## Abstract

In this first of two papers, we explain in detail the simplest example of a broader set of relations between apparently very different theories. Our example relates \( \mathfrak{su}(2) \) \( \mathcal{N} \) = 4 super Yang-Mills (SYM) to a theory we call “(3, 2)”. This latter theory is an exactly marginal diagonal SU(2) gauging of three *D*_{3}(SU(2)) Argyres-Douglas (AD) theories. We begin by observing that the Schur indices of these two theories are related by an algebraic transformation that is surprisingly reminiscent of index transformations describing spontaneous symmetry breaking on the Higgs branch. However, this transformation breaks half the supersymmetry of the SYM theory as well as its full \( \mathcal{N} \) = 2 SU(2)_{F} flavor symmetry. Moreover, it does so in an interesting way when viewed through the lens of the corresponding 2D vertex operator algebras (VOAs): affine currents of the small \( \mathcal{N} \) = 4 super-Virasoro algebra at *c* = *−*9 get mapped to the \( \mathcal{A}(6) \) stress tensor and some of its conformal descendants, while the extra supersymmetry currents on the \( \mathcal{N} \) = 4 side get mapped to higher-dimensional fermionic currents and their descendants on the \( \mathcal{A}(6) \) side. We prove these relations are facets of an exact graded vector space isomorphism (GVSI) between these two VOAs. This GVSI respects the U(1)_{r} charge of the parent 4D theories. We briefly sketch how more general \( \mathfrak{su}(N) \) \( \mathcal{N} \) = 4 SYM theories are related to an infinite class of AD theories via generalizations of our example. We conclude by showing that, in this class of theories, the \( \mathcal{A}(6) \) VOA saturates a new inequality on the number of strong generators.

## Article PDF

### Similar content being viewed by others

## References

M. Buican and T. Nishinaka,

*Conformal Manifolds in Four Dimensions and Chiral Algebras*,*J. Phys. A***49**(2016) 465401 [arXiv:1603.00887] [INSPIRE].M. Del Zotto, C. Vafa and D. Xie,

*Geometric engineering, mirror symmetry and*\( 6{\mathrm{d}}_{\left(1,0\right)}\to 4{\mathrm{d}}_{\left(\mathcal{N}=2\right)} \),*JHEP***11**(2015) 123 [arXiv:1504.08348] [INSPIRE].C. Closset, S. Schäfer-Nameki and Y.-N. Wang,

*Coulomb and Higgs Branches from Canonical Singularities: Part 0*,*JHEP***02**(2021) 003 [arXiv:2007.15600] [INSPIRE].C. Closset, S. Giacomelli, S. Schäfer-Nameki and Y.-N. Wang, 5

*d and 4d SCFTs: Canonical Singularities, Trinions and S-Dualities*,*JHEP***05**(2021) 274 [arXiv:2012.12827] [INSPIRE].M. J. Kang, C. Lawrie and J. Song,

*Infinitely many*4*D N*= 2*SCFTs with a*=*c and beyond*,*Phys. Rev. D***104**(2021) 105005 [arXiv:2106.12579] [INSPIRE].P. C. Argyres, M. R. Plesser, N. Seiberg and E. Witten,

*New N*= 2*superconformal field theories in four-dimensions*,*Nucl. Phys. B***461**(1996) 71 [hep-th/9511154] [INSPIRE].S. Cecotti and M. Del Zotto,

*Infinitely many N*= 2*SCFT with ADE flavor symmetry*,*JHEP***01**(2013) 191 [arXiv:1210.2886] [INSPIRE].S. Cecotti, M. Del Zotto and S. Giacomelli,

*More on the N*= 2*superconformal systems of type D*_{p}(*G*),*JHEP***04**(2013) 153 [arXiv:1303.3149] [INSPIRE].S. Cecotti, A. Neitzke and C. Vafa,

*R-Twisting and*4*d/*2*d Correspondences*, arXiv:1006.3435 [INSPIRE].C. Beem, M. Lemos, P. Liendo, W. Peelaers, L. Rastelli and B. C. van Rees,

*Infinite Chiral Symmetry in Four Dimensions*,*Commun. Math. Phys.***336**(2015) 1359 [arXiv:1312.5344] [INSPIRE].M. Buican and T. Nishinaka,

*On the superconformal index of Argyres-Douglas theories*,*J. Phys. A***49**(2016) 015401 [arXiv:1505.05884] [INSPIRE].M. Buican and T. Nishinaka,

*Argyres-Douglas theories, S*^{1}*reductions, and topological symmetries*,*J. Phys. A***49**(2016) 045401 [arXiv:1505.06205] [INSPIRE].C. Cordova and S.-H. Shao,

*Schur Indices, BPS Particles, and Argyres-Douglas Theories*,*JHEP***01**(2016) 040 [arXiv:1506.00265] [INSPIRE].M. Buican and T. Nishinaka,

*Argyres-Douglas Theories, the Macdonald Index, and an RG Inequality*,*JHEP***02**(2016) 159 [arXiv:1509.05402] [INSPIRE].B. Feigin, E. Feigin and I. Tipunin,

*Fermionic formulas for*(1*, p*)*logarithmic model characters in*Φ_{2,1}*quasiparticle realisation*, arXiv:0704.2464 [INSPIRE].B. L. Feigin and I. Y. Tipunin,

*Characters of coinvariants in*(1*, p*)*logarithmic models*, arXiv:0805.4096 [INSPIRE].D. Gaiotto, L. Rastelli and S. S. Razamat,

*Bootstrapping the superconformal index with surface defects*,*JHEP***01**(2013) 022 [arXiv:1207.3577] [INSPIRE].A. Gadde, L. Rastelli, S. S. Razamat and W. Yan,

*Gauge Theories and Macdonald Polynomials*,*Commun. Math. Phys.***319**(2013) 147 [arXiv:1110.3740] [INSPIRE].D. Xie, W. Yan and S.-T. Yau,

*Chiral algebra of the Argyres-Douglas theory from M5 branes*,*Phys. Rev. D***103**(2021) 065003 [arXiv:1604.02155] [INSPIRE].V. G. Kac and M. Wakimoto,

*A remark on boundary level admissible representations*,*Compt. Rend. Math.***355**(2017) 128 [arXiv:1612.07423].T. Creutzig,

*W-algebras for Argyres-Douglas theories*, arXiv:1701.05926 [INSPIRE].M. Buican, Z. Laczko and T. Nishinaka, \( \mathcal{N} \) = 2

*S-duality revisited*,*JHEP***09**(2017) 087 [arXiv:1706.03797] [INSPIRE].M. Buican and Z. Laczko,

*Nonunitary Lagrangians and unitary non-Lagrangian conformal field theories*,*Phys. Rev. Lett.***120**(2018) 081601 [arXiv:1711.09949] [INSPIRE].M. Buican and Z. Laczko,

*Rationalizing CFTs and Anyonic Imprints on Higgs Branches*,*JHEP***03**(2019) 025 [arXiv:1901.07591] [INSPIRE].M. Buican, L. Li and T. Nishinaka,

*Peculiar Index Relations,*2*D TQFT, and Universality of SUSY Enhancement*,*JHEP***01**(2020) 187 [arXiv:1907.01579] [INSPIRE].M. Buican, H. Jiang and T. Nishinaka, to appear.

M. Buican,

*Minimal Distances Between SCFTs*,*JHEP***01**(2014) 155 [arXiv:1311.1276] [INSPIRE].F. Bonetti, C. Meneghelli and L. Rastelli,

*VOAs labelled by complex reflection groups and*4*d SCFTs*,*JHEP***05**(2019) 155 [arXiv:1810.03612] [INSPIRE].F. A. Dolan and H. Osborn,

*On short and semi-short representations for four-dimensional superconformal symmetry*,*Annals Phys.***307**(2003) 41 [hep-th/0209056] [INSPIRE].V. K. Dobrev and V. B. Petkova,

*All Positive Energy Unitary Irreducible Representations of Extended Conformal Supersymmetry*,*Phys. Lett. B***162**(1985) 127 [INSPIRE].T. Creutzig, D. Gaiotto and A. R. Linshaw,

*S-duality for the Large N*= 4*Superconformal Algebra*,*Commun. Math. Phys.***374**(2020) 1787 [arXiv:1804.09821] [INSPIRE].S. Hellerman and S. Maeda,

*On the Large R-charge Expansion in*\( \mathcal{N} \) = 2*Superconformal Field Theories*,*JHEP***12**(2017) 135 [arXiv:1710.07336] [INSPIRE].S. Hellerman, S. Maeda and M. Watanabe,

*Operator Dimensions from Moduli*,*JHEP***10**(2017) 089 [arXiv:1706.05743] [INSPIRE].

## Author information

### Authors and Affiliations

### Corresponding author

## Additional information

### Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2012.13209

## Rights and permissions

**Open Access** . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

## About this article

### Cite this article

Buican, M., Nishinaka, T. \( \mathcal{N} \) = 4 SYM, Argyres-Douglas theories, and an exact graded vector space isomorphism.
*J. High Energ. Phys.* **2022**, 28 (2022). https://doi.org/10.1007/JHEP04(2022)028

Received:

Accepted:

Published:

DOI: https://doi.org/10.1007/JHEP04(2022)028