Skip to main content

Non-thermal CMSSM with a 125 GeV Higgs

A preprint version of the article is available at arXiv.

Abstract

We study the phenomenology of the CMSSM/mSUGRA with non-thermal neutralino dark matter. Besides the standard parameters of the CMSSM we include the reheating temperature as an extra parameter. Imposing radiative electroweak symmetry breaking with a Higgs mass around 125 GeV and no dark matter overproduction, we contrast the scenario with different experimental bounds from colliders (LEP, LHC), cosmic microwave background (Planck), direct (LUX, XENON100, CDMS, IceCube) and indirect (Fermi) dark matter searches. The allowed parameter space is characterised by a Higgsino-like LSP with a mass around 300 GeV. The observed dark matter abundance can be saturated for reheating temperatures around 2GeV while larger temperatures require extra non-neutralino dark matter candidates and extend the allowed parameter space. Sfermion and gluino masses are in the few TeV region. These scenarios can be achieved in string models of sequestered supersymmetry breaking which avoid cosmological moduli problems and are compatible with gauge coupling unification. Astrophysics and particle physics experiments will fully investigate this non-thermal scenario in the near future.

References

  1. J.D. Barrow, Massive Particles As A Probe Of The Early Universe, Nucl. Phys. B 208 (1982) 501 [INSPIRE].

    ADS  Article  Google Scholar 

  2. M. Kamionkowski and M.S. Turner, Thermal Relics: Do We Know Their Abundances?, Phys. Rev. D 42 (1990) 3310 [INSPIRE].

    ADS  Google Scholar 

  3. T. Moroi and L. Randall, Wino cold dark matter from anomaly mediated SUSY breaking, Nucl. Phys. B 570 (2000) 455 [hep-ph/9906527] [INSPIRE].

    ADS  Article  Google Scholar 

  4. M. Fujii and K. Hamaguchi, Higgsino and wino dark matter from Q ball decay, Phys. Lett. B 525 (2002) 143 [hep-ph/0110072] [INSPIRE].

    ADS  Article  Google Scholar 

  5. R. Kitano, H. Murayama and M. Ratz, Unified origin of baryons and dark matter, Phys. Lett. B 669 (2008) 145 [arXiv:0807.4313] [INSPIRE].

    ADS  Article  Google Scholar 

  6. B. Dutta, L. Leblond and K. Sinha, Mirage in the Sky: Non-thermal Dark Matter, Gravitino Problem and Cosmic Ray Anomalies, Phys. Rev. D 80 (2009) 035014 [arXiv:0904.3773] [INSPIRE].

    ADS  Google Scholar 

  7. G.D. Coughlan, W. Fischler, E.W. Kolb, S. Raby and G.G. Ross, Cosmological Problems for the Polonyi Potential, Phys. Lett. B 131 (1983) 59 [INSPIRE].

    ADS  Article  Google Scholar 

  8. T. Banks, D.B. Kaplan and A.E. Nelson, Cosmological implications of dynamical supersymmetry breaking, Phys. Rev. D 49 (1994) 779 [hep-ph/9308292] [INSPIRE].

    ADS  Google Scholar 

  9. B. de Carlos, J.A. Casas, F. Quevedo and E. Roulet, Model independent properties and cosmological implications of the dilaton and moduli sectors of 4 − D strings, Phys. Lett. B 318 (1993) 447 [hep-ph/9308325] [INSPIRE].

    ADS  Article  Google Scholar 

  10. B.S. Acharya et al., Non-thermal Dark Matter and the Moduli Problem in String Frameworks, JHEP 06 (2008) 064 [arXiv:0804.0863] [INSPIRE].

    ADS  Article  Google Scholar 

  11. B.S. Acharya, G. Kane, S. Watson and P. Kumar, A Non-thermal WIMP Miracle, Phys. Rev. D 80 (2009) 083529 [arXiv:0908.2430] [INSPIRE].

    ADS  Google Scholar 

  12. B.S. Acharya, G. Kane and E. Kuflik, Bounds on scalar masses in theories of moduli stabilization, Int. J. Mod. Phys. A 29 (2014) 1450073 [arXiv:1006.3272] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  13. R. Allahverdi, M. Cicoli, B. Dutta and K. Sinha, Nonthermal dark matter in string compactifications, Phys. Rev. D 88 (2013) 095015 [arXiv:1307.5086] [INSPIRE].

    ADS  Google Scholar 

  14. M. Dine, L. Randall and S.D. Thomas, Baryogenesis from flat directions of the supersymmetric standard model, Nucl. Phys. B 458 (1996) 291 [hep-ph/9507453] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  15. W. Buchmüller, K. Hamaguchi, O. Lebedev and M. Ratz, Maximal temperature in flux compactifications, JCAP 01 (2005) 004 [hep-th/0411109] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. L. Anguelova, V. Calo and M. Cicoli, LARGE Volume String Compactifications at Finite Temperature, JCAP 10 (2009) 025 [arXiv:0904.0051] [INSPIRE].

    ADS  Article  Google Scholar 

  17. K. Choi, A. Falkowski, H.P. Nilles and M. Olechowski, Soft supersymmetry breaking in KKLT flux compactification, Nucl. Phys. B 718 (2005) 113 [hep-th/0503216] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  18. V. Lowen and H.P. Nilles, Mirage Pattern from the Heterotic String, Phys. Rev. D 77 (2008) 106007 [arXiv:0802.1137] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  19. B.S. Acharya, K. Bobkov, G.L. Kane, J. Shao and P. Kumar, The G 2 -MSSM: An M-theory motivated model of Particle Physics, Phys. Rev. D 78 (2008) 065038 [arXiv:0801.0478] [INSPIRE].

    ADS  Google Scholar 

  20. E. Dudas, A. Linde, Y. Mambrini, A. Mustafayev and K.A. Olive, Strong moduli stabilization and phenomenology, Eur. Phys. J. C 73 (2013) 2268 [arXiv:1209.0499] [INSPIRE].

    ADS  Article  Google Scholar 

  21. R. Blumenhagen, J.P. Conlon, S. Krippendorf, S. Moster and F. Quevedo, SUSY Breaking in Local String/F-Theory Models, JHEP 09 (2009) 007 [arXiv:0906.3297] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. L. Aparicio et al., Sequestered de Sitter String Scenarios: Soft-terms, JHEP 11 (2014) 071 [arXiv:1409.1931] [INSPIRE].

    ADS  Article  Google Scholar 

  23. H. Baer, V. Barger and A. Mustafayev, Neutralino dark matter in mSUGRA/CMSSM with a 125 GeV light Higgs scalar, JHEP 05 (2012) 091 [arXiv:1202.4038] [INSPIRE].

    ADS  Article  Google Scholar 

  24. S. Krippendorf, H.P. Nilles, M. Ratz and M.W. Winkler, Hidden SUSY from precision gauge unification, Phys. Rev. D 88 (2013) 035022 [arXiv:1306.0574] [INSPIRE].

    ADS  Google Scholar 

  25. N. Arkani-Hamed, A. Delgado and G.F. Giudice, The Well-tempered neutralino, Nucl. Phys. B 741 (2006) 108 [hep-ph/0601041] [INSPIRE].

    ADS  Article  Google Scholar 

  26. R.L. Arnowitt and P. Nath, SUSY mass spectrum in SU(5) supergravity grand unification, Phys. Rev. Lett. 69 (1992) 725 [INSPIRE].

    ADS  Article  Google Scholar 

  27. V.D. Barger, M.S. Berger and P. Ohmann, The Supersymmetric particle spectrum, Phys. Rev. D 49 (1994) 4908 [hep-ph/9311269] [INSPIRE].

    ADS  Google Scholar 

  28. G.L. Kane, C.F. Kolda, L. Roszkowski and J.D. Wells, Study of constrained minimal supersymmetry, Phys. Rev. D 49 (1994) 6173 [hep-ph/9312272] [INSPIRE].

    ADS  Google Scholar 

  29. H. Baer and M. Brhlik, QCD improved bsγ constraints on the minimal supergravity model, Phys. Rev. D 55 (1997) 3201 [hep-ph/9610224] [INSPIRE].

    ADS  Google Scholar 

  30. LEP2 SUSY Working Group, Combined LEP Selectron/Smuon/Stau Results, 183-208 GeV (2004), note LEPSUSYWG/04-01.1, http://lepsusy.web.cern.ch/lepsusy/.

  31. LEP2 SUSY Working Group, Combined LEP Chargino Results, up to 208 GeV for large m0, note LEPSUSYWG/01-03.1’, http://lepsusy.web.cern.ch/lepsusy/.

  32. LEP2 SUSY Working Group, Combined LEP Chargino Results, up to 208 GeV for low DM, note LEPSUSYWG/02-04.1, http://lepsusy.web.cern.ch/lepsusy/.

  33. LEP2 SUSY Working Group, Combined Lower Bound of the Neutralino Mass in a Constrained MSSM model, note LEPSUSYWG/04-07.1, http://lepsusy.web.cern.ch/lepsusy/.

  34. ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using \( \sqrt{s}=8 \) TeV proton-proton collision data, CERN-PH-EP-2014-093 (2014).

  35. ATLAS collaboration, Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 4.7 fb −1 of \( \sqrt{s}=7 \) TeV proton-proton collisions, JHEP 07 (2012) 167 [arXiv:1206.1760] [INSPIRE].

  36. CMS collaboration, Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 109 (2012)171803 [arXiv:1207.1898] [INSPIRE].

  37. CMS collaboration, Search for new physics in the multijet and missing transverse momentum final state in proton-proton collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 109 (2012) 171803 [arXiv:1207.1898] [INSPIRE].

  38. ATLAS collaboration, Search for direct production of charginos, neutralinos and sleptons in final states with two leptons and missing transverse momentum in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, JHEP 05 (2014) 071 [arXiv:1403.5294] [INSPIRE].

  39. CMS collaboration, Searches for electroweak production of charginos, neutralinos and sleptons decaying to leptons and W, Z and Higgs bosons in pp collisions at 8 TeV, Eur. Phys. J. C 74 (2014) 3036 [arXiv:1405.7570] [INSPIRE].

  40. Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, arXiv:1502.01589 [INSPIRE].

  41. Fermi-LAT collaboration, M. Ackermann et al., Limits on Dark Matter Annihilation Signals from the Fermi LAT 4-year Measurement of the Isotropic Gamma-Ray Background, arXiv:1501.05464 [INSPIRE].

  42. XENON collaboration, S.E.A. Orrigo, Direct Dark Matter Search with XENON100, arXiv:1501.03492 [INSPIRE].

  43. CDMS collaboration, R. Agnese et al., Silicon Detector Dark Matter Results from the Final Exposure of CDMS II, Phys. Rev. Lett. 111 (2013) 251301 [arXiv:1304.4279] [INSPIRE].

  44. IceCube collaboration, M.G. Aartsen et al., Search for dark matter annihilations in the Sun with the 79-string IceCube detector, Phys. Rev. Lett. 110 (2013) 131302 [arXiv:1212.4097] [INSPIRE].

  45. LUX collaboration, D.S. Akerib et al., First results from the LUX dark matter experiment at the Sanford Underground Research Facility, Phys. Rev. Lett. 112 (2014) 091303 [arXiv:1310.8214] [INSPIRE].

  46. R. Allahverdi, M. Cicoli, B. Dutta and K. Sinha, Correlation between Dark Matter and Dark Radiation in String Compactifications, JCAP 10 (2014) 002 [arXiv:1401.4364] [INSPIRE].

    ADS  Article  Google Scholar 

  47. M. Cicoli, C. Mayrhofer and R. Valandro, Moduli Stabilisation for Chiral Global Models, JHEP 02 (2012) 062 [arXiv:1110.3333] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  48. M. Cicoli, S. Krippendorf, C. Mayrhofer, F. Quevedo and R. Valandro, D-Branes at del Pezzo Singularities: Global Embedding and Moduli Stabilisation, JHEP 09 (2012) 019 [arXiv:1206.5237] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  49. M. Cicoli et al., Explicit de Sitter Flux Vacua for Global String Models with Chiral Matter, JHEP 05 (2014) 001 [arXiv:1312.0014] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  50. J.P. Conlon and F. Quevedo, Kähler moduli inflation, JHEP 01 (2006) 146 [hep-th/0509012] [INSPIRE].

    ADS  Article  Google Scholar 

  51. C.P. Burgess, M. Cicoli and F. Quevedo, String Inflation After Planck 2013, JCAP 11 (2013) 003 [arXiv:1306.3512] [INSPIRE].

    ADS  Article  Google Scholar 

  52. M. Cicoli and F. Quevedo, String moduli inflation: An overview, Class. Quant. Grav. 28 (2011) 204001 [arXiv:1108.2659] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  53. K. Dutta and A. Maharana, Inflationary constraints on modulus dominated cosmology, Phys. Rev. D 91 (2015) 043503 [arXiv:1409.7037] [INSPIRE].

    ADS  Google Scholar 

  54. M. Endo, K. Hamaguchi and F. Takahashi, Moduli-induced gravitino problem, Phys. Rev. Lett. 96 (2006) 211301 [hep-ph/0602061] [INSPIRE].

    ADS  Article  Google Scholar 

  55. S. Nakamura and M. Yamaguchi, Gravitino production from heavy moduli decay and cosmological moduli problem revived, Phys. Lett. B 638 (2006) 389 [hep-ph/0602081] [INSPIRE].

    ADS  Article  Google Scholar 

  56. L. Roszkowski, S. Trojanowski and K. Turzynski, Neutralino and gravitino dark matter with low reheating temperature, JHEP 11 (2014) 146 [arXiv:1406.0012] [INSPIRE].

    ADS  Article  Google Scholar 

  57. T. Cohen, M. Lisanti, A. Pierce and T.R. Slatyer, Wino Dark Matter Under Siege, JCAP 10 (2013) 061 [arXiv:1307.4082] [INSPIRE].

    ADS  Article  Google Scholar 

  58. R. Allahverdi, B. Dutta and K. Sinha, Baryogenesis and Late-Decaying Moduli, Phys. Rev. D 82 (2010) 035004 [arXiv:1005.2804] [INSPIRE].

    ADS  Google Scholar 

  59. R. Allahverdi, B. Dutta and K. Sinha, Cladogenesis: Baryon-Dark Matter Coincidence from Branchings in Moduli Decay, Phys. Rev. D 83 (2011) 083502 [arXiv:1011.1286] [INSPIRE].

    ADS  Google Scholar 

  60. R. Allahverdi, B. Dutta and K. Sinha, Non-thermal Higgsino Dark Matter: Cosmological Motivations and Implications for a 125 GeV Higgs, Phys. Rev. D 86 (2012) 095016 [arXiv:1208.0115] [INSPIRE].

    ADS  Google Scholar 

  61. R. Allahverdi, B. Dutta and K. Sinha, Successful Supersymmetric Dark Matter with Thermal Over/Under-Abundance from Late Decay of a Visible Sector Scalar, Phys. Rev. D 87 (2013) 075024 [arXiv:1212.6948] [INSPIRE].

    ADS  Google Scholar 

  62. R. Allahverdi, B. Dutta, R.N. Mohapatra and K. Sinha, A Supersymmetric Model for Dark Matter and Baryogenesis Motivated by the Recent CDMS Result, Phys. Rev. Lett. 111 (2013) 051302 [arXiv:1305.0287] [INSPIRE].

    ADS  Article  Google Scholar 

  63. M. Cicoli, J.P. Conlon and F. Quevedo, Dark radiation in LARGE volume models, Phys. Rev. D 87 (2013) 043520 [arXiv:1208.3562] [INSPIRE].

    ADS  Google Scholar 

  64. T. Higaki and F. Takahashi, Dark Radiation and Dark Matter in Large Volume Compactifications, JHEP 11 (2012) 125 [arXiv:1208.3563] [INSPIRE].

    ADS  Article  Google Scholar 

  65. CMS, LHCb collaboration, Observation of the rare B 0 s  → μ + μ decay from the combined analysis of CMS and LHCb data, arXiv:1411.4413 [INSPIRE].

  66. Particle Data Group collaboration, K.A. Olive et al., Review of Particle Physics, Chin. Phys. C 38 (2014) 090001.

    Google Scholar 

  67. J.L. Feng, K.T. Matchev and T. Moroi, Focus points and naturalness in supersymmetry, Phys. Rev. D 61 (2000) 075005 [hep-ph/9909334] [INSPIRE].

    ADS  Google Scholar 

  68. M. Carena, J.R. Espinosa, M. Quirós and C.E.M. Wagner, Analytical expressions for radiatively corrected Higgs masses and couplings in the MSSM, Phys. Lett. B 355 (1995) 209 [hep-ph/9504316] [INSPIRE].

    ADS  Article  Google Scholar 

  69. R.L. Arnowitt, B. Dutta and Y. Santoso, Coannihilation effects in supergravity and D-brane models, Nucl. Phys. B 606 (2001) 59 [hep-ph/0102181] [INSPIRE].

    ADS  Article  Google Scholar 

  70. J.R. Ellis, A. Ferstl and K.A. Olive, Exploration of elastic scattering rates for supersymmetric dark matter, Phys. Rev. D 63 (2001) 065016 [hep-ph/0007113] [INSPIRE].

    ADS  Google Scholar 

  71. E. Accomando, R.L. Arnowitt, B. Dutta and Y. Santoso, Neutralino proton cross-sections in supergravity models, Nucl. Phys. B 585 (2000) 124 [hep-ph/0001019] [INSPIRE].

    ADS  Article  Google Scholar 

  72. A. Bottino, F. Donato, N. Fornengo and S. Scopel, Implications for relic neutralinos of the theoretical uncertainties in the neutralino nucleon cross-section, Astropart. Phys. 13 (2000) 215 [hep-ph/9909228] [INSPIRE].

    ADS  Article  Google Scholar 

  73. J.R. Ellis, K.A. Olive and C. Savage, Hadronic Uncertainties in the Elastic Scattering of Supersymmetric Dark Matter, Phys. Rev. D 77 (2008) 065026 [arXiv:0801.3656] [INSPIRE].

    ADS  Google Scholar 

  74. M.S. Madhavacheril, N. Sehgal and T.R. Slatyer, Current Dark Matter Annihilation Constraints from CMB and Low-Redshift Data, Phys. Rev. D 89 (2014) 103508 [arXiv:1310.3815] [INSPIRE].

    ADS  Google Scholar 

  75. J.I. Read, The Local Dark Matter Density, J. Phys. G 41 (2014) 063101 [arXiv:1404.1938] [INSPIRE].

    ADS  Article  Google Scholar 

  76. H. Baer et al., Natural SUSY with a bino- or wino-like LSP, Phys. Rev. D 91 (2015) 075005 [arXiv:1501.06357] [INSPIRE].

    ADS  Google Scholar 

  77. M. Cahill-Rowley et al., Complementarity and Searches for Dark Matter in the pMSSM, arXiv:1305.6921 [INSPIRE].

  78. H. Baer, A. Mustafayev and X. Tata, Monojet plus soft dilepton signal from light higgsino pair production at LHC14, Phys. Rev. D 90 (2014) 115007 [arXiv:1409.7058] [INSPIRE].

    ADS  Google Scholar 

  79. Z. Han, G.D. Kribs, A. Martin and A. Menon, Hunting quasidegenerate Higgsinos, Phys. Rev. D 89 (2014) 075007 [arXiv:1401.1235] [INSPIRE].

    ADS  Google Scholar 

  80. C. Han et al., Probing Light Higgsinos in Natural SUSY from Monojet Signals at the LHC, JHEP 02 (2014) 049 [arXiv:1310.4274] [INSPIRE].

    ADS  Article  Google Scholar 

  81. A.G. Delannoy et al., Probing Dark Matter at the LHC using Vector Boson Fusion Processes, Phys. Rev. Lett. 111 (2013) 061801 [arXiv:1304.7779] [INSPIRE].

    ADS  Article  Google Scholar 

  82. M.J. Dolan, S. Krippendorf and F. Quevedo, Towards a Systematic Construction of Realistic D-brane Models on a del Pezzo Singularity, JHEP 10 (2011) 024 [arXiv:1106.6039] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  83. S. Krippendorf, M.J. Dolan, A. Maharana and F. Quevedo, D-branes at Toric Singularities: Model Building, Yukawa Couplings and Flavour Physics, JHEP 06 (2010) 092 [arXiv:1002.1790] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  84. A. Maharana and E. Palti, Models of Particle Physics from Type IIB String Theory and F-theory: A Review, Int. J. Mod. Phys. A 28 (2013) 1330005 [arXiv:1212.0555] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  85. W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e + e colliders, Comput. Phys. Commun. 153 (2003) 275 [hep-ph/0301101] [INSPIRE].

    ADS  Article  Google Scholar 

  86. W. Porod and F. Staub, SPheno 3.1: Extensions including flavour, CP-phases and models beyond the MSSM, Comput. Phys. Commun. 183 (2012) 2458 [arXiv:1104.1573] [INSPIRE].

    ADS  Article  Google Scholar 

  87. G. Bélanger, F. Boudjema, A. Pukhov and A. Semenov, MicrOMEGAs 3: A program for calculating dark matter observables, Comput. Phys. Commun. 185 (2014) 960 [arXiv:1305.0237] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Muia.

Additional information

ArXiv ePrint: 1502.05672

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aparicio, L., Cicoli, M., Dutta, B. et al. Non-thermal CMSSM with a 125 GeV Higgs. J. High Energ. Phys. 2015, 98 (2015). https://doi.org/10.1007/JHEP05(2015)098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP05(2015)098

Keywords

  • Supersymmetry Phenomenology