Abstract
We study the implications of the inverse seesaw mechanism (ISS) on the sparticle spectrum in the Constrained Minimal Supersymmetric Standard Model (CMSSM) and Non-Universal Higgs Model (NUHM2). Employing the maximal value of the Dirac Yukawa coupling involving the up type Higgs doublet provides a 2–3 GeV enhancement of the lightest CP-even Higgs boson mass. This effect permits one to have lighter colored sparticles in the CMSSM and NUHM2 scenarios with LSP neutralino, which can be tested at LHC14. We present a variety of LHC testable benchmark points with the desired LSP neutralino dark matter relic abundance.
Article PDF
References
ATLAS collaboration, Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
M.S. Carena and H.E. Haber, Higgs boson theory and phenomenology, Prog. Part. Nucl. Phys. 50 (2003) 63 [hep-ph/0208209] [INSPIRE].
A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].
I. Gogoladze, Q. Shafi and C.S. Un, Higgs boson mass from t-b-τ Yukawa unification, JHEP 08 (2012) 028 [arXiv:1112.2206] [INSPIRE].
N. Karagiannakis, G. Lazarides and C. Pallis, Dark matter and Higgs mass in the CMSSM with Yukawa quasi-unification, J. Phys. Conf. Ser. 384 (2012) 012012 [arXiv:1201.2111] [INSPIRE].
A. Anandakrishnan and S. Raby, Yukawa unification predictions with effective “Mirage” mediation, Phys. Rev. Lett. 111 (2013) 211801 [arXiv:1303.5125] [INSPIRE].
M. Adeel Ajaib, I. Gogoladze, Q. Shafi and C.S. Un, A predictive Yukawa unified SO(10) model: Higgs and sparticle masses, JHEP 07 (2013) 139 [arXiv:1303.6964] [INSPIRE].
M. Badziak, M. Olechowski and S. Pokorski, Light staus and enhanced Higgs diphoton rate with non-universal gaugino masses and SO(10) Yukawa unification, JHEP 10 (2013) 088 [arXiv:1307.7999] [INSPIRE].
M. Adeel Ajaib, I. Gogoladze, F. Nasir and Q. Shafi, Revisiting mGMSB in light of a 125 GeV Higgs, Phys. Lett. B 713 (2012) 462 [arXiv:1204.2856] [INSPIRE].
H. Baer, V. Barger, P. Huang and A. Mustafayev, Implications of a high mass light MSSM Higgs scalar for SUSY searches at the LHC, Phys. Rev. D 84 (2011) 091701 [arXiv:1109.3197] [INSPIRE].
H. Baer, V. Barger and A. Mustafayev, Implications of a 125 GeV Higgs scalar for LHC SUSY and neutralino dark matter searches, Phys. Rev. D 85 (2012) 075010 [arXiv:1112.3017] [INSPIRE].
A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Implications of a 125 GeV Higgs for supersymmetric models, Phys. Lett. B 708 (2012) 162 [arXiv:1112.3028] [INSPIRE].
M. Carena, S. Gori, N.R. Shah and C.E.M. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].
S. Akula, B. Altunkaynak, D. Feldman, P. Nath and G. Peim, Higgs boson mass predictions in SUGRA unification, recent LHC-7 results and dark matter, Phys. Rev. D 85 (2012) 075001 [arXiv:1112.3645] [INSPIRE].
M. Kadastik, K. Kannike, A. Racioppi and M. Raidal, Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology, JHEP 05 (2012) 061 [arXiv:1112.3647] [INSPIRE].
O. Buchmüller et al., Higgs and supersymmetry, Eur. Phys. J. C 72 (2012) 2020 [arXiv:1112.3564] [INSPIRE].
J. Cao, Z. Heng, D. Li and J.M. Yang, Current experimental constraints on the lightest Higgs boson mass in the constrained MSSM, Phys. Lett. B 710 (2012) 665 [arXiv:1112.4391] [INSPIRE].
K.A. Olive, The impact of XENON100 and the LHC on supersymmetric dark matter, J. Phys. Conf. Ser. 384 (2012) 012010 [arXiv:1202.2324] [INSPIRE].
L. Roszkowski, E.M. Sessolo and Y.-L.S. Tsai, Bayesian implications of current LHC supersymmetry and dark matter detection searches for the constrained MSSM, Phys. Rev. D 86 (2012) 095005 [arXiv:1202.1503] [INSPIRE].
A.H. Chamseddine, R.L. Arnowitt and P. Nath, Locally supersymmetric grand unification, Phys. Rev. Lett. 49 (1982) 970 [INSPIRE].
R. Barbieri, S. Ferrara and C.A. Savoy, Gauge models with spontaneously broken local supersymmetry, Phys. Lett. B 119 (1982) 343 [INSPIRE].
L.J. Hall, J.D. Lykken and S. Weinberg, Supergravity as the messenger of supersymmetry breaking, Phys. Rev. D 27 (1983) 2359 [INSPIRE].
E. Cremmer, P. Fayet and L. Girardello, Gravity induced supersymmetry breaking and low-energy mass spectrum, Phys. Lett. B 122 (1983) 41 [INSPIRE].
N. Ohta, Grand unified theories based on local supersymmetry, Prog. Theor. Phys. 70 (1983) 542 [INSPIRE].
ATLAS collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using 4.7 fb −1 of \( \sqrt{s} \) = 7 TeV proton-proton collision data, Phys. Rev. D 87 (2013) 012008 [arXiv:1208.0949] [INSPIRE].
CMS collaboration, Search for supersymmetry in hadronic final states using MT2 in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 10 (2012) 018 [arXiv:1207.1798] [INSPIRE].
CMS collaboration, CMS at the high-energy frontier. Contribution to the update of the European strategy for particle physics, CMS-NOTE-2012-006 (2012).
M.C. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino mixing: critical look at present precision, JHEP 12 (2012) 123 [arXiv:1209.3023] [INSPIRE].
R.N. Mohapatra et al., Theory of neutrinos: a white paper, Rept. Prog. Phys. 70 (2007) 1757 [hep-ph/0510213] [INSPIRE].
R.N. Mohapatra, Mechanism for understanding small neutrino mass in superstring theories, Phys. Rev. Lett. 56 (1986) 561 [INSPIRE].
R.N. Mohapatra and J.W.F. Valle, Neutrino mass and baryon number nonconservation in superstring models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].
I. Gogoladze, N. Okada and Q. Shafi, NMSSM and seesaw physics at LHC, Phys. Lett. B 672 (2009) 235 [arXiv:0809.0703] [INSPIRE].
I. Gogoladze, B. He and Q. Shafi, Inverse seesaw in NMSSM and 126 GeV Higgs boson, Phys. Lett. B 718 (2013) 1008 [arXiv:1209.5984] [INSPIRE].
J. Guo, Z. Kang, T. Li and Y. Liu, Higgs boson mass and complex sneutrino dark matter in the supersymmetric inverse seesaw models, JHEP 02 (2014) 080 [arXiv:1311.3497] [INSPIRE].
J.R. Ellis, K.A. Olive and Y. Santoso, The MSSM parameter space with nonuniversal Higgs masses, Phys. Lett. B 539 (2002) 107 [hep-ph/0204192] [INSPIRE].
J.R. Ellis, T. Falk, K.A. Olive and Y. Santoso, Exploration of the MSSM with nonuniversal Higgs masses, Nucl. Phys. B 652 (2003) 259 [hep-ph/0210205] [INSPIRE].
H. Baer, A. Mustafayev, S. Profumo, A. Belyaev and X. Tata, Direct, indirect and collider detection of neutralino dark matter in SUSY models with non-universal Higgs masses, JHEP 07 (2005) 065 [hep-ph/0504001] [INSPIRE].
P.S.B. Dev and R.N. Mohapatra, TeV scale inverse seesaw in SO(10) and leptonic non-unitarity effects, Phys. Rev. D 81 (2010) 013001 [arXiv:0910.3924] [INSPIRE].
S. Khalil, TeV-scale gauged B − L symmetry with inverse seesaw mechanism, Phys. Rev. D 82 (2010) 077702 [arXiv:1004.0013] [INSPIRE].
Z. Kang, J. Li, T. Li, T. Liu and J. Yang, Asymmetric sneutrino dark matter in the NMSSM with minimal inverse seesaw, arXiv:1102.5644 [INSPIRE].
S. Khalil, H. Okada and T. Toma, Right-handed sneutrino dark matter in supersymmetric B − L model,JHEP 07 (2011) 026 [arXiv:1102.4249] [INSPIRE].
F.-X. Josse-Michaux and E. Molinaro, A common framework for dark matter, leptogenesis and neutrino masses, Phys. Rev. D 84 (2011) 125021 [arXiv:1108.0482] [INSPIRE].
H. An, P.S.B. Dev, Y. Cai and R.N. Mohapatra, Sneutrino dark matter in gauged inverse seesaw models for neutrinos, Phys. Rev. Lett. 108 (2012) 081806 [arXiv:1110.1366] [INSPIRE].
P.S.B. Dev, S. Mondal, B. Mukhopadhyaya and S. Roy, Phenomenology of light sneutrino dark matter in cMSSM/mSUGRA with inverse seesaw, JHEP 09 (2012) 110 [arXiv:1207.6542] [INSPIRE].
L. Basso, O. Fischer and J.J. van der Bij, A natural Z ′ model with inverse seesaw and leptonic dark matter, Phys. Rev. D 87 (2013) 035015 [arXiv:1207.3250] [INSPIRE].
S. Banerjee, P.S.B. Dev, S. Mondal, B. Mukhopadhyaya and S. Roy, Invisible Higgs decay in a supersymmetric inverse seesaw model with light sneutrino dark matter, JHEP 10 (2013) 221 [arXiv:1306.2143] [INSPIRE].
K.S. Babu, I. Gogoladze, M.U. Rehman and Q. Shafi, Higgs boson mass, sparticle spectrum and little hierarchy problem in extended MSSM, Phys. Rev. D 78 (2008) 055017 [arXiv:0807.3055] [INSPIRE].
S.P. Martin, Extra vector-like matter and the lightest Higgs scalar boson mass in low-energy supersymmetry, Phys. Rev. D 81 (2010) 035004 [arXiv:0910.2732] [INSPIRE].
H. Baer, F.E. Paige, S.D. Protopopescu and X. Tata, ISAJET 7.48: a Monte Carlo event generator for pp, \( \overline{p}p \) , and e + e − interactions, hep-ph/0001086 [INSPIRE].
Tevatron Electroweak Working Group, CDF and D0 collaborations, Combination of CDF and D0 results on the mass of the top quark, arXiv:0903.2503 [INSPIRE].
Particle Data Group collaboration, J. Beringer et al., Review of particle physics, Phys. Rev. D 86 (2012) 010001 [INSPIRE].
H. Baer, M. Brhlik, C.-h. Chen and X. Tata, Signals for the minimal gauge mediated supersymmetry breaking model at the Fermilab Tevatron collider, Phys. Rev. D 55 (1997) 4463 [hep-ph/9610358] [INSPIRE].
H. Baer, M. Brhlik, D. Castano and X. Tata, b → sγ constraints on the minimal supergravity model with large tan β, Phys. Rev. D 58 (1998) 015007 [hep-ph/9712305] [INSPIRE].
D. Eriksson, F. Mahmoudi and O. Stal, Charged Higgs bosons in minimal supersymmetry: updated constraints and experimental prospects, JHEP 11 (2008) 035 [arXiv:0808.3551] [INSPIRE].
CMS collaboration, Observation of a new boson with mass near 125 GeV in pp collisions at \( \sqrt{s} \) = 7 and 8 TeV, JHEP 06 (2013) 081 [arXiv:1303.4571] [INSPIRE].
LHCb collaboration, First evidence for the decay \( B_s^0 \) → μ + μ −, Phys. Rev. Lett. 110 (2013) 021801 [arXiv:1211.2674] [INSPIRE].
Heavy Flavor Averaging Group collaboration, Y. Amhis et al., Averages of b-hadron, c-hadron and τ -lepton properties as of early 2012, arXiv:1207.1158 [INSPIRE].
Heavy Flavor Averaging Group collaboration, D. Asner et al., Averages of b-hadron, c-hadron and τ -lepton properties, arXiv:1010.1589 [INSPIRE].
WMAP collaboration, G. Hinshaw et al., Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results, Astrophys. J. Suppl. 208 (2013) 19 [arXiv:1212.5226] [INSPIRE].
J.L. Feng, K.T. Matchev and T. Moroi, Multi-TeV scalars are natural in minimal supergravity, Phys. Rev. Lett. 84 (2000) 2322 [hep-ph/9908309] [INSPIRE].
J.L. Feng, K.T. Matchev and T. Moroi, Focus points and naturalness in supersymmetry, Phys. Rev. D 61 (2000) 075005 [hep-ph/9909334] [INSPIRE].
J.L. Feng, K.T. Matchev and F. Wilczek, Neutralino dark matter in focus point supersymmetry, Phys. Lett. B 482 (2000) 388 [hep-ph/0004043] [INSPIRE].
K.L. Chan, U. Chattopadhyay and P. Nath, Naturalness, weak scale supersymmetry and the prospect for the observation of supersymmetry at the Tevatron and at the CERN LHC, Phys. Rev. D 58 (1998) 096004 [hep-ph/9710473] [INSPIRE].
H. Baer, I. Gogoladze, A. Mustafayev, S. Raza and Q. Shafi, Sparticle mass spectra from SU(5) SUSY GUT models with b − τ Yukawa coupling unification, JHEP 03 (2012) 047 [arXiv:1201.4412] [INSPIRE].
I. Gogoladze, S. Raza and Q. Shafi, Light stop from b − τ Yukawa unification, Phys. Lett. B 706 (2012) 345 [arXiv:1104.3566] [INSPIRE].
M. Adeel Ajaib, T. Li and Q. Shafi, Stop-neutralino coannihilation in the light of LHC, Phys. Rev. D 85 (2012) 055021 [arXiv:1111.4467] [INSPIRE].
B. He, T. Li and Q. Shafi, Impact of LHC searches on NLSP top squark and gluino mass, JHEP 05 (2012) 148 [arXiv:1112.4461] [INSPIRE].
M. Drees and M.M. Nojiri, The neutralino relic density in minimal N = 1 supergravity, Phys. Rev. D 47 (1993) 376 [hep-ph/9207234] [INSPIRE].
H. Baer and M. Brhlik, Cosmological relic density from minimal supergravity with implications for collider physics, Phys. Rev. D 53 (1996) 597 [hep-ph/9508321] [INSPIRE].
H. Baer and M. Brhlik, Neutralino dark matter in minimal supergravity: direct detection versus collider searches, Phys. Rev. D 57 (1998) 567 [hep-ph/9706509] [INSPIRE].
H. Baer et al., Yukawa unified supersymmetric SO(10) model: cosmology, rare decays and collider searches, Phys. Rev. D 63 (2000) 015007 [hep-ph/0005027] [INSPIRE].
A.B. Lahanas, D.V. Nanopoulos and V.C. Spanos, Neutralino dark matter elastic scattering in a flat and accelerating universe, Mod. Phys. Lett. A 16 (2001) 1229 [hep-ph/0009065] [INSPIRE].
A.B. Lahanas and V.C. Spanos, Implications of the pseudoscalar Higgs boson in determining the neutralino dark matter, Eur. Phys. J. C 23 (2002) 185 [hep-ph/0106345] [INSPIRE].
J.R. Ellis, T. Falk and K.A. Olive, Neutralino-stau coannihilation and the cosmological upper limit on the mass of the lightest supersymmetric particle, Phys. Lett. B 444 (1998) 367 [hep-ph/9810360] [INSPIRE].
J.R. Ellis, T. Falk, K.A. Olive and M. Srednicki, Calculations of neutralino-stau coannihilation channels and the cosmologically relevant region of MSSM parameter space, Astropart. Phys. 13 (2000) 181 [Erratum ibid. 15 (2001) 413] [hep-ph/9905481] [INSPIRE].
R.L. Arnowitt, B. Dutta and Y. Santoso, Coannihilation effects in supergravity and D-brane models, Nucl. Phys. B 606 (2001) 59 [hep-ph/0102181] [INSPIRE].
M.E. Gómez, G. Lazarides and C. Pallis, Supersymmetric cold dark matter with Yukawa unification, Phys. Rev. D 61 (2000) 123512 [hep-ph/9907261] [INSPIRE].
M.E. Gómez, G. Lazarides and C. Pallis, Yukawa unification, b → sγ and bino-stau coannihilation, Phys. Lett. B 487 (2000) 313 [hep-ph/0004028] [INSPIRE].
M.E. Gómez, G. Lazarides and C. Pallis, Yukawa quasi-unification, Nucl. Phys. B 638 (2002) 165 [hep-ph/0203131] [INSPIRE].
T. Nihei, L. Roszkowski and R. Ruiz de Austri, Exact cross-sections for the neutralino slepton coannihilation, JHEP 07 (2002) 024 [hep-ph/0206266] [INSPIRE].
C. Boehm, A. Djouadi and M. Drees, Light scalar top quarks and supersymmetric dark matter, Phys. Rev. D 62 (2000) 035012 [hep-ph/9911496] [INSPIRE].
J.R. Ellis, K.A. Olive and Y. Santoso, Calculations of neutralino stop coannihilation in the CMSSM, Astropart. Phys. 18 (2003) 395 [hep-ph/0112113] [INSPIRE].
J. Edsjö, M. Schelke, P. Ullio and P. Gondolo, Accurate relic densities with neutralino, chargino and sfermion coannihilations in mSUGRA, JCAP 04 (2003) 001 [hep-ph/0301106] [INSPIRE].
J.L. Diaz-Cruz, J.R. Ellis, K.A. Olive and Y. Santoso, On the feasibility of a stop NLSP in gravitino dark matter scenarios, JHEP 05 (2007) 003 [hep-ph/0701229] [INSPIRE].
H. Baer et al., Post-LHC7 fine-tuning in the mSUGRA/CMSSM model with a 125 GeV Higgs boson, Phys. Rev. D 87 (2013) 035017 [arXiv:1210.3019] [INSPIRE].
I. Gogoladze, F. Nasir and Q. Shafi, Non-universal gaugino masses and natural supersymmetry, Int. J. Mod. Phys. A 28 (2013) 1350046 [arXiv:1212.2593] [INSPIRE].
N. Okada, S. Raza and Q. Shafi, Particle spectroscopy of supersymmetric SU(5) in light of 125 GeV Higgs and muon g − 2 data, arXiv:1307.0461 [INSPIRE].
XENON100 collaboration, E. Aprile et al., Dark matter results from 225 live days of XENON100 data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].
The XENON Dark Matter Project, http://xenon.astro.columbia.edu/XENON100 Experiment/; http://xenon.astro.columbia.edu/talks/aprile ucla dm2010.pdf.
CDMS-II collaboration, P.L. Brink et al., Beyond the CDMS-II dark matter search: SuperCDMS, eConf C 041213 (2004) 2529 [astro-ph/0503583] [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1401.8251
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
Gogoladze, I., He, B., Mustafayev, A. et al. Effects of neutrino inverse seesaw mechanism on the sparticle spectrum in CMSSM and NUHM2. J. High Energ. Phys. 2014, 78 (2014). https://doi.org/10.1007/JHEP05(2014)078
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP05(2014)078