiv:1206.2644] [INSPIRE].

– 46 –

http://dx.doi.org/10.1016/j.physletb.2008.12.012
http://dx.doi.org/10.1016/j.physletb.2008.12.012
http://arxiv.org/abs/0810.1502
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B671,391%22
http://arxiv.org/abs/1004.0691
http://inspirehep.net/search?p=find+EPRINT+arXiv:1004.0691
http://dx.doi.org/10.1088/1126-6708/2009/07/050
http://dx.doi.org/10.1088/1126-6708/2009/07/050
http://arxiv.org/abs/0904.2567
http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.2567
http://dx.doi.org/10.1103/PhysRevLett.101.231301
http://arxiv.org/abs/0803.4196
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.4196
http://dx.doi.org/10.1103/PhysRevD.82.056001
http://arxiv.org/abs/1005.1655
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.1655
http://dx.doi.org/10.1103/PhysRevD.85.063503
http://arxiv.org/abs/1111.0293
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.0293
http://dx.doi.org/10.1103/PhysRevLett.106.171302
http://arxiv.org/abs/1011.6374
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.6374
http://dx.doi.org/10.1103/PhysRevD.87.115007
http://arxiv.org/abs/1302.3898
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.3898
http://dx.doi.org/10.1007/JHEP08(2012)029
http://arxiv.org/abs/1203.4854
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.4854
http://dx.doi.org/10.1088/1475-7516/2012/05/034
http://arxiv.org/abs/1112.0493
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.0493
http://dx.doi.org/10.1016/j.dark.2012.09.001
http://arxiv.org/abs/1203.2531
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.2531
http://dx.doi.org/10.1103/PhysRevD.89.035009
http://arxiv.org/abs/1310.7945
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.7945
http://dx.doi.org/10.1103/PhysRevD.89.115017
http://arxiv.org/abs/1402.3629
http://inspirehep.net/search?p=find+EPRINT+arXiv:1402.3629
http://dx.doi.org/10.1103/PhysRevD.90.095016
http://arxiv.org/abs/1408.6532
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.6532
http://dx.doi.org/10.1103/PhysRevLett.113.171301
http://arxiv.org/abs/1402.5143
http://inspirehep.net/search?p=find+EPRINT+arXiv:1402.5143
http://dx.doi.org/10.1103/PhysRevLett.115.021301
http://dx.doi.org/10.1103/PhysRevLett.115.021301
http://arxiv.org/abs/1411.3727
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.3727
http://dx.doi.org/10.1103/PhysRevLett.109.021301
http://arxiv.org/abs/1206.2644
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.2644


J
H
E
P
0
5
(
2
0
1
6
)
0
4
6

[32] C. Bird, P. Jackson, R.V. Kowalewski and M. Pospelov, Search for dark matter in B → S

transitions with missing energy, Phys. Rev. Lett. 93 (2004) 201803 [hep-ph/0401195]

[INSPIRE].

[33] B. McElrath, Invisible quarkonium decays as a sensitive probe of dark matter, Phys. Rev. D

72 (2005) 103508 [hep-ph/0506151] [INSPIRE].

[34] P. Fayet, Constraints on Light Dark Matter and U bosons, from ψ, Υ, K+, π◦, η and η′

decays, Phys. Rev. D 74 (2006) 054034 [hep-ph/0607318] [INSPIRE].

[35] C. Bird, R.V. Kowalewski and M. Pospelov, Dark matter pair-production in B → S

transitions, Mod. Phys. Lett. A 21 (2006) 457 [hep-ph/0601090] [INSPIRE].

[36] CLEO collaboration, P. Rubin et al., Search for Invisible Decays of the Υ(1S) Resonance,

Phys. Rev. D 75 (2007) 031104 [hep-ex/0612051] [INSPIRE].

[37] Belle collaboration, O. Tajima et al., Search for invisible decay of the Υ(1S), Phys. Rev.

Lett. 98 (2007) 132001 [hep-ex/0611041] [INSPIRE].

[38] Y. Kahn, M. Schmitt and T.M.P. Tait, Enhanced rare pion decays from a model of MeV

dark matter, Phys. Rev. D 78 (2008) 115002 [arXiv:0712.0007] [INSPIRE].

[39] P. Fayet, U-boson production in e+e− annihilations, ψ and Υ decays and Light Dark

Matter, Phys. Rev. D 75 (2007) 115017 [hep-ph/0702176] [INSPIRE].

[40] P. Fayet, Invisible Υ decays into Light Dark Matter, Phys. Rev. D 81 (2010) 054025

[arXiv:0910.2587] [INSPIRE].

[41] G.K. Yeghiyan, Υ Decays into Light Scalar Dark Matter, Phys. Rev. D 80 (2009) 115019

[arXiv:0909.4919] [INSPIRE].

[42] BaBar collaboration, P. del Amo Sanchez et al., Search for Production of Invisible Final

States in Single-Photon Decays of Υ(1S), Phys. Rev. Lett. 107 (2011) 021804

[arXiv:1007.4646] [INSPIRE].

[43] A. Badin and A.A. Petrov, Searching for light Dark Matter in heavy meson decays, Phys.

Rev. D 82 (2010) 034005 [arXiv:1005.1277] [INSPIRE].

[44] B. Echenard, Search for Low-Mass Dark Matter at BABAR, Mod. Phys. Lett. A 27 (2012)

1230016 [arXiv:1205.3505] [INSPIRE].

[45] N. Borodatchenkova, D. Choudhury and M. Drees, Probing MeV dark matter at low-energy

e+e− colliders, Phys. Rev. Lett. 96 (2006) 141802 [hep-ph/0510147] [INSPIRE].

[46] R. Essig, P. Schuster and N. Toro, Probing Dark Forces and Light Hidden Sectors at

Low-Energy e+e− Colliders, Phys. Rev. D 80 (2009) 015003 [arXiv:0903.3941] [INSPIRE].

[47] M. Reece and L.-T. Wang, Searching for the light dark gauge boson in GeV-scale

experiments, JHEP 07 (2009) 051 [arXiv:0904.1743] [INSPIRE].

[48] H.K. Dreiner, S. Heinemeyer, O. Kittel, U. Langenfeld, A.M. Weber and G. Weiglein, Mass

Bounds on a Very Light Neutralino, Eur. Phys. J. C 62 (2009) 547 [arXiv:0901.3485]

[INSPIRE].

[49] BaBar collaboration, B. Aubert et al., Search for Invisible Decays of a Light Scalar in

Radiative Transitions Υ3S → ΓA0, arXiv:0808.0017 [INSPIRE].

[50] R. Essig et al., Working Group Report: New Light Weakly Coupled Particles,

arXiv:1311.0029 [INSPIRE].

– 47 –

http://dx.doi.org/10.1103/PhysRevLett.93.201803
http://arxiv.org/abs/hep-ph/0401195
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0401195
http://dx.doi.org/10.1103/PhysRevD.72.103508
http://dx.doi.org/10.1103/PhysRevD.72.103508
http://arxiv.org/abs/hep-ph/0506151
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0506151
http://dx.doi.org/10.1103/PhysRevD.74.054034
http://arxiv.org/abs/hep-ph/0607318
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0607318
http://dx.doi.org/10.1142/S0217732306019852
http://arxiv.org/abs/hep-ph/0601090
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0601090
http://dx.doi.org/10.1103/PhysRevD.75.031104
http://arxiv.org/abs/hep-ex/0612051
http://inspirehep.net/search?p=find+EPRINT+hep-ex/0612051
http://dx.doi.org/10.1103/PhysRevLett.98.132001
http://dx.doi.org/10.1103/PhysRevLett.98.132001
http://arxiv.org/abs/hep-ex/0611041
http://inspirehep.net/search?p=find+EPRINT+hep-ex/0611041
http://dx.doi.org/10.1103/PhysRevD.78.115002
http://arxiv.org/abs/0712.0007
http://inspirehep.net/search?p=find+EPRINT+arXiv:0712.0007
http://dx.doi.org/10.1103/PhysRevD.75.115017
http://arxiv.org/abs/hep-ph/0702176
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0702176
http://dx.doi.org/10.1103/PhysRevD.81.054025
http://arxiv.org/abs/0910.2587
http://inspirehep.net/search?p=find+EPRINT+arXiv:0910.2587
http://dx.doi.org/10.1103/PhysRevD.80.115019
http://arxiv.org/abs/0909.4919
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.4919
http://dx.doi.org/10.1103/PhysRevLett.107.021804
http://arxiv.org/abs/1007.4646
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.4646
http://dx.doi.org/10.1103/PhysRevD.82.034005
http://dx.doi.org/10.1103/PhysRevD.82.034005
http://arxiv.org/abs/1005.1277
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.1277
http://dx.doi.org/10.1142/S0217732312300169
http://dx.doi.org/10.1142/S0217732312300169
http://arxiv.org/abs/1205.3505
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.3505
http://dx.doi.org/10.1103/PhysRevLett.96.141802
http://arxiv.org/abs/hep-ph/0510147
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0510147
http://dx.doi.org/10.1103/PhysRevD.80.015003
http://arxiv.org/abs/0903.3941
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.3941
http://dx.doi.org/10.1088/1126-6708/2009/07/051
http://arxiv.org/abs/0904.1743
http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.1743
http://dx.doi.org/10.1140/epjc/s10052-009-1042-y
http://arxiv.org/abs/0901.3485
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.3485
http://arxiv.org/abs/0808.0017
http://inspirehep.net/search?p=find+EPRINT+arXiv:0808.0017
http://arxiv.org/abs/1311.0029
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.0029


J
H
E
P
0
5
(
2
0
1
6
)
0
4
6

[51] R. Essig, J. Mardon, M. Papucci, T. Volansky and Y.-M. Zhong, Constraining Light Dark

Matter with Low-Energy e+e− Colliders, JHEP 11 (2013) 167 [arXiv:1309.5084]

[INSPIRE].

[52] E. Izaguirre, G. Krnjaic, P. Schuster and N. Toro, New Electron Beam-Dump Experiments

to Search for MeV to few-GeV Dark Matter, Phys. Rev. D 88 (2013) 114015

[arXiv:1307.6554] [INSPIRE].

[53] C. Boehm, M.J. Dolan and C. McCabe, A Lower Bound on the Mass of Cold Thermal Dark

Matter from Planck, JCAP 08 (2013) 041 [arXiv:1303.6270] [INSPIRE].

[54] K.M. Nollett and G. Steigman, BBN And The CMB Constrain Light, Electromagnetically

Coupled WIMPs, Phys. Rev. D 89 (2014) 083508 [arXiv:1312.5725] [INSPIRE].

[55] BDX collaboration, M. Battaglieri et al., Dark matter search in a Beam-Dump eXperiment

(BDX) at Jefferson Lab, arXiv:1406.3028 [INSPIRE].

[56] E. Izaguirre, G. Krnjaic, P. Schuster and N. Toro, Testing GeV-Scale Dark Matter with

Fixed-Target Missing Momentum Experiments, Phys. Rev. D 91 (2015) 094026

[arXiv:1411.1404] [INSPIRE].

[57] B. Batell, R. Essig and Z. Surujon, Strong Constraints on Sub-GeV Dark Sectors from

SLAC Beam Dump E137, Phys. Rev. Lett. 113 (2014) 171802 [arXiv:1406.2698] [INSPIRE].

[58] J. Va’vra, Molecular excitations: a new way to detect Dark matter, Phys. Lett. B 736

(2014) 169 [arXiv:1402.0466] [INSPIRE].

[59] E. Izaguirre, G. Krnjaic, P. Schuster and N. Toro, Analyzing the Discovery Potential for

Light Dark Matter, Phys. Rev. Lett. 115 (2015) 251301 [arXiv:1505.00011] [INSPIRE].

[60] Y. Kahn, G. Krnjaic, J. Thaler and M. Toups, DAEδALUS and dark matter detection,

Phys. Rev. D 91 (2015) 055006 [arXiv:1411.1055] [INSPIRE].

[61] Y. Hochberg, Y. Zhao and K.M. Zurek, Superconducting Detectors for Superlight Dark

Matter, Phys. Rev. Lett. 116 (2016) 011301 [arXiv:1504.07237] [INSPIRE].

[62] J.A. Formaggio, E. Figueroa-Feliciano and A.J. Anderson, Sterile Neutrinos, Coherent

Scattering and Oscillometry Measurements with Low-temperature Bolometers, Phys. Rev. D

85 (2012) 013009 [arXiv:1107.3512] [INSPIRE].

[63] P. Cushman et al., Working Group Report: WIMP Dark Matter Direct Detection,

arXiv:1310.8327 [INSPIRE].

[64] XENON collaboration, E. Aprile et al., Design and Performance of the XENON10 Dark

Matter Experiment, Astropart. Phys. 34 (2011) 679 [arXiv:1001.2834] [INSPIRE].

[65] XENON10 collaboration, J. Angle et al., A search for light dark matter in XENON10 data,

Phys. Rev. Lett. 107 (2011) 051301 [Erratum ibid. 110 (2013) 249901] [arXiv:1104.3088]

[INSPIRE].

[66] E. Figueroa-Feliciano and M. Pyle, private communication.

[67] J. Estrada and J. Tiffenberg, private communication.

[68] S.K. Lee, M. Lisanti, S. Mishra-Sharma and B.R. Safdi, Modulation Effects in Dark

Matter-Electron Scattering Experiments, Phys. Rev. D 92 (2015) 083517

[arXiv:1508.07361] [INSPIRE].

– 48 –

http://dx.doi.org/10.1007/JHEP11(2013)167
http://arxiv.org/abs/1309.5084
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.5084
http://dx.doi.org/10.1103/PhysRevD.88.114015
http://arxiv.org/abs/1307.6554
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.6554
http://dx.doi.org/10.1088/1475-7516/2013/08/041
http://arxiv.org/abs/1303.6270
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.6270
http://dx.doi.org/10.1103/PhysRevD.89.083508
http://arxiv.org/abs/1312.5725
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.5725
http://arxiv.org/abs/1406.3028
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.3028
http://dx.doi.org/10.1103/PhysRevD.91.094026
http://arxiv.org/abs/1411.1404
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.1404
http://dx.doi.org/10.1103/PhysRevLett.113.171802
http://arxiv.org/abs/1406.2698
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.2698
http://dx.doi.org/10.1016/j.physletb.2014.07.023
http://dx.doi.org/10.1016/j.physletb.2014.07.023
http://arxiv.org/abs/1402.0466
http://inspirehep.net/search?p=find+EPRINT+arXiv:1402.0466
http://dx.doi.org/10.1103/PhysRevLett.115.251301
http://arxiv.org/abs/1505.00011
http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.00011
http://dx.doi.org/10.1103/PhysRevD.91.055006
http://arxiv.org/abs/1411.1055
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.1055
http://dx.doi.org/10.1103/PhysRevLett.116.011301
http://arxiv.org/abs/1504.07237
http://inspirehep.net/search?p=find+EPRINT+arXiv:1504.07237
http://dx.doi.org/10.1103/PhysRevD.85.013009
http://dx.doi.org/10.1103/PhysRevD.85.013009
http://arxiv.org/abs/1107.3512
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.3512
http://arxiv.org/abs/1310.8327
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.8327
http://dx.doi.org/10.1016/j.astropartphys.2011.01.006
http://arxiv.org/abs/1001.2834
http://inspirehep.net/search?p=find+EPRINT+arXiv:1001.2834
http://dx.doi.org/10.1103/PhysRevLett.110.249901
http://arxiv.org/abs/1104.3088
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.3088
http://dx.doi.org/10.1103/PhysRevD.92.083517
http://arxiv.org/abs/1508.07361
http://inspirehep.net/search?p=find+EPRINT+arXiv:1508.07361


J
H
E
P
0
5
(
2
0
1
6
)
0
4
6

[69] P. Giannozzi et al., Quantum espresso: a modular and open-source software project for

quantum simulations of materials, J. Phys. Condens. Matter 21 (2009) 395502

[arXiv:0906.2569].

[70] K. Sigurdson, M. Doran, A. Kurylov, R.R. Caldwell and M. Kamionkowski, Dark-matter

electric and magnetic dipole moments, Phys. Rev. D 70 (2004) 083501 [Erratum ibid. D 73

(2006) 089903] [astro-ph/0406355] [INSPIRE].

[71] R. Essig, K. Tobioka, T. Volansky and T.-T. Yu, A field guide to models for electron-recoil

experiments, to appear.

[72] M.S. Madhavacheril, N. Sehgal and T.R. Slatyer, Current Dark Matter Annihilation

Constraints from CMB and Low-Redshift Data, Phys. Rev. D 89 (2014) 103508

[arXiv:1310.3815] [INSPIRE].

[73] Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological

parameters, arXiv:1502.01589 [INSPIRE].

[74] R. Essig, E. Kuflik, S.D. McDermott, T. Volansky and K.M. Zurek, Constraining Light

Dark Matter with Diffuse X-Ray and Gamma-Ray Observations, JHEP 11 (2013) 193

[arXiv:1309.4091] [INSPIRE].

[75] SuperCDMS collaboration, R. Agnese et al., New Results from the Search for Low-Mass

Weakly Interacting Massive Particles with the CDMS Low Ionization Threshold

Experiment, Phys. Rev. Lett. 116 (2016) 071301 [arXiv:1509.02448] [INSPIRE].

[76] CRESST collaboration, G. Angloher et al., Results on light dark matter particles with a

low-threshold CRESST-II detector, Eur. Phys. J. C 76 (2016) 25 [arXiv:1509.01515]

[INSPIRE].

[77] M.F. Altmann et al., Results and plans of the CRESST dark matter search,

astro-ph/0106314 [INSPIRE].

[78] DAMIC collaboration, J. Barreto et al., Direct Search for Low Mass Dark Matter Particles

with CCDs, Phys. Lett. B 711 (2012) 264 [arXiv:1105.5191] [INSPIRE].

[79] CRESST-II collaboration, G. Angloher et al., Results on low mass WIMPs using an

upgraded CRESST-II detector, Eur. Phys. J. C 74 (2014) 3184 [arXiv:1407.3146]

[INSPIRE].

[80] D. Curtin, R. Essig, S. Gori and J. Shelton, Illuminating Dark Photons with High-Energy

Colliders, JHEP 02 (2015) 157 [arXiv:1412.0018] [INSPIRE].

[81] A. Hook, E. Izaguirre and J.G. Wacker, Model Independent Bounds on Kinetic Mixing, Adv.

High Energy Phys. 2011 (2011) 859762 [arXiv:1006.0973] [INSPIRE].

[82] M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev. D 80 (2009) 095002

[arXiv:0811.1030] [INSPIRE].

[83] H. Davoudiasl and W.J. Marciano, Running of the U(1) coupling in the dark sector, Phys.

Rev. D 92 (2015) 035008 [arXiv:1502.07383] [INSPIRE].

[84] S.W. Randall, M. Markevitch, D. Clowe, A.H. Gonzalez and M. Bradac, Constraints on the

Self-Interaction Cross-Section of Dark Matter from Numerical Simulations of the Merging

Galaxy Cluster 1E 0657-56, Astrophys. J. 679 (2008) 1173 [arXiv:0704.0261] [INSPIRE].

[85] J.D. Bjorken et al., Search for Neutral Metastable Penetrating Particles Produced in the

SLAC Beam Dump, Phys. Rev. D 38 (1988) 3375 [INSPIRE].

– 49 –

http://dx.doi.org/10.1088/0953-8984/21/39/395502
http://arxiv.org/abs/0906.2569
http://dx.doi.org/10.1103/PhysRevD.70.083501
http://arxiv.org/abs/astro-ph/0406355
http://inspirehep.net/search?p=find+EPRINT+astro-ph/0406355
http://dx.doi.org/10.1103/PhysRevD.89.103508
http://arxiv.org/abs/1310.3815
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.3815
http://arxiv.org/abs/1502.01589
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.01589
http://dx.doi.org/10.1007/JHEP11(2013)193
http://arxiv.org/abs/1309.4091
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.4091
http://dx.doi.org/10.1103/PhysRevLett.116.071301
http://arxiv.org/abs/1509.02448
http://inspirehep.net/search?p=find+EPRINT+arXiv:1509.02448
http://dx.doi.org/10.1140/epjc/s10052-016-3877-3
http://arxiv.org/abs/1509.01515
http://inspirehep.net/search?p=find+EPRINT+arXiv:1509.01515
http://arxiv.org/abs/astro-ph/0106314
http://inspirehep.net/search?p=find+EPRINT+astro-ph/0106314
http://dx.doi.org/10.1016/j.physletb.2012.04.006
http://arxiv.org/abs/1105.5191
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.5191
http://dx.doi.org/10.1140/epjc/s10052-014-3184-9
http://arxiv.org/abs/1407.3146
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.3146
http://dx.doi.org/10.1007/JHEP02(2015)157
http://arxiv.org/abs/1412.0018
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.0018
http://dx.doi.org/10.1155/2011/859762
http://dx.doi.org/10.1155/2011/859762
http://arxiv.org/abs/1006.0973
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.0973
http://dx.doi.org/10.1103/PhysRevD.80.095002
http://arxiv.org/abs/0811.1030
http://inspirehep.net/search?p=find+EPRINT+arXiv:0811.1030
http://dx.doi.org/10.1103/PhysRevD.92.035008
http://dx.doi.org/10.1103/PhysRevD.92.035008
http://arxiv.org/abs/1502.07383
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.07383
http://dx.doi.org/10.1086/587859
http://arxiv.org/abs/0704.0261
http://inspirehep.net/search?p=find+EPRINT+arXiv:0704.0261
http://dx.doi.org/10.1103/PhysRevD.38.3375
http://inspirehep.net/search?p=find+J+%22Phys.Rev.,D38,3375%22


J
H
E
P
0
5
(
2
0
1
6
)
0
4
6

[86] P. deNiverville, M. Pospelov and A. Ritz, Observing a light dark matter beam with neutrino

experiments, Phys. Rev. D 84 (2011) 075020 [arXiv:1107.4580] [INSPIRE].

[87] B. Batell, M. Pospelov and A. Ritz, Exploring Portals to a Hidden Sector Through Fixed

Targets, Phys. Rev. D 80 (2009) 095024 [arXiv:0906.5614] [INSPIRE].

[88] S. Nussinov, Technocosmology: could a technibaryon excess provide a ‘natural’ missing mass

candidate?, Phys. Lett. B 165 (1985) 55 [INSPIRE].

[89] D.B. Kaplan, A single explanation for both the baryon and dark matter densities, Phys.

Rev. Lett. 68 (1992) 741 [INSPIRE].

[90] D.E. Kaplan, M.A. Luty and K.M. Zurek, Asymmetric Dark Matter, Phys. Rev. D 79

(2009) 115016 [arXiv:0901.4117] [INSPIRE].

[91] L.J. Hall, K. Jedamzik, J. March-Russell and S.M. West, Freeze-In Production of FIMP

Dark Matter, JHEP 03 (2010) 080 [arXiv:0911.1120] [INSPIRE].

[92] SuperCDMS collaboration, R. Agnese et al., Search for Low-Mass Weakly Interacting

Massive Particles Using Voltage-Assisted Calorimetric Ionization Detection in the

SuperCDMS Experiment, Phys. Rev. Lett. 112 (2014) 041302 [arXiv:1309.3259] [INSPIRE].

[93] P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136 (1964) B864.

[94] W. Kohn and L. Sham, Self-Consistent Equations Including Exchange and Correlation

Effects, Phys. Rev. 140 (1965) A1133.

[95] J.P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made

Simple, Phys. Rev. Lett. 77 (1996) 3865.

[96] P. Lautenschlager, P.B. Allen and M. Cardona, Temperature dependence of band gaps in Si

and Ge, Phys. Rev. B 31 (1985) 2163.

[97] Z. Levine and D. Allan, Linear optical response in silicon and germanium including

self-energy effects, Phys. Rev. Lett. 63 (1989) 1719.

[98] Z. Levine and D. Allan, Quasiparticle calculation of the dielectric response of silicon and

germanium, Phys. Rev. B 43 (1991) 4187.

[99] B.G. Streetman and S.K. Banerjee, Solid state electronic devices, Prentice Hall (2005).

[100] C.A. Klein, Bandgap Dependence and Related Features of Radiation Ionization Energies in

Semiconductors, J. Appl. Phys. 39 (1968) 2029.

[101] B.G. Lowe, Measurements of Fano factors in silicon and germanium in the low-energy

X-ray region, Nucl. Instrum. Meth. A 399 (1997) 354.
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