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Abstract: In this first of two papers, we explain in detail the simplest example of a
broader set of relations between apparently very different theories. Our example relates
su(2) N = 4 super Yang-Mills (SYM) to a theory we call “(3, 2)”. This latter theory is
an exactly marginal diagonal SU(2) gauging of three D3(SU(2)) Argyres-Douglas (AD)
theories. We begin by observing that the Schur indices of these two theories are related by an
algebraic transformation that is surprisingly reminiscent of index transformations describing
spontaneous symmetry breaking on the Higgs branch. However, this transformation breaks
half the supersymmetry of the SYM theory as well as its full N = 2 SU(2)F flavor symmetry.
Moreover, it does so in an interesting way when viewed through the lens of the corresponding
2D vertex operator algebras (VOAs): affine currents of the small N = 4 super-Virasoro
algebra at c = −9 get mapped to the A(6) stress tensor and some of its conformal
descendants, while the extra supersymmetry currents on the N = 4 side get mapped to
higher-dimensional fermionic currents and their descendants on the A(6) side. We prove
these relations are facets of an exact graded vector space isomorphism (GVSI) between
these two VOAs. This GVSI respects the U(1)r charge of the parent 4D theories. We briefly
sketch how more general su(N) N = 4 SYM theories are related to an infinite class of AD
theories via generalizations of our example. We conclude by showing that, in this class of
theories, the A(6) VOA saturates a new inequality on the number of strong generators.
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1 Introduction

In this note, we revisit a 4D N = 2 superconformal field theory (SCFT) we first studied
in [1] and find some remarkable relations it has to su(2) N = 4 super Yang-Mills (SYM).
We will refer to the N = 2 theory in question as the (3, 2) SCFT.1 This theory consists of
three copies of the so-called D3(SU(2)) ' (A1, A3) Argyres-Douglas (AD) theory2 with a
gauged diagonal SU(2) symmetry having vanishing beta function (see figure 1). In what
follows, we will refer to these D3(SU(2)) SCFTs as “D3” theories.

Modulo having the same su(2) gauge algebra, su(2) N = 4 SYM and the (3, 2) theory
seem to be very different beasts. For example, in the former case, the N = 2 matter sector
(prior to gauging) consists of a free adjoint-valued hypermultiplet while, in the latter case,
it consists of three strongly interacting D3 SCFTs.

However, this picture begins to change when one thinks of the so-called “Schur sector”
of operators in both SCFT matter sectors (prior to gauging). In particular, the resemblance
becomes starker when one thinks in terms of the related 2D vertex operator algebras (VOAs)
that the general correspondence in [10] assigns to the matter sectors in question. On the
SYM side, we have a VOA (strongly) generated by adjoint-valued dimension 1/2 symplectic
bosons while, on the (3, 2) side, we have a VOA (strongly) generated by adjoint-valued
affine currents for each D3 matter sector [11–14].

This realization motivates a cursory glance at some of the basic observables of the 4D
theories we are discussing and reveals the following: in both cases a = c, and, as we will
explain in section 2, the Schur indices of the SYM theory and (3, 2) are related in a simple way

I(3,2)(q) = Isu(2)
(
q3; q

1
2
)
, (1.1)

1In [1], we referred to this SCFT somewhat unimaginatively as T̂ . It has also been studied in [2], where
it was called the (E1,1

6 , SU(2)) SCFT. This theory has been further studied in [3–5].
2These theories were originally discovered in [6]. The nomenclature is borrowed from [7–9].
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Figure 1. Our AD theory of interest, (3, 2), consists of an exactly marginal diagonal SU(2) gauging
of three D3(SU(2)) SCFTs.

where the label “su(2)” refers to the corresponding N = 4 theory. In writing (1.1), we have
set x = q

1
2 , where x is the flavor SU(2)F fugacity that arises when we think of the N = 4

theory as an N = 2 theory.
As we will explain in section 3, these features have a deeper explanation in terms of

a mathematically precise exact graded vector space isomorphism (GVSI) between the 2D
vertex operator algebras (VOAs) that correspond to (3, 2) [1] and su(2) N = 4 SYM [10].
In other words, we find a GVSI between the A(6) algebra of [15, 16] and the small N = 4
super-Virasoro algebra at c = −9.

We suggest that the GVSI and its consequences can be thought of physically as
comprising a distant cousin of spontaneous symmetry breaking on the Higgs branch. At the
level of moduli spaces there is a superficial similarity to moving onto the Higgs branch and
removing a decoupled Nambu-Goldstone (NG) multiplet: su(2) N = 4 SYM (thought of as
an N = 2 theory) has a 2-complex dimensional Higgs branch, while the (3, 2) theory has a
trivial Higgs branch. Moreover, just as in the case of two theories related by Higgs branch
renormalization group flows, the (3, 2) and su(2) N = 4 SYM theories have the same value
of the U(1)r ⊂ SU(2)R ×U(1)r anomaly, namely

Tr|(3,2) U(1)r = Tr|su(2) U(1)r = 0 . (1.2)

This result follows from the fact that a(3,2) − c(3,2) = asu(2) − csu(2).
Yet another similarity arises when one thinks of moving onto the Higgs branch in

terms of the index [17]. More precisely, to describe the Higgsing of the N = 4 theory
in terms of the index, we can, just as in (1.1), set x = q

1
2 . Performing this substitution

corresponds to leaving unsuppressed certain contributions to the Schur index from the
SU(2)F lowest-weight component of the holomorphic moment map, µ−. The resulting
divergence of the index is interpreted as setting 〈µ−〉 6= 0 and moving onto the moduli
space. The corresponding residue of the index describes the IR theory that remains (after
removing the NG multiplet).

From the perspective of the index, only the fact that we simultaneously rescale q → q3

in (1.1) keeps Isu(2) finite and tells the index to describe physics different from Higgsing.
As we will see, this rescaling leads to interesting phenomena like the fact that, at the level
of the corresponding VOAs, some of the (strong) generators of the c = −9 small N = 4
super-Virasoro algebra are mapped to generators of the A(6) chiral algebra while others are
mapped to descendants. More generally, the number of derivatives acting on an operator
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in one theory is not preserved under the mapping to its cousin in the other theory (see
section 3 for details).

However, even this peculiar mapping of operators is somewhat reminiscent of sponta-
neous symmetry breaking. Indeed, consider a flavor symmetry current for some sponta-
neously broken symmetry in a general quantum field theory (QFT) in d > 2. In the deep
IR, this current is mapped to a descendant of the NG field

jµ → fπ∂µπ . (1.3)

More generally, we may expect the following mapping between operators in the UV and IR

∂nOUV → ∂mOIR , (1.4)

where it may happen that n 6= m.3

In the context of N = 2 theories, it is useful to think of the above discussion in terms
of Higgs branch operators and their Hall-Littlewood (HL) generalizations [10, 18]. Thinking
along these lines, we easily find examples of (1.3) and (1.4). Such situations often arise due
to the fact that certain Higgs branch operators of the UV theory get mapped to operators
that, in the deep IR, have support only in the low energy effective QFT describing the
decoupled NG multiplets and vanish in the remaining IR QFT (e.g., the N = 2 flavor
symmetry current multiplets for spontaneously broken flavor symmetries). In terms of
symbols, we have

OHL
UV → OIR|rem. = 0 , (1.5)

where OHL
UV is an HL operator in the UV theory, OIR 6= 0 is its IR avatar supported in the

NG effective QFT, and “|rem.” denotes the restriction of this operator to the part of the IR
theory decoupled from the NG multiplets.

We will see that many of these phenomena have cousins in our case. For example, all
HL operators of the su(2) N = 4 SYM theory will be mapped to non-HL operators in the
(3, 2) theory (whose Higgs branch and HL sector vanishes). In other words, instead of (1.5),
we will have

OHL
su(2) → O(3,2)|HL = 0 , (1.6)

where O(3,2) 6= 0 is an operator of the (3, 2) SCFT, and “|HL” denotes the restriction to the
(trivial) HL ring.

The plan of this paper is as follows. In the next section we describe the ingredients
that lead to the index relation (1.1). With this groundwork out of the way, in section 3 we
proceed to describe the GVSI between the VOAs discussed above. In section 4, we tease a
generalization of the relation between (3, 2) and su(2) N = 4 SYM that will be discussed
in much greater detail in [26]. In particular, we show that the A(6) VOA saturates an
inequality on the number of strong generators for VOAs in the class of theories discussed
in [26]. We conclude with some open questions and future directions.

3We have been schematic about contraction of indices above, but both sides of the above relation must
transform in the same way under the Lorentz group.
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2 The index relation

In this section we derive the index relation (1.1) and explain some of its consequences before
setting the stage for a discussion of the GVSI in section 3.

Let us begin by briefly reminding the reader that the Schur index [18] is a specialization of
the N = 2 superconformal index counting certain, at worst 1/4-BPS, local operators. In par-
ticular, the Schur index is a refined signed trace over the Hilbert space of local operators, H

I(q; ~x) := Tr|H(−1)F e−β∆qE−R
∏
i

(xi)fi , (2.1)

where |q| < 1, ~x is a vector of flavor fugacities corresponding to weights ~f , F is fermion
number, E is the conformal dimension, R is the SU(2)R weight, and ∆ :=

{
Q2−̇, (Q2−̇)†

}
.

Given this definition, we would like to construct I(3,2), Isu(2), and check (1.1). For ease
of reference in what follows, we reproduce this relation below

I(3,2)(q) = Isu(2)(q3; q
1
2 ) , (2.2)

where we again remind the reader that “su(2)” stands for su(2) N = 4 SYM.
The simple relation in (2.2) can, at some level, be anticipated from the simple form

the Schur index of D3 takes:4 it has simple “single letter” contributions when written as
in [19–21]. In particular, we have

ID3(q; y) = P.E.
[(
q(1 + q)
1− q3

)
χadj(y)

]
, (2.3)

where y is a fugacity for the D3’s SU(2) flavor symmetry that we gauge to produce the
(3, 2) SCFT, and we define the “plethystic exponential” to be P.E.[g(q;x1, · · · , xp)] :=
exp

(∑∞
n=1

1
ng(qn;xn1 , · · · , xnp )

)
. Notice that the expression in (2.3) is not too different from

the index of the hypermultiplets in the SYM theory

Ihyp(q; y, x) = P.E.
[
q

1
2

1− q (x+ x−1)χadj(y)
]
, (2.4)

where y is the fugacity for the su(2) flavor symmetry we gauge to produce the SYM theory,
and x is a fugacity for the remaining SU(2)F N = 2 flavor symmetry we have discussed at
length above.

To generate the relation in (2.2) given the building blocks in (2.3) and (2.4), we need
only integrate the vector multiplet contribution to the index

Ivec(q; y) = P.E.
[
− 2q

1− qχadj(y)
]
, (2.5)

over the su(2) Haar measure and include the appropriate matter contributions. Doing so,
we find

Isu(2)(q;x) =
∫
dµsu(2)(y) · Ivec(q; y) · Ihyp(q; y, x) , (2.6)

4This phenomenon is familiar from the general Dp(SU(N)) theories: they are very much the closest AD
cousins of free theories [22–25].
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and
I(3,2)(q) =

∫
dµSU(2)(y) · Ivec(q; y) · (ID3(q; y))3 , (2.7)

from which (2.2) easily follows upon taking q → q3 and x→ q
1
2 in (2.6).

It is interesting to note that one consequence of the index relation we have derived
in (2.2) is that the U(1)r anomalies discussed in the introduction must match. Indeed, since
the SU(2)F flavor symmetry has vanishing linear ’t Hooft anomaly,5 we see that I(3,2) and
Isu(2) have the same “high-temperature” behavior and hence the same value of a− c (see
the discussion in [11]). Indeed,

a(3,2) = c(3,2) = 2 ⇒ Tr|(3,2) U(1)r = 0 ,

asu(2) = csu(2)) = 3
4 ⇒ Tr|su(2) U(1)r = 0 . (2.8)

While the above discussion strongly suggests that the Schur sectors of su(2) N = 4
SYM and the (3, 2) SCFT are related, it is not at all obvious from the facts presented
thus far that there is a particularly simple map between these two sectors. Indeed, it
turns out that both the (3, 2) and su(2) N = 4 theories have fermionic and bosonic Schur
operators.6 Therefore, even though the Schur indices are closely related, the (−1)F in
the definition (2.1) can sweep various differences in operator content under the rug. For
example, at the level of the index, there is no general way to distinguish operator relations
amongst bosons from fermionic Schur operators with the same quantum numbers (and vice
versa). The main result of the next section will be to show that, in spite of this possibility,
there is in fact a GVSI between the two Schur sectors when analyzed at the levels of the
corresponding VOAs.

3 The exact graded vector space isomorphism

To gain further insight into the mechanism that explains the index relation in (2.2), it is
useful to consider the associated 2D VOAs in the sense of [10]. Indeed, for any 4D N = 2
SCFT, T , [10] showed there is a corresponding 2D chiral algebra, χ[T ], living on a plane
P ' R2 ⊂ R4. Via an SU(2)R twisting on P, one can show that each Schur operator
resides in a cohomology class (with respect to a nilpotent supercharge) that is in one-to-one
correspondence with a state of the VOA living on P.

We can make contact with the discussion of the previous section by noting that the
torus partition function for χ[T ] takes the form

ZT 2;χ[T ](q; z; ~x) = Tr zM⊥qL0−
c2d
24
∏
i

(xi)fi , (3.1)

where M⊥ = j1 − j2 = −r is the spin transverse to P, c2d = −12c4d is central charge of
the VOA in terms of the 4D central charge, L0 is the holomorphic weight, and xi is a

5This statement is more generally true of any N = 2 flavor symmetry [27].
6This statement can be seen by carefully combining the vector multiplet gaugino Schur operators into

composites with the bosonic matter sector Schur operators. This procedure was carried out for the (3, 2)
theory in [1].
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flavor fugacity (sometimes referred to in the VOA literature as a Jacobi variable) with
corresponding weight fi. Note here that r is just the U(1)r charge and that it is a conserved
(though non-local) charge of the VOA.

Since they count essentially the same states, it should come as no surprise that [10]

ZT 2;χ[T ](q; (−1); ~x) = q−
c2d
24 IT (q; ~x) . (3.2)

In this relation, the holomorhpic dimension maps as follows: h = E −R. Therefore, we can
translate (2.2) into the 2D statement that

ZT 2,χ[(3,2](q; (−1)) = q
1
8ZT 2,χ[su(2)]

(
q3; (−1); q

1
2
)
. (3.3)

However, our goal is to go beyond this relation and to understand if there is a non-trivial
mapping of states in the two VOAs. On the N = 4 side we have the following:

1. From [10, 28], we know that χ[su(2)] = sVirc=−9
sm N=4, i.e., the VOA associated with the

su(2) N = 4 theory is the small N = 4 super-Virasoro algebra at c = −9.

2. The bosonic strong generators of this VOA are the three affine currents of ŝu(2)− 3
2

Bos. strong gens. : J0,± ∈ ŝu(2)− 3
2
⊂ sVirc=−9

sm N=4 . (3.4)

These currents have h = 1, r = 0, and are related to 4D Higgs branch operators (i.e.,
moment map primaries of B̂1 type with R = 1 in the language of [29] that correspond
to SU(2)F ; see also [30]). Therefore J0,± are also the bosonic generators of the HL
chiral ring. Here, T is not an independent generator (it is the Sugawara stress tensor).

3. The fermionic strong generators are the four N = 4 supercurrents of h = 3
2

Ferm. strong gens. : G±, G̃± , (3.5)

where G± have r = 1/2 and G̃± have r = −1/2. These latter currents are also HL
generators (they reside in multiplets of type D̄ 1

2 (0,0)) and the former are not (they
reside in multiplets of type D 1

2 (0,0)).

On the (3, 2) side we have the following:

1. From [1], we know that χ[(3, 2)] = A(6), i.e., the VOA associated with the (3, 2)
theory is the c = −24 A(6) chiral algebra of Feigin, Feigin, and Tipunin [15, 16].

2. The only bosonic strong generator of this VOA is the energy momentum tensor

Bos. strong gens. : T ∈ Virc=−24 ⊂ A(6) . (3.6)

This operator has h = 2, r = 0, and is related to the 4D SU(2)R current (it is a
superconformal descendant in the Ĉ0(0,0) stress tensor multiplet). This is not a Higgs
branch or HL operator.
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3. The fermionic currents are two h = 4 currents

Ferm. strong gens. : Ψ, Ψ̃ , (3.7)

where Ψ has r = 1/2 and Ψ̃ has r = −1/2. Using the D3 Macdonald index [14]
or conformal perturbation theory, one can argue that these operators have to be of
Ĉ 3

2 ( 1
2 ,0) ⊕ Ĉ 3

2 (0, 1
2 ) type [1]. Hence, as discussed in the introduction, the (3, 2) theory

has no Higgs branch or HL operators.7

Clearly the above VOAs are not isomorphic: the central charges and number of strong
generators are different. Moreover the HL rings and Higgs branches do not match. Still,
given the result in (3.3) we can hope for a non-trivial isomorphism of the VOAs when
thought of as (−1)F (or equivalently U(1)r) graded vector spaces. In particular, we would
like to see if we can map operators to operators and null states to null states while preserving
statistics and U(1)r. In other words, we would like to see if we can construct the GVSI
promised in the introduction. Such a GVSI implies (2.2) and (3.3), but, as discussed in
section 2, it is a much stronger result.

To motivate such a GVSI, let us work out what such a map

ϕ : χ[su(2)]→ χ[(3, 2)] , (3.8)

would look like for small values of h. Crucially, in addition to preserving U(1)r, we are
forced by (3.3) to set

h(3,2) = 3hsu(2) + 1
2f , (3.9)

where h(3,2) is the holomorphic dimension in A(6), hsu(2) is the corresponding quantity in
sVirc=−9

sm N=4, and f is the weight under SU(2)F .
The lowest-dimensional non-trivial operator in A(6) is the stress tensor at h(3,2) = 2.

The constraint (3.9) fixes
ϕ(J−) = T . (3.10)

The next non-trivial state is ∂T at h(3,2) = 3, and again (3.9) fixes a unique choice

ϕ(J0) = ∂T . (3.11)

At h(3,2) = 4 we have two bosonic states: ∂2T and T 2. At the level of a GVSI, we can set
ϕ(J+) and ϕ((J−)2) to any two independent linear combinations of these states. However,
it is natural to also demand that the normal-ordered product is respected so that

ϕ(J+) = ∂2T , ϕ
(
(J−)2

)
= T 2 . (3.12)

7Consistency with the bosonic generator in (3.6) suggests that these operators cannot come from 4D
superconformal descendants of DR(0,j2) ⊕DR(j1,0) multiplets. Indeed, otherwise we would find the HL ring
only contains fermionic generators whereas all examples of HL rings we are aware of (for interacting theories)
contain bosonic generators as well. It would be interesting to see if one can prove a theorem forbidding HL
rings with purely fermionic generators for interacting theories.
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We also have two h(3,2) = 4 fermionic operators: Ψ and Ψ̃. These are uniquely identified
via the requirement that ϕ respect U(1)r as

ϕ(G−) = Ψ , ϕ(G̃−) = Ψ̃ . (3.13)

The relations in (3.10), (3.11), (3.12), and (3.13) succinctly express the idea behind
our generalization of Higgsing: the VOA generators that map to HL states on the SYM
Higgs branch (i.e., the N = 2 NG multiplet for the SU(2)F symmetry breaking and its
N = 4 vector multiplet partner) are set to zero in the (trivial) (3, 2) HL ring (as in (1.6)).
However, unlike the case of motion onto the Higgs branch, the HL operators are mapped to
non-trivial but non-HL states in the (3, 2) theory.

Before moving on to a proof, it is also worth considering operators with h(3,2) = 5 in
order to understand how derivatives get mapped by ϕ and to understand the mapping
of the remaining fermionic generators of sVirc=−9

sm N=4. To that end, the bosonic operators
at h(3,2) = 5 are ∂3T and T∂T . We can again choose ϕ to preserve the normal ordered
product by taking

ϕ(∂J−) = ∂3J− , ϕ(J0J−) = (∂T )T . (3.14)

The fermionic operators at h(3,2) = 5 are G+ and G̃+. The fact that ϕ respects U(1)r means
that

ϕ(G+) = ∂Ψ , ϕ(G̃+) = ∂Ψ̃ . (3.15)

Finally, it is worth further motivating our proof by considering the fermionic operators
with h(3,2) = 6, since this is the first level with null vectors in A(6) [15, 16]

κ∂2Ψ + TΨ = κ∂2Ψ̃ + T Ψ̃ = 0 , κ 6= 0 . (3.16)

These two null vectors are important for our candidate GVSI, ϕ, to work. Indeed, (3.16)
means that there are now just two fermionic states at h(3,2) = 6: TΨ ∼ ∂2Ψ and T Ψ̃ ∼ ∂2Ψ̃.
This number is just right because there are only two candidate states in sVirc=−9

sm N=4 that
can map onto these A(6) fermions, and U(1)r fixes this mapping uniquely

ϕ(J−G−) = TΨ , ϕ(J−G̃−) = T Ψ̃ . (3.17)

In addition to these tests, we also explicitly checked the remaining states at h(3,2) = 6 as
well as the states with h(3,2) = 7, 8 and found that they are all consistent with the existence
of the above GVSI.8

This discussion makes plausible the following theorem:

Theorem 1. The map ϕ in (3.8) is a GVSI respecting (3.9) with the following additional
properties:

1. ϕ respects U(1)r charge: r(O) = r(ϕ(O)) for all O ∈ χ[su(2)]. By the taxonomy of
Schur operators, this means ϕ respects the Bose/Fermi statistics of the operators
it maps.

8We thank J. Shafiq for rechecking some of these results.
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2. There exists a basis {Oi} of χ[su(2)] such that every Oi is a normal ordered product
of strong generators and/or their derivatives, and ϕ(Oi) = ϕ(Oi,1) · · ·ϕ(Oi,ki) when
Oi = Oi,1 · · · Oi,ki .9

3. ϕ(∂kO) = ∂3kϕ(O) for all strong generators O of χ[su(2)] in the basis mentioned in
property 2.

4. The non-local su(2) under which (G±, G̃±) transform as doublets is mapped to a
non-local su(2) under which (Ψ, Ψ̃) transform as a doublet.

The key idea that leads to a proof of the theorem is to compare a decomposition of
sVirc=−9

sm N=4 in terms of Weyl modules of the universal affine vertex algebra, V− 3
2
(su(2)),

given in [31]

sVirc=−9
sm N=4 '

∞⊕
m=0

(
πm+1 ⊗ V− 3

2
(mω)

)
, (3.18)

with a corresponding decomposition of the A(6) VOA in terms of Virasoro modules given
in [15]

A(6) '
∞⊕
m=0

(πm+1 ⊗Mm+1,1;6) . (3.19)

In (3.18) and (3.19), πm+1 are m+ 1-dimensional irreducible representations of the su(2)
mentioned in bullet 4 of the above theorem.

Proof. We wish to first show that, under the identification in (3.9)

Mm+1,1;6 ' V− 3
2
(mω) , (3.20)

as a linear equivalence of graded vector spaces. Here Mm+1,1;6 is the Virasoro module
with Kac labels (m + 1, 1) at c = −24, and V− 3

2
(mω) is the Weyl module of V− 3

2
(su(2))

associated with mω (where ω is the fundamental weight of su(2)).
To that end, as discussed in [31], V− 3

2
(mω) has no singular vectors and is therefore

spanned by all vectors of the form

|s, {ak} , {bk} , {ck}〉su(2) :=
( ∞∏
k=1

(J+
−k)

ak(J0
−k)bk(J−−k)

ck

)
|s〉su(2) , (3.21)

where the product is taken so that JA−k is on the right of JB−` if k < `, ak, bk, and ck are
non-negative integers, and s = 0, · · · ,m labels eigenstates of J0

0 with eigenvalue s− m
2 .

10

Therefore, V− 3
2
(mω) is linearly isomorphic to the Virasoro Verma module spanned by

|s, {ak} , {bk} , {ck}〉Vir :=
( ∞∏
k=1

(L−3k−1)ak(L−3k)bk(L−3k+1)ck
)
Ls−1|h〉 , (3.22)

9By definition of strong generators, every element of χ[su(2)] is written as a linear combination of normal
ordered products of strong generators and/or their derivatives. However, non-trivial null operator relations
imply that some of these normal ordered products are linearly dependent. Our statement here is that there
exists a set {Oi} of linearly independent normal ordered products for which ϕ preserves the structure of the
normal ordering.

10Note that f in (3.9) is twice the eigenvalue of J0
0 .
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where we set

h = 3 (mω,mω + 2ρ)
2
(
ksu(2) + h∨su(2)

) − m

2 = m(3m+ 5)
2 , (3.23)

in order to guarantee that |s〉su(2) → (Ls−1)|h〉 under our identification (3.9). We also have
the following mapping of modes that is manifestly compatible with (3.9)

J±−k → L−(3k±1) , J
0
−k → L−3k . (3.24)

We can write the space spanned by our states in (3.22) more succinctly as the quotient of
the Verma module, Verma(h), by the subspace generated by (L−1)m+1|h〉, and so we find

V− 3
2
(mω) ' Verma(h)/Vir−(L−1)m+1|h〉 , (3.25)

where Vir− is the subalgebra spanned by L−k with k > 0.
Let us now analyzeMm+1,1;6. As discussed in [15], this is the quotient of Verma(hm+1,1)

by a subspace generated by a singular vector |ψ〉 at level m+ 1

Mm+1,1;6 ' Verma(hm+1,1)/Vir−|ψ〉 , (3.26)

where
hm+1,1 = (6(m+ 1)− 1)2 − 25

24 = m(3m+ 5)
2 . (3.27)

Note that this holomorphic dimension coincides with the one in (3.23). Therefore, we have
proven (3.20).

In the rest of this proof, we show that the above graded linear isomorphism can be
equipped with the additional properties listed in theorem 1. As shown in the proof of
theorem 2.5 of [31], the highest weight state of πm+1 ⊗ V− 3

2
(mω) in (3.18) corresponds to

G+∂G+∂2G+ · · · ∂m−1G+,11 where the su(2) action is such that (G+, G̃+) transforms as
a doublet. Therefore the decomposition (3.18) implies that sVirc=−9

sm N=4 is spanned by the
normal ordered products

∞∏
k=1

(∂k−1J+)ak(∂k−1J0)bk(∂k−1J−)ck G(s1
(i1 ∂G

s2
i2
· · · ∂m−1G

sm)
im) , (3.28)

where G0
1 := G−, G1

1 := G+, G0
2 := G̃−, G1

2 := G̃+, sk ∈ {0, 1}, ik ∈ {1, 2}, and we used
the state operator map JA−k|0〉 → ∂k−1JA(0) for A = 0,± and k ≥ 1. Note that both the
sub-scripts and super-scripts of Gsi are completely symmetric in (3.28).

We now turn to the A(6) side. We use the free field realization of A(6) discussed
in [15]; T = 1

2(∂φ)2 + 5
2
√

3∂
2φ, Ψ = e−

√
3φ and Ψ̃ = [ 1

2πi
∮
dz e

√
3φ(z), e−

√
3φ] where φ is

a free field such that φ(z)φ(0) ∼ log z. With this realization, the highest weight state
of πm+1 ⊗Mm+1,1;6 in (3.19) is written as e−m

√
3φ ∝ Ψ∂3Ψ∂6Ψ · · · ∂3m−3Ψ,12 where the

11Here the “highest weight” is in the sense of su(2)⊗ V− 3
2
(su(2)).

12One can show that e−m
√

3φ ∝ Ψ∂3Ψ∂6Ψ · · · ∂3m−3Ψ as follows. First note that e−
√

3φ(z1) · · · e−
√

3φ(zm)

= e−
√

3(φ(z1)+···+φ(zm))∏
1≤i<j≤m(zi − zj)3. Differentiating this identity and using Ψ = e−

√
3φ, we see that

Ψ(z1)∂3Ψ(z2)∂6Ψ(z3) · · · ∂3m−3Ψ(zm) ∝ e−m
√

3φ(zm) + X, where X vanishes in the limit of zk → zm for
k = 1, · · · ,m−1. This implies that the normal ordered product Ψ∂3Ψ · · · ∂3m−3Ψ is proportional to e−m

√
3φ.
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su(2)-action is such that (Ψ, Ψ̃) transforms as a doublet. Then (3.19) and our proof of (3.20)
imply that A(6) is spanned by

∞∏
k=1

(∂3k−1T )ak(∂3k−2T )bk(∂3k−3T )ck∂s
(
Ψ(i1∂

3Ψi2 · · · ∂3m−3Ψim)
)

(3.29)

where Ψ1 ≡ Ψ, Ψ2 ≡ Ψ̃, s ∈ {0, · · · ,m}, ik ∈ {1, 2}, and we used the state operator map
L−k|0〉 → ∂k−2T (0) for k ≥ 2.

Let us now consider the linear map ϕ : sVirc=−9
sm N=4 → A(6) that satisfies the properties

listed in theorem 1 for the basis (3.28) of sVirc=−9
sm N=4. Here we set ϕ(J−) = T, ϕ(J0) =

∂T, ϕ(J+) = ∂2T, ϕ(G−) = Ψ, ϕ(G+) = ∂Ψ, ϕ(G̃−) = Ψ̃ and ϕ(G̃+) = ∂Ψ̃. Then ϕ maps
the basis (3.28) to

∞∏
k=1

(∂3k−1T )ak(∂3k−2T )bk(∂3k−3T )ck

1
m!

∑
σ∈Sm

∂sσ(1)Ψ(i1 ∂
3+sσ(2)Ψi2 · · · ∂3m−3+sσ(m)Ψim) , (3.30)

where Sm is the symmetric group of degree m (note from comparing (3.28) and (3.30),
properties 1–3 mentioned in the theorem follow). Below we show that this ϕ is a graded
linear isomorphism. It is straightforward to show that ϕ is compatible with (3.9) and
therefore is a graded linear map. Then all we need to show is that (3.29) and (3.30) span
the same space so that ϕ is a linear isomorphism.

The fact that (3.29) and (3.30) span the same space can be seen as follows. We
focus on the sub-space spanned by the su(2) highest weight states, since its orthogonal
complement is generated by the action of the su(2) lowering generator. We start with the
fact that ∂s(Ψ∂3Ψ · · · ∂3m−3Ψ) ∝ ∂se−m

√
3φ = Ps(∂φ)e−m

√
3φ, where Ps(∂φ) is a degree-s

differential polynomial of ∂φ involving s derivatives. Using T = 1
2(∂φ)2 + 5

2
√

3∂
2φ, we

see that Ps(∂φ)e−m
√

3φ ∝ (∂φ)se−m
√

3φ +
∑s
k=1Qk(T )(∂φ)s−ke−m

√
3φ, where Qk(T ) are

differential polynomials of T . This implies that (3.29) for ak, bk, ck ≥ 0 and 0 ≤ s ≤ m span
the same space as

∞∏
k=1

(∂3k−1T )ak(∂3k−2T )bk(∂3k−3T )ck (∂φ)se−m
√

3φ , (3.31)

for the same ranges of ak, bk, ck and s. Similarly, one can show that (3.30) for ak, bk, ck ≥ 0
and sk ∈ {0, 1} span the same space as (3.31) where we identify s = s1 + · · ·+ sm.13 Hence,
the spaces spanned by (3.29) and (3.30) are identical, and therefore ϕ is a graded linear
isomorphism satisfying properties 1–4.

13Indeed, since e−
√

3φ(z1) · · · e−
√

3φ(zm) = e−
√

3(φ(z1)+···+φ(zm))∏
1≤i<j≤m(zi − zj)3, it is straight forward

to show that ∂s1 Ψ∂3+s2 Ψ · · · ∂3m−3+sm Ψ is written as Ps1+···+sm (∂φ)e−m
√

3φ for a differential polynomial
Ps1+···+sm(∂φ). Since sk ∈ {0, 1}, s1 + · · · + sm ∈ {0, · · · ,m}. Therefore, the same argument as above
implies (3.30) for ak, bk, ck ≥ 0 and sk ∈ {0, 1} span the same space as (3.31).
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4 |χ[(3, 2)]| versus |χ[su(2)]| and an inequality

In this section we will describe some additional relations between the (3, 2) VOA and its
N = 4 SYM VOA cousin. Our starting point is to recall that the number of strong generators
in A(6) = χ[(3, 2)] saturates a universal bound on the number of strong generators in VOAs
related to 4D N = 2 theories with exactly marginal gauge couplings [1]

|χ[T ]| ≥ 3 , (4.1)

where T is any 4D N = 2 SCFT with an exactly marginal gauge coupling, and |χ[T ]|
denotes the number of strong generators of χ(T ) (here |A(6)| = 3 since, as discussed in the
previous section, it is strongly generated by T , Ψ, and Ψ̃).

In what follows, we would like to argue that |A(6)| saturates another bound on the
number of strong generators, but this time from below.

However, to discuss this bound, we will preview some results that will appear in our
upcoming work [26]. In particular, in [26] we will argue that one can generalize some of the
above results (and find various new ones) by considering an infinite set of N = 2 SCFTs
that are closely related to the (3, 2) theory.

We call these generalized theories (n,N) SCFTs (they have also been studied in [2]
under different names14). We consider four infinite cases:

1. The (3, N) SCFT with gcd(3, N) = 1 as in figure 2. It consists of an exactly marginal
SU(N) gauging of three D3(SU(N)) := D3,N SCFTs. The (3, 2) SCFT discussed in
the previous sections has N = 2 (and D3,2 := D3).

2. The (2, N) SCFT with gcd(2, N) = 1 as in figure 3. It consists of an exactly marginal
SU(N) gauging of four D2(SU(N)) := D2,N SCFTs.

3. The (4, N) SCFT with gcd(4, N) = 1 as in figure 4. It consists of an exactly marginal
SU(N) gauging of two D4(SU(N)) := D4,N SCFTs and one D2,N theory.

4. The (6, N) SCFT with gcd(6, N) = 1 as in figure 5. It consists of an exactly marginal
SU(N) gauging of one D2,N SCFT, one D3,N theory, and one D6(SU(N)) := D6,N
SCFT.

Among other results, we will argue in [26] for the following generalization of (1.1), where
su(2) N = 4 SYM is generalized to su(N) N = 4 SYM

I(n,N)(q) = Isu(N))
(
qn, qn/2−1

)
, (4.2)

and the following generalization of (3.9)

h(n,N) = n · hsu(N) +
(
n

2 − 1
)
f . (4.3)

Generalizing section 3, we will argue in [26] that, among other things, there is an underlying
GVSI

ϕn,N : χ[su(N)]→ χ[(n,N)] , (4.4)
that respects U(1)r and (4.3).

14Various subsets of these theories have also been studied in [3, 4].
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ND3,N D3,N

D3,N

(3, N)

Figure 2. Our main theory of interest, (3, 2), has N = 2 and is the simplest member of this larger
class of theories (see figure 1). More generally, we may consider exactly marginal diagonal SU(N)
gaugings of three D3(SU(N)) := D3,N SCFTs (where D3,2 := D3). The only constraint on N is that
gcd(3, N) = 1.

Given this picture, we claim that A(6) saturates a new bound (this time from below)
on the number of strong VOA generators in the infinite set of (n,N) SCFTs relative to the
number of strong generators in the corresponding N = 4 theory:

Claim 3. Assuming the conjecture in [10] for the VOA corresponding to su(N) N = 4
SYM, χ[su(N)],15 and assuming the existence of a GVSI, ϕn,N , described above, we have
the following bound on the number of strong generators of χ[(n,N)] relative to the number
of strong generators of χ[su(N)]

|χ[(n,N)]| ≤ |χ[su(N)]| − 4 . (4.5)

Moreover, A(6) is the unique theory saturating (4.5) in the class of (n,N) SCFTs.

Proof. Let us first consider the case of n = 2. We require that gcd(N,n) = 1 and therefore
that N ≥ 3. From (4.3), we see that the SU(2)F generators of the SYM theory are mapped
to dimension two operators: T , X1, and X2. Here T is the energy-momentum tensor and
X1,2 are other spin-two currents in χ[(2, N)]. These must be strong generators since the
(2, N) theory has no flavor symmetries. By the conjecture for χ[su(N)] in [10], there are no
other bosonic generators at h(2,N) = 2.

At h(2,N) = 3 we will have the bosonic operators ∂T , ∂X1, and ∂X2. There cannot be
any relation involving just these operators (otherwise some linear combination of T , X1, and
X2 would be constant), and we also see from (4.3) that ϕ2,N (∂J−), ϕ2,N (∂J0), ϕ2,N (∂J+)
can only contribute at h(2,N) = 4. Therefore, we learn that three strong generators of
χ[su(N)] must map to the h(2,N) = 3 bosonic derivatives in χ[(2, N)]. These are the
2D states arising from three of the four Bijk operators of the su(N) N = 4 SYM VOA
conjectured in [10] (note that here we are using the fact that N ≥ 3).

At h(2,N) = 3 we also have four fermionic states arising from mapping
{
G±, G̃±

}
to{

Ψ±, Ψ̃±
}
under ϕ2,N . By similar logic to the one used above in the bosonic case, we must

have four independent derivatives at h(2,N) = 4: ∂Ψ± and ∂Ψ̃±. From (4.3) we see that
these states cannot arise from images of ϕ(∂G±) or ϕ(∂G̃±). Therefore, these must be
generated by four fermionic currents in χ[su(N)] (these are four of the 2D avatars of the

15Actually, we will only need to assume that the low-lying states of the conjectures in [10] are correct.
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ND2,N D2,N

D2,N

D2,N

(2, N)

Figure 3. We may further generalize the (3, 2) theory by considering a diagonal exactly marginal
SU(N) gauging of four D2(SU(N)) := D2,N theories. Here gcd(2, N) = 1.

ND2,N D4,N

D4,N

(4, N)

Figure 4. We may also generalize the (3, 2) theory by considering a diagonal exactly marginal
SU(N) gauging of two D4(SU(N)) := D4,N theories and one D2(SU(N)) := D2,N SCFT. Here
gcd(4, N) = 1.

4D TrQiQj λ̃+̇ and TrQiQjλ+̇ operators). As a result, we find the stronger result that

|χ[(n,N)]| ≤ |χ[(su(N)]| − 7 < χ[su(N)]| − 4 . (4.6)

Consider now the case of n = 3. Just as in the discussion of the (3, 2) theory in the
previous sections, we see that (4.3) implies that the first non-trivial operator of χ[(3, N)]
enters at h(3,N) = 2: the stress tensor, T . We again have the unique identification,
ϕ(J−) = T . At h(3,N) = 3 we have ∂T 6= 0. Since (4.3) implies ϕ(∂J−) has h(3,N) = 5, we see
that a strong generator of χ[su(N)] must map to ∂T . By the conjecture in [10] we have that

ϕ(α · b111 + β · J0) = ∂T ∈ χ[(2, N)] , (4.7)

for some constants α and β. Here b111 = χ(B111) where B111 = TrQ1Q1Q1 (“1” is a
label denoting the lowest SU(2)F weight state in the doublet Qi). An independent linear
combination of ϕ(b111) and ϕ(J0) map to a χ[(3, N)] strong generator, X, at h(3,N) = 3
(this state was absent in the case N = 2, but it exists for N ≥ 4).

Next consider the bosonic states at h(3,N) = 4. We have T 2, ∂2T , and ∂X. We
can’t have a null state involving just ∂2T and ∂X (since this would contradict ∂T and X
being independent operators at h(3,N) = 3).16 Therefore, we have that ∂2T and ∂X are
independent. Since ϕ(∂b111) has h(3,N) = 6, we see that two strong generators of χ[su(N)]
must map to the derivatives in question. This mapping occurs via two linear combinations
of ϕ(J+), ϕ(b(211)) (where the indices of b(211) are symmetrized), and ϕ(b1111). We therefore
see that there is an additional independent generator at this level, Y (again only for N ≥ 4).

16Moreover, since c 6= − 22
5 , we also cannot have a null relation involving just ∂2T and T 2.
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ND2,N D3,N

D6,N

(6, N)

Figure 5. As a final generalization of the (3, 2) theory we may considering a diagonal exactly
marginal SU(N) gauging of a D2(SU(N)) := D2,N theory, a D3(SU(N)) := D3,N SCFT, and a
D6(SU(N)) := D6,N theory. Here gcd(6, N) = 1.

To finish off the case of n = 3, let us consider the fermionic states at h(3,N) = 4. We
have two states arising from the mapping of

{
G−, G̃−

}
to
{

Ψ, Ψ̃
}
under ϕ3,N . Therefore,

at h(3,N) = 5, we have ∂Ψ and ∂Ψ̃. By (3.9), these cannot arise from ϕ(∂G−) or ϕ(∂G̃−).
As a result, two strong generators of χ[su(N)] must map onto them. We conclude that

|χ[(3, N)]| ≤ |χ[su(N)]| − 4 , (4.8)

with the equality saturated if and only if N = 2.
Consider now the case of n = 4 (since gcd(4, N) = 1, we see that N ≥ 3). Again

our first bosonic operator in χ[(4, N)] enters at h(4,N) = 2 and has a unique mapping:
ϕ(J−) = T . As in the previous case, at h(4,N) = 3 we have ∂T 6= 0. Since (4.3) implies that
ϕ(∂J−) has h(4,N) = 6, we see that a strong generator of χ[su(N)] must map to ∂T . By the
conjecture in [10], we have that ϕ(b111) = ∂T . Next, at h(4,N) = 4, we have T 2 and ∂2T 6= 0
(since c 6= −22

5 we also have ∂2T is independent of T 2). Since ϕ(∂b111) has h(4,N) = 7, we
must have ϕ(J0), ϕ(J−J−), and ϕ(b1111) mapping into these stress tensor states and a new
strong generator X (for N ≥ 5; we see that for N = 3, X cannot exist using [10]). Since
ϕ(∂J0), ϕ(∂J−J−), ϕ(∂b1111) have h(4,N) = 8, this means there is a strong generator that
maps to ∂3T .

Now consider the lowest-dimensional fermions ϕ(G−) = Ψ and ϕ(G̃−) = Ψ̃ at h(4,N) = 5.
These are strong generators of χ[(4, N)], and their derivatives ∂Ψ and ∂Ψ̃ must correspond
to other strong generators of the χ[su(N)] VOA by (4.3). Therefore, we have the stronger
result that

|χ[(4, N)]| ≤ |χ[su(N)]| − 5 < |χ[su(N)]| − 4 . (4.9)

Finally, consider the case of n = 6 (since gcd(6, N) = 1, we see that N ≥ 5). As above,
our first bosonic operator in χ[(6, N)] enters at h(6,N) = 2 and has a unique mapping:
ϕ(J−) = T . Again at h(6,N) = 3 we have ∂T 6= 0. Since (4.3) implies that ϕ(∂J−) has
h(6,N) = 8, we see that a strong generator of χ[su(N)] must map to ∂T . By the conjecture
in [10], we have that ϕ(b111) = ∂T . Next, at h(8,N) = 4 we have T 2 and ∂2T 6= 0 (again,
since c 6= −22

5 , we also have that ∂2T is independent of T 2). Since ϕ(∂b111) has h(6,N) = 9,
we must have ϕ(J−J−) and ϕ(b1111) mapping into linear combinations of T 2 and ∂2T .
Since ϕ(∂b1111) has h(6,N) = 10, we must have another strong generator mapping into ∂3T

Now consider the lowest-dimensional fermions ϕ(G−) = Ψ and ϕ(G̃−) = Ψ̃ at h(6,N) = 7.
These are strong generators of χ[(6, N)], and their derivatives, ∂Ψ and ∂Ψ̃, must correspond
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to other strong generators of the χ[su(N)] VOA by (4.3).Therefore, we have the stronger
result that

|χ[(6, N)]| ≤ |χ[su(N)]| − 5 < |χ[su(N)]| − 4 , (4.10)

and we have proved our result.

5 Conclusions

In this paper, we have shown that a surprisingly simple index relation between two very
different theories — the (3, 2) AD theory and su(2) N = 4 SYM — has a mathematical
explanation in terms of an exact GVSI. We’ve argued that physically this relation is a
(distant) cousin of spontaneous symmetry breaking. It would be interesting to understand
this physical perspective better, perhaps making contact with and generalizing the large
charge literature as in [32, 33].

It will also be interesting to understand how general the above phenomena are. As we
have mentioned, we will find infinitely many generalizations of some of the above arguments
in an upcoming work [26] (though note that the index discussion from the introduction
referencing [17] does not directly apply to the case n 6= 3).

In addition, we have seen that the VOA associated with the (3, 2) SCFT, A(6), saturates
two bounds on the number of strong generators. It would be interesting to understand if
this saturation is related to the fact that the (3, 2) theory lacks a Higgs branch. Moreover,
the saturation of these bounds might imply that this theory can be targeted in interesting
ways with the bootstrap. Finally, it would be interesting to understand our construction in
a more four-dimensional language.
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