Skip to main content

Dimers in a bottle

A preprint version of the article is available at arXiv.

Abstract

We revisit D3-branes at toric CY3 singularities with orientifolds and their description in terms of dimer models. We classify orientifold actions on the dimer through smooth involutions of the torus. In particular, we describe new orientifold projections related to maps on the dimer without fixed points, leading to Klein bottles. These new orientifolds lead to novel \( \mathcal{N} \) = 1 SCFT’s that resemble, in many aspects, non-orientifolded theories. For instance, we recover the presence of fractional branes and some of them trigger a cascading RG-flow à la Klebanov-Strassler. The remaining involutions lead to non-supersymmetric setups, thus exhausting the possible orientifolds on dimers.

References

  1. J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  2. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  3. I.R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [INSPIRE].

    MATH  Article  Google Scholar 

  4. I.R. Klebanov and N.A. Nekrasov, Gravity duals of fractional branes and logarithmic RG flow, Nucl. Phys. B 574 (2000) 263 [hep-th/9911096] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  5. I.R. Klebanov and A.A. Tseytlin, Gravity duals of supersymmetric SU(N) x SU(N+M) gauge theories, Nucl. Phys. B 578 (2000) 123 [hep-th/0002159] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  6. I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: Duality cascades and chi SB resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [INSPIRE].

    MATH  Article  Google Scholar 

  7. B. Feng, A. Hanany and Y.-H. He, D-brane gauge theories from toric singularities and toric duality, Nucl. Phys. B 595 (2001) 165 [hep-th/0003085] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  8. B. Feng, A. Hanany and Y.-H. He, Phase structure of D-brane gauge theories and toric duality, JHEP 08 (2001) 040 [hep-th/0104259] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  9. C.E. Beasley and M.R. Plesser, Toric duality is Seiberg duality, JHEP 12 (2001) 001 [hep-th/0109053] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  10. B. Feng, A. Hanany, Y.-H. He and A.M. Uranga, Toric duality as Seiberg duality and brane diamonds, JHEP 12 (2001) 035 [hep-th/0109063] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  11. D. Berenstein, C.P. Herzog, P. Ouyang and S. Pinansky, Supersymmetry breaking from a Calabi-Yau singularity, JHEP 09 (2005) 084 [hep-th/0505029] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  12. S. Franco, A. Hanany, F. Saad and A.M. Uranga, Fractional branes and dynamical supersymmetry breaking, JHEP 01 (2006) 011 [hep-th/0505040] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  13. M. Bertolini, F. Bigazzi and A.L. Cotrone, Supersymmetry breaking at the end of a cascade of Seiberg dualities, Phys. Rev. D 72 (2005) 061902 [hep-th/0505055] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  14. L.E. Ibáñez and A.M. Uranga, Instanton induced open string superpotentials and branes at singularities, JHEP 02 (2008) 103 [arXiv:0711.1316] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  15. E. García-Valdecasas Tenreiro and A. Uranga, Backreacting D-brane instantons on branes at singularities, JHEP 08 (2017) 061 [arXiv:1704.05888] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  16. G. Aldazabal, L.E. Ibáñez, F. Quevedo and A.M. Uranga, D-branes at singularities: A Bottom up approach to the string embedding of the standard model, JHEP 08 (2000) 002 [hep-th/0005067] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  17. D. Berenstein, V. Jejjala and R.G. Leigh, The Standard model on a D-brane, Phys. Rev. Lett. 88 (2002) 071602 [hep-ph/0105042] [INSPIRE].

  18. H. Verlinde and M. Wijnholt, Building the standard model on a D3-brane, JHEP 01 (2007) 106 [hep-th/0508089] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  19. S. Franco, D. Galloni, A. Retolaza and A. Uranga, On axion monodromy inflation in warped throats, JHEP 02 (2015) 086 [arXiv:1405.7044] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  20. A. Retolaza, A.M. Uranga and A. Westphal, Bifid Throats for Axion Monodromy Inflation, JHEP 07 (2015) 099 [arXiv:1504.02103] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  21. R. Argurio, M. Bertolini, S. Franco and S. Kachru, Meta-stable vacua and D-branes at the conifold, JHEP 06 (2007) 017 [hep-th/0703236] [INSPIRE].

    MATH  Article  Google Scholar 

  22. G. Buratti, E. García-Valdecasas and A.M. Uranga, Supersymmetry Breaking Warped Throats and the Weak Gravity Conjecture, JHEP 04 (2019) 111 [arXiv:1810.07673] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  23. R. Argurio, M. Bertolini, S. Meynet and A. Pasternak, On supersymmetry breaking vacua from D-branes at orientifold singularities, JHEP 12 (2019) 145 [arXiv:1909.04682] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  24. R. Argurio et al., The Octagon and the Non-Supersymmetric String Landscape, Phys. Lett. B 815 (2021) 136153 [arXiv:2005.09671] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  25. R. Argurio et al., Dimers, Orientifolds and Stability of Supersymmetry Breaking Vacua, JHEP 01 (2021) 061 [arXiv:2007.13762] [INSPIRE].

    MATH  Article  Google Scholar 

  26. A. Hanany and K.D. Kennaway, Dimer models and toric diagrams, hep-th/0503149 [INSPIRE].

  27. S. Franco, A. Hanany, D. Martelli, J. Sparks, D. Vegh and B. Wecht, Gauge theories from toric geometry and brane tilings, JHEP 01 (2006) 128 [hep-th/0505211] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  28. S. Franco, A. Hanany, K.D. Kennaway, D. Vegh and B. Wecht, Brane dimers and quiver gauge theories, JHEP 01 (2006) 096 [hep-th/0504110] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  29. G. Pradisi and A. Sagnotti, Open String Orbifolds, Phys. Lett. B 216 (1989) 59 [INSPIRE].

    MathSciNet  Article  Google Scholar 

  30. P. Hořava, Strings on World Sheet Orbifolds, Nucl. Phys. B 327 (1989) 461 [INSPIRE].

    MathSciNet  Article  Google Scholar 

  31. J. Dai, R.G. Leigh and J. Polchinski, New Connections Between String Theories, Mod. Phys. Lett. A 4 (1989) 2073 [INSPIRE].

    MathSciNet  Article  Google Scholar 

  32. M. Bianchi and A. Sagnotti, On the systematics of open string theories, Phys. Lett. B 247 (1990) 517 [INSPIRE].

    MathSciNet  Article  Google Scholar 

  33. M. Bianchi and A. Sagnotti, Twist symmetry and open string Wilson lines, Nucl. Phys. B 361 (1991) 519 [INSPIRE].

    MathSciNet  Article  Google Scholar 

  34. L.E. Ibáñez and A.M. Uranga, Neutrino Majorana Masses from String Theory Instanton Effects, JHEP 03 (2007) 052 [hep-th/0609213] [INSPIRE].

    Article  Google Scholar 

  35. R. Argurio, M. Bertolini, G. Ferretti, A. Lerda and C. Petersson, Stringy instantons at orbifold singularities, JHEP 06 (2007) 067 [arXiv:0704.0262] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  36. R. Blumenhagen, M. Cvetič, S. Kachru and T. Weigand, D-Brane Instantons in Type II Orientifolds, Ann. Rev. Nucl. Part. Sci. 59 (2009) 269 [arXiv:0902.3251] [INSPIRE].

    Article  Google Scholar 

  37. S. Franco, A. Hanany, D. Krefl, J. Park, A.M. Uranga and D. Vegh, Dimers and orientifolds, JHEP 09 (2007) 075 [arXiv:0707.0298] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  38. D. Dugger, Involutions on surfaces, J. Homotopy Relat. Struct. 14 (2019) 919.

    MathSciNet  MATH  Article  Google Scholar 

  39. N. Seiberg, Electric-magnetic duality in supersymmetric nonAbelian gauge theories, Nucl. Phys. B 435 (1995) 129 [hep-th/9411149] [INSPIRE].

    MATH  Article  Google Scholar 

  40. L.E. Ibáñez, R. Rabadán and A.M. Uranga, Anomalous U(1)′s in type-I and type IIB D = 4, N = 1 string vacua, Nucl. Phys. B 542 (1999) 112 [hep-th/9808139] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  41. A. Hanany and D. Vegh, Quivers, tilings, branes and rhombi, JHEP 10 (2007) 029 [hep-th/0511063] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  42. B. Feng, Y.-H. He, K.D. Kennaway and C. Vafa, Dimer models from mirror symmetry and quivering amoebae, Adv. Theor. Math. Phys. 12 (2008) 489 [hep-th/0511287] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  43. S. Franco and D. Vegh, Moduli spaces of gauge theories from dimer models: Proof of the correspondence, JHEP 11 (2006) 054 [hep-th/0601063] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  44. W. Thurston, The geometry and topology of three-manifolds, Notes (2002), http://library.msri.org/books/gt3m/.

  45. A. Butti, Deformations of Toric Singularities and Fractional Branes, JHEP 10 (2006) 080 [hep-th/0603253] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  46. R. Argurio et al., Dimers, Orientifolds and Anomalies, JHEP 02 (2021) 153 [arXiv:2009.11291] [INSPIRE].

    MATH  Article  Google Scholar 

  47. S. Imai and T. Yokono, Comments on orientifold projection in the conifold and SO × USp duality cascade, Phys. Rev. D 65 (2002) 066007 [hep-th/0110209] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  48. A. Antinucci, S. Mancani and F. Riccioni, Infrared duality in unoriented Pseudo del Pezzo, Phys. Lett. B 811 (2020) 135902 [arXiv:2007.14749] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  49. Y. Imamura, K. Kimura and M. Yamazaki, Anomalies and O-plane charges in orientifolded brane tilings, JHEP 03 (2008) 058 [arXiv:0801.3528] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  50. A. Dabholkar and J. Park, Strings on orientifolds, Nucl. Phys. B 477 (1996) 701 [hep-th/9604178] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  51. E. Witten, Toroidal compactification without vector structure, JHEP 02 (1998) 006 [hep-th/9712028] [INSPIRE].

    MathSciNet  MATH  ADS  Google Scholar 

  52. J. Park and A.M. Uranga, A Note on superconformal N = 2 theories and orientifolds, Nucl. Phys. B 542 (1999) 139 [hep-th/9808161] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  53. J. Park, R. Rabadán and A.M. Uranga, N = 1 type IIA brane configurations, chirality and T duality, Nucl. Phys. B 570 (2000) 3 [hep-th/9907074] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  54. A.M. Uranga, A New orientifold of C**2/Z(N) and six-dimensional RG fixed points, Nucl. Phys. B 577 (2000) 73 [hep-th/9910155] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  55. I.P. Ennes, C. Lozano, S.G. Naculich and H.J. Schnitzer, Elliptic models, type IIB orientifolds and the AdS/CFT correspondence, Nucl. Phys. B 591 (2000) 195 [hep-th/0006140] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  56. B. Feng, Y.-H. He, A. Karch and A.M. Uranga, Orientifold dual for stuck NS5-branes, JHEP 06 (2001) 065 [hep-th/0103177] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  57. N.J. Evans, C.V. Johnson and A.D. Shapere, Orientifolds, branes, and duality of 4 – D gauge theories, Nucl. Phys. B 505 (1997) 251 [hep-th/9703210] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  58. A. Retolaza and A. Uranga, Orientifolds of Warped Throats from Toric Calabi-Yau Singularities, JHEP 07 (2016) 135 [arXiv:1605.01732] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  59. D. Cox, J. Little and H. Schenck, Toric Varieties, Graduate Studies in Mathematics, AMS Press, Providence U.S.A. (2011).

  60. R. Argurio and M. Bertolini, Orientifolds and duality cascades: confinement before the wall, JHEP 02 (2018) 149 [arXiv:1711.08983] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  61. I. García-Etxebarria and D. Regalado, \( \mathcal{N} \) = 3 four dimensional field theories, JHEP 03 (2016) 083 [arXiv:1512.06434] [INSPIRE].

  62. O. Aharony and Y. Tachikawa, S-folds and 4d N = 3 superconformal field theories, JHEP 06 (2016) 044 [arXiv:1602.08638] [INSPIRE].

    MATH  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shani Meynet.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2101.02670

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

García-Valdecasas, E., Meynet, S., Pasternak, A. et al. Dimers in a bottle. J. High Energ. Phys. 2021, 274 (2021). https://doi.org/10.1007/JHEP04(2021)274

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2021)274

Keywords

  • Brane Dynamics in Gauge Theories
  • D-branes
  • Supersymmetric Gauge Theory
  • Gauge-gravity correspondence